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This study uses magnetic resonance-based coupling theory to study the various placements of transmitter and receiver coils in 
wireless power transfer (WPT) systems. Various coil placements are examined to show where high efficiency can be achieved 
within the air gap. Basic characteristics such as self-inductance, mutual inductance, and coupling coefficient were calculated. 
Artificial neural networks (ANNs) in WPT are a powerful technique for predicting performance characteristics. Using ANNs 
provides an excellent method for streamlining the design process and reducing time-consuming calculations. To quickly determine 
and optimize coil design, this study compares recent research on ANN applications in WPT and the performance of different types 
of ANNs in WPT systems. An artificial neural network (ANN) was trained to predict the magnetic properties of a wireless power 
transfer (WPT) device. Appropriate cost functions have been implemented to train the ANN properly. It was shown that the 
trained ANN can effectively reproduce the data obtained by the finite element method (FEM). The results show an effective power 
transmission at different coil placements, with decreased efficiency observed after a certain distance. These data will help 
determine the proposed WPT system's air gap and angular limits.  

1. INTRODUCTION 
Wireless power transfer (WPT) is an innovative technology 

that enables energy transmission without physical 
connections, revolutionizing the charging and powering of 
electronic devices. Transferring energy using electromagnetic 
fields allows users to charge their devices independently of 
cables and offers practical solutions in many areas of daily life 
[1,2]. Initiated by Nikola Tesla, this quest has evolved into a 
multidisciplinary field, with wireless energy transfer serving 
as a central focus across multiple industries. Nikola Tesla's 
pioneering work has spurred research into wireless energy 
transfer, which can be broadly categorized into two main 
types: near-field and far-field technologies. The earliest efforts 
in wireless power transmission via electromagnetic radiation 
were pioneered by Nicola Tesla; however, these efforts 
experienced setbacks and were discontinued due to the 
withdrawal of sponsor support [3]. Sahai and Graham 
continued experimenting with laser-based power transfer but 
with low efficiency over long distances, primarily applicable 
in space scenarios. Laser radiation poses hazards despite its 
potential, with even low-power emissions capable of causing 
blindness and high-power emissions posing lethal risks due to 
thermal effects [4]. 

The efficiency of wireless power transfer (WPT) is 
significantly influenced by the positional and angular 
alignment of the transmitter and receiver coils [5–7]. When 
properly aligned, coils exhibit higher efficiency even at 
larger air gaps than misaligned coils. A study highlighted in 
reference [8] focused on estimating the coupling coefficient, 
emphasizing its critical role in determining efficiency.  

The key issue in wireless power transfer (WPT) is 
maintaining efficient energy transmission at increasing 
distances between the transmitter and receiver. As the 
distance increases, the efficiency of power transfer 
decreases. Researchers have investigated various ways to 
overcome this issue, including altering coil designs, 
combining numerous resonators, adjusting impedance 
matching, and using other approaches. However, due to the 
many factors impacting power transfer efficiency and the 
complex interplay between these parameters, determining 
the ideal values for individual parameters is difficult and 
time-consuming. As a result, a unique technique for 

parameter computing for WPT has been proposed, which 
incorporates artificial neural networks (ANN). This method 
aims to identify variables and establish improved 
correlations between parameters. Accordingly, this review 
delves into the diverse methodologies of ANN applied in 
WPT and proposes future implementations to augment the 
overall efficiency of WPT systems.  

Early implementations of ANN in WPT, as presented in 
[9,10], focused on current control for electric vehicle 
applications using BP. This implementation aimed to 
stabilize output current during dynamic wireless charging, 
which required accurate prediction of disturbances to 
maintain constant output current. Simulation using 
MATLAB/Simulink demonstrated the effectiveness of BP in 
stabilizing output current, although hardware validation was 
lacking [10]. Subsequent research efforts further explored 
the application of ANN in WPT. These studies proposed 
using BP to maximize power transfer through impedance-
matching techniques and adaptive filtering. BP algorithms 
have been simulated to identify optimal frequency matches 
between transmitter and receiver coils, and practical 
prototypes have been tested to evaluate power transfer 
efficiency under varying conditions of distance and 
misalignment [11]. In addition, PSO has been used to 
optimize the transfer efficiency and VA in inductively 
coupled WPT systems, and promising experimental and 
simulation results have been obtained [12–15]. 

The 2016 study addressed frequency splitting and 
misalignment challenges, focusing on inductively coupled 
WPT systems for short-range applications [16]. It used lumped 
impedance over different frequencies and transmission 
efficiency coefficients. Various ANN methods, such as GA 
and PSO, aided in optimization, reducing frequency splitting 
and accelerating parameter prediction. In dynamic charging 
scenarios, such as electric vehicles or biomedical devices, 
lateral misalignment (LTM) issues have been addressed by 
predicting and correcting coil misalignment using the BP 
algorithm [17]. Predicting LTM dynamics could mitigate 
misalignment's adverse effects during dynamic charging 
scenarios. In addition, researchers explored coil design 
prediction and improvement through ANN algorithms, using 
PSO to optimize wire distribution and electromagnetic 
configurations for concentric circular coils [18]. multi-
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objective hidden point PSO (MOHPSO) and multi-objective 
real number PSO (MORPSO) were applied to improve 
coupler efficiency and streamline design processes, supported 
by validated results from prototype evaluations. In addition, 
BP and PSO algorithms were used to fine-tune various 
parameters when exploring the integration of ANN in WPT 
converters and fault diagnosis [19,20]. Researchers used BP 
and PSO methods in their investigations to improve system 
performance and address issues related to battery degradation 
and lifetime concerns [21–23]. 

This study investigates the effectiveness of transformer 
configurations designed for wireless power transmission 
(WPT) at different locations and airgap spacings. Various 
parameters such as mutual inductance (M), coupling 
coefficient (k), and efficiency are calculated for different 
positions of the models and varying air gap lengths. The 
equivalent circuits and coils of the magnetic resonance 
coupling system are derived using several tools within the 
ANSYS software suite. A transient analysis of the WPT 
system is then performed considering different states of 
transmit and receive coil positions. Optimal estimates for k, 
M, and efficiency are then determined based on the distance 
using the ANN algorithm and machine learning (ML), 
followed by a comparative analysis of the results.  

2. MATERIAL AND METHOD 
This study section describes the fundamental operation of 

the analogous circuit utilized in the simulation. Figure 1 
shows the WPT system's fundamental equivalent circuit. 
This circuit will allow analytical calculations of input 
impedance, transmitted power, and efficiency. 

 
Fig. 1 – Circuit of WPT (wireless power transfer) system 

In this similar circuit, 𝐼! input current, 𝐼"  output current 
(receiver current), and 𝑉!  input voltage. The internal 
resistances within the transmitting and receiving systems 
encompass various components, including the resonant 
capacitors C transmit and receive, transmit coil inductance 
𝐿!, receive coil inductance 𝐿", and counter inductance 𝐿#, 
alongside the load impedance 𝑍$%&'. Equation (1) delineates 
the perimeter equation for the transmitter component, while 
Equation (2) illustrates the perimeter equation for the 
receiver component.  
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Equations (1) and (2) are used to calculate the interaction 
of currents running between the receiver and transmitter 
coils, which is shown in Equation (3). 
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When eq. (1) is inserted into eq. (3), then the resulting 
voltage equation is divided by the input current, and the 

equivalent impedance, also known as the input impedance, 
is derived, as demonstrated in eq. (4). 
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An alternative representation of the equivalent circuit 
shown in Fig. 1 is the equivalent circuit, as depicted in 
Figure 2. The system's efficiency is expressed by eq. (5). 

 
Fig. 2 – Equivalent transfer system. 
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In this equation, the current 𝐼% represents the current 
through the receiver 𝐼", the input current represents the 
current through the emitter 𝐼!, and the impedance 𝑍% 
corresponds to the 	𝑍$%&' impedance. Expressing eq. (3) as 
the ratio of output current to input current yields, 
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2.1 NEURAL NETWORK STRUCTURE AND 
TRAINING 

This section explores the generation of training data, the 
partitioning of data into training and testing sets, the creation 
of the ANN, the training methodology, and the development 
of cost functions. Each 48,384 geometries inputs nine unique 
independent variables into the ANN, resulting in 4,418 
variables describing magnetic field properties. Subsequently, 
49,013 geometries are simulated using a FEM solver, 
covering various combinations of independent variables and 
generating 4,418 dependent variables for each geometry. 

2.2 DATA GENERATION AND TRAINING/TESTING SETS 
Overfitting presents a challenge in artificial neural 

networks (ANNs), where the network may excel in fitting the 
data it was trained on but struggles to accurately predict new 
data points. This issue is particularly pronounced in larger 
ANNs, although they possess the capacity to approximate 
more complex functions. The dataset is typically divided into 
training and test sets to address the risk of overfitting or at 
least monitor its occurrence. While the ANN learns from the 
training set, it remains independent from the test set, 
ensuring that its performance on unseen data points reflects 
its generalization ability. In this study, every 13th geometry 
was assigned to the testing set, ensuring comprehensive 
coverage of various variables such as air gaps and coil 
widths. Notably, the ANN underwent training solely with 
data from the training set, thereby avoiding any influence 
from the testing set. 

2.3 NEURAL NETWORK STRUCTURE 
The artificial neural network (ANN) structure comprises 

four distinct neural networks or branches, each employing 
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identical nine input variables. PyTorch was utilized for 
constructing the ANN. Figure 3 displays the diverse layering 
used to simulate individual attributes. The Rectified Linear 
Unit (ReLu) activation function is mathematically defined on 
a vector x as follows: 

𝑅(𝑥) = =𝑥, 𝑥 > 0,
0, 𝑥 ≤ 0.                             (7) 

Notably, optimizing the ANN's performance involved 
training it to interpret the natural logarithm of the flux 
density rather than its direct value. This improvement is 
facilitated by the final layer of the stray field branch, which 
accommodates negative values, thereby circumventing the 
ReLu activation function. Furthermore, the inductance 
values specified in nanohenries should be interpreted in the 
context of a single turn. As both primary and secondary turns 
increase, the inductance values rise proportionally to the 
square of the turns.  

2.4 TRAINING ALGORITHM 
A gradient descent technique minimizes the cost function 

and trains the ANN, measuring the deviation between the 
training data and the ANN's predictions. Specifically, the 
Adam gradient descent method is applied to adjust the 
ANN's parameters to match the training data produced by 
FEM. Training typically involves processing batches of 
input data, with each full iteration through the training 
dataset referred to as an epoch, aiming to enhance training 
efficiency, 

𝑐- = 〈(𝐼% − 𝐼7)7(𝐼% − 𝐼7)〉.                     (8) 

The symbol 𝑐- represents the cost associated with the 
inductance values. 𝐼% denotes the vector containing the 
inductance values predicted by ANN, while 𝐼7	represents the 
vector of inductance values determined using FEM. The symbol 
⟨·⟩ denotes the average cost over the batch of geometries. When 
incorporating ferrite and copper magnetic field strengths into 
the ANN training process, relying solely on a basic mean 
squared error (MSE) cost function proves inadequate. The 
crucial aspect to consider is not solely the magnetic field 
intensity but energy dissipation. Ferrite losses commonly 
increase quadratically with the flux density, whereas copper 
proximity effect losses exhibit a linear relationship with 
magnetic flux density. Consequently, the minimized cost 
function 𝑐8 ferrite during ANN training is given by: 

𝑐8 = 〈(𝑓%" − 𝑓7")7(𝑓%" − 𝑓7")〉.                         (9) 

In this equation, 𝑓% denotes the projected magnetic flux 
density values from the ANN, while 𝑓7 represents the 
magnetic flux densities calculated using FEM. The symbol 
⟨·⟩ computes the average cost across every channel or image 
within a batch of geometries. In both the vehicle and ground 
configurations, each shape incorporates a channel that 
signifies both the real and imaginary aspects of the field. 
Equation (9) essentially outlines the cost function as the 
MSE of the squared magnetic flux density. Although 
equation (9) suggests that 𝑓% = ±𝑓7 is an acceptable solution, 
the ReLu activation function ensures that 𝑓% ≥ 0. 
Consequently, there exists only one optimum solution. 
Similarly, the copper cost 𝑐*9 is expressed as: 

𝑐*9 = 〈(𝑐%" − 𝑐7")7(𝑐%" − 𝑐7")〉.                       (10) 

In eq. (9) and (10), 𝑐% represents a vector of magnetic field 
strengths predicted by the ANN, while 𝑐7 a vector of field 
strengths calculated by FEM. These equations demonstrate 
that the ANN is trained to reduce the MSE between the 
predicted and calculated energy losses. Evaluating relative 
accuracy provides an indirect approach to assessing 
precision. Variations in the number of Ampere-turns in the 
primary and secondary coils proportionally influence overall 
inaccuracies when magnetic field strength is depicted on a 
linear scale. Additionally, because some measurements of 
stray magnetic field intensity are notably high while others 
are relatively low, a relative error ensures fairness across all 
measurements. However, utilizing an MSE cost function on 
linear data may result in comparable linear errors for points 
with high and low magnetic field strength but significantly 
different relative errors. Since stray field strengths are 
logarithmically scaled, reducing the relative error in field 
strength amounts to minimizing the logarithmic mean square 
error. It's crucial to acknowledge that logarithmic values can 
occasionally be negative. Therefore, the ANN's final layer of 
the stray field branch cannot pass through the ReLu 
activation function. 

2.5 DESIGN OF RECTANGULAR WPT 
TRANSFORMER MODEL 

The study delves into the design aspect of rectangular 
WPT transformers employing the ANSYS-Maxwell tool. 
Figure 3 depicts rectangular coils, illustrating the 
configuration of the WPT transformers. Table 2 details the 
specific dimensions of the rectangular transformer model. 

Table 2 
Dimensions of rectangular WPT transformer 

Parameter Receiver coil Transmitter coil 
Turn Number 24 42 

Material thickness 2 mm 2 mm 
Coil dimension (395x395) mm (395x395) mm 
Core dimension (398x398) mm (398x398) mm 

This configuration utilizes the circular transformer 
model's identical primary and secondary winding counts. A 
magnetic resonance-coupled WPT system has been 
developed to accommodate aligned and unaligned 
conditions across air gap distances. The diverse 
arrangements of the transmitter and receiver coils, 
constructed using the ANSYS-Maxwell-3D tool, are 
illustrated in Fig. 3.  

 
Fig. 3 – Illustrates the aligned receiver and transmitter WPT models. 

3. RESULT DISCUSSION 

3.1 ARTIFICIAL NEURAL NETWORK RESULTS 
This section examines the efficiency of the ANN across 

four primary functions. Unless explicitly stated otherwise, all 
performance metrics are assessed using the test rather than 
the training set. Notably, the ANN demonstrated remarkable 
accuracy in forecasting inductance values. The R2 value, a 
reliable gauge of the neural network's precision, consistently 
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maintained a high level across all inductance measurements 
following 1250 training epochs. Figure 4 vividly portrays the 
proficiency of the ANN in acquiring knowledge of 
inductances, showcasing a notable convergence between the 
values calculated by FEM and those predicted by the ANN. 

 
Fig. 4 – Comparative analysis of ANN) and FEM values. 

Excitation scenarios involving two amperes-turns for both 
primary and secondary coils were employed to evaluate the 
predictive capability of the ANN)in forecasting stray 
magnetic fields. Subsequently, the magnetic fields generated 
by the ANN and those produced by FEM were compared for 
each geometry across various planes.  

Two criteria were utilized to validate the efficacy of the 
ANN: the R2 value, which correlates the MSE with the total 
energy, and the pass rate, indicating the proportion of the 
ANN-derived peak field strength falling within a specific 
margin of the FEM-derived peak field strength. Both criteria 
are illustrated in Fig. 5, emphasizing that they are solely 
based on field strength without undergoing logarithmic 
transformation. 

 

 
Fig. 5 – Metrics of the effectiveness of the artificial neural network in 

representing stray fields. 

When assessing the ANN performance in simulating 
ferrite magnetic fields, we computed an estimated energy 
loss for each geometry based on data generated by both FEM 
and ANN. It was postulated that ferrite energy losses 
correlate directly with the average of the squared flux 
density. After completing 1250 training epochs, the ANN 
achieved an R2 of 98.9 %. Similarly, we evaluated the 
accuracy of the ANN in simulating copper magnetic fields 
using a comparable method to that of ferrite magnetic fields, 
comparing the energy losses computed by the ANN with 
those determined by FEM. Following 1250 epochs, the ANN 
attained an R2 value of 99.1 %. Figure 6 demonstrates the 
improvements in ANN performance observed during 
training for both copper and magnetic field parameters. 

 

 
Fig. 6 – Predictive capability enhancement for magnetic field losses 

throughout the training phase. 

3.2 FINITE ELEMENT METHOD ANALYSIS OF 
ALIGNED TRANSFORMERS 

The results obtained from the simulations for the models 
are displayed in Table 3. Changes in the distance of the air 
gap between the coils and the relocation of the models have 
a more significant effect on mutual inductance (M) than the 
coils' self-inductance. In scenarios where positions vary, 
reducing the air gap distance between the transmit and 
receive coils led to an elevation in both the mutual 
inductance (M) and the coupling coefficient (k). 

Table 3 
Analysis results of aligned coils of WPT transformer 

Distance Coupling 
coefficient 

(k) 

Transmitter 
coil inductance 
:𝑳𝒑[µ𝐇]@ 

Receiver coil 
inductance 
(𝑳𝒔[µ𝐇]) 

Mutual 
inductance 
(M [µ𝐇]) 

Efficiency 
(%) 

0 cm 0.473 151.615 50.205 39.984  89.5 
5 cm 0.273 141.169  47.415 19.991  60.1 

10 cm 0.179 139.899 44.114 14.123  30.9 

The assessment outcomes concerning the aligned coils of 
the WPT transformer offer pivotal insights into the system's 
operational performance. With the coils precisely aligned, it 
becomes feasible to accurately gauge the efficacy of power 
transfer and the overall functionality of the transformer. 
These assessment findings serve as a cornerstone for further 
enhancements and refinements in WPT technology, 
facilitating the development of more effective and 
sustainable energy transfer solutions. An illustrative 
calculation was also conducted using the developed 
algorithm, showcasing the derived values for k, M, and 
efficiency in the case of aligned coils. Corresponding 
calculated values for alternative scenarios are delineated in 
Table 4 and Table 6. 

Table 4 
k, M and efficiency to aligned state 

  0 5 10 
k ANSYS-Maxwell 0.473 0.273 0.179 

ANN-Results 0.489 0.281 0.192 
M (𝛍𝐇) ANSYS-Maxwell 39.984 19.991 14.123 

ANN-Results 40.434 21.996 15.158 
Efficiency (%) ANSYS-Maxwell 89.5 60.1 30.9 

ANN-Results 90.3 61.8 31.9 

This table compares the results obtained using two 
methods, ANSYS simulation and ANN, for various 
parameters such as inductance and efficiency. In the first 
section, the inductance values for each coil are presented. 
While slight differences exist between the results obtained 
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from ANSYS and ANN, both methods provide similar 
inductance values overall. Moving to the second section, the 
efficiency percentages are provided. Once again, we observe 
similarities between the results obtained from ANSYS and 
ANN. This suggests that the ANN approach performs 
comparably to ANSYS simulation in accurately predicting 
both inductance and efficiency values. Overall, the table 
indicates that the ANN method yields results closely aligned 
with those obtained from ANSYS simulation, demonstrating 
its effectiveness in accurately estimating inductance and 
efficiency parameters for the coils. 

3.3 ANALYSIS OF UNALIGNED TRANSFORMERS 
This part of the research examines the unaligned 

configurations of different transformer models intended for 
the WPT system. The outcomes derived from these 
investigations are showcased in Tables 5 and 6. The 
misalignment occurs on the horizontal axis. The alignment is 
in cm in length and occurs gradually in 1 cm steps. 

Table 5 
Analysis results of unaligned coils of WPT transformer 

Distance 
Coupling 

coefficient 
(k) 

Transmitter 
coil 

inductance 
:𝑳𝒑[µ𝐇]@ 

Receiver 
coil 

inductance 
(𝑳𝒔	[µ𝐇]) 

Mutual 
inductance 
(M[µ𝐇]) 

Efficiency 
(%) 

0 cm 0.551 149.056 48.941 39.007 88.1 
5 cm 0.401 149.854 48.932 34.021 59.1 

10 cm 0.325 150.952 48.456 27.155 31.2 

Table 6 
k, M, and efficiency to unaligned coils 

  0 5 10 
k ANSYS-Maxwell 0.551 0.401 0.325 

ANN-Results 0.556 0.408 0.341 
M ANSYS-Maxwell 39.007 34.021 27.155 

ANN-Results 40.013 34.246 27.504 
Efficiency (%) ANSYS-Maxwell 88.1 59.1 31.2 

ANN-Results 89.6 60.4 32.2 

Table 6 presents the calculated k values, M, and efficiency 
for unaligned coils obtained from ANSYS simulations and 
ANN results. For k, the values obtained from the ANN results 
are slightly higher across all cases than those from ANSYS 
simulations, indicating a slightly stronger coupling between 
the coils as predicted by the artificial neural network model. 
Similarly, for M, the values from the ANN results show a 
slight increase compared to ANSYS simulations. This 
suggests that the ANN model predicts a slightly higher mutual 
inductance between the coils in the unaligned configuration. 
Regarding efficiency, both ANSYS simulations and ANN 
results show an improvement in efficiency compared to the 
aligned coil configuration. The ANN results exhibit slightly 
higher efficiency values across all cases than ANSYS 
simulations, indicating that the artificial neural network model 
predicts slightly better efficiency in unaligned coil 
configurations. Overall, the table demonstrates the 
effectiveness of the artificial neural network approach in 
predicting coupling coefficient, mutual inductance, and 
efficiency for unaligned coil configurations, with results 
closely matching those obtained from ANSYS simulations. 

4. CONCLUSION 
Wireless power transfer (WPT) technology is rapidly 

advancing with the increasing demand for applications like 
mobile phones and electric cars. However, several 
challenges hinder its effectiveness, including coil design, 

impedance matching, resonant frequency, and alignment, all 
of which impact power transfer efficiency. Soft computing 
offers a solution by providing quick estimates and reliable 
accuracy for optimizing WPT variables and improving other 
parameters, ultimately maximizing power transfer 
efficiency. Artificial neural networks (ANN) for WPT 
optimization streamline complexity and identify optimal 
parameters for increased efficiency. Although still in its early 
stages, ANN's adaptability and predictability offer 
straightforward solutions to complex WPT problems. This 
study examines the impact of aligned and unaligned 
transformer models on WPT system efficiency. In unaligned 
scenarios, efficiency decreases significantly due to low 
mutual common inductance. However, effective wireless 
energy transfer is achievable up to certain air gap values in 
the unaligned scenario. Efficiency values are computed 
using ANSYS-Maxwell-3D, considering skin effect and 
proximity effect in transmitter and receiver coils. ANNs 
demonstrate high accuracy in approximating FEM data, even 
for untrained coil geometries. However, ANN performance 
is lowest in predicting stray fields, likely due to the wide 
range of magnetic field strength observations and required 
field measurements for each coil configuration. While a 
more robust ANN could potentially improve performance, 
its effectiveness is ultimately constrained by FEM data 
tolerance limits. 

Received on 23 September 2023 
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