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This scientific article presents a comprehensive study of audio signals' fundamental frequency detection methods, focusing on both 

time-domain and frequency-based approaches and audio file processing since it is crucial for the post-processing part of the audio 

plug-ins for which this study is intended.  Additionally, the article introduces self-repairing algorithms that adaptively identify 

and correct errors in the detected signals, ensuring robustness and accuracy in signal processing tasks and enhancing the overall 

detection performance. The findings from this study offer valuable insights into advancing signal processing techniques with 

broader implications across various domains. 

 

1. INTRODUCTION  

When it comes to sound engineering, especially in audio 
plugins, such as reverb, parametric equalizers, and the 
infamous autotune, one of the most important parameters of 
the audio signal we want to process is its fundamental 
frequency. Therefore, doing it as precisely as possible is 
mandatory to achieve the expected outcomes. Moreover, 
time complexity is an aspect in which one should take great 
interest. Since most of the applications require overlapping 
frames to prevent the appearance of distortions and artifacts, 
the second and third sections will cover simple ways to verify 
that perfect reconstruction is achieved based on some 
parameters that will be introduced later for both the time 
domain and frequency domain methods and discuss choosing 
the size of the frames. The fourth chapter will discuss both 
time domain and frequency domain fundamental frequency 
detection algorithms and explain in which scenarios the time 
domain is better than the frequency ones and vice versa. The 
last chapter will introduce some self-repairing algorithms 
that can correct inaccurately detected frequencies.  

2. FRAME PROCESSING 

2.1. FRAME SIZE 

In signal processing and digital audio analysis, a frame 
size is pivotal in segmenting continuous audio signals into 
smaller, manageable units for further analysis. The size of 
the frame is given by (1). The frame size, denoted by N, 
represents the number of samples contained within each 
frame and is calculated as the product of the sampling 
frequency fs and the frame duration T. Usual values for the 
frame duration are between 10 and 30 ms. The number of 
samples must be chosen so that it can be rewritten as a power 
of 2, and the condition of T is met for the specific sampling 
frequency of the audio file. 

𝑁 = 𝑓𝑠 · 𝑇.                                   (1) 

2.2. VOICED / UNVOICED FRAMES 

For audio plug-ins such as autotune, processing only the 
voiced frames and not introducing artifacts by altering noisy 

frames, which could have a very high/low fundamental 
frequency, is essential. Under this section, some criteria can 
be used to determine if a signal is voiced or unvoiced. If a 
signal is voiced, all/ most of the following conditions should 
be met: the detected fundamental frequencies take values 
between 50 Hz and 500 Hz, the zero-cross rate of the signal 
should be smaller than an arbitrary value (usually 0.1), and 
the energy of the frame should be higher than –60 dB [1]. If 
an application requires more precise algorithms for 
voiced/unvoiced decision making, [2] can be referred to. 

3. PERFECT RECONSTRUCTION 

Perfect reconstruction ensures that the processing of each 
frame will not cause any information loss and overlapping 
and combining the frames should not cause any aliasing. If 
perfect reconstruction is not successfully realized, it can lead 
to various artifacts and distortions in the output, which can 
significantly degrade the quality of the processed signal. In 
this section, we will give an overview of the methods to 
ensure perfect reconstruction is realized for both frequency 
domain and time domain. For more advanced and efficient 
methods than the ones presented in this paper, [3] covers 
some of them. 

3.1. TIME-DOMAIN CONDITION 

In the time domain, overlapping windows can ensure 
perfect reconstruction. The most common choice is the Hann 
window. Two conditions must be met simultaneously for it 
to take place eqs. (3) and (4). Fulfilling the first condition 
ensures that all the information from the original signal has 
been captured and that the tr. The second condition states that 
the chosen window must be symmetric, which is fulfilled by 
most window types, such as Hann and Kaiser. For a given 
window, the amount of overlap will be crucial in assuring 
perfect reconstruction, and the user should verify for a 
specific amount of overlap that best fits their application if 
the two conditions are met. The second condition can be 
verified straight forward. In Fig. 1, we tested using 
MATLAB if different types of windows meet the first 
condition with varying amounts of overlap. As it can be seen 
only the root Hann window with 50 % overlap ensures 
perfect reconstruction.  
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𝑤(𝑘)2 + 𝑤(𝑘 + 𝑁)2 = 1,                         (2) 

 

𝑤(𝑘) = 𝑤(2𝑁 − 1 − 𝑘).                         (3) 

 

Fig. 1 – Results of verifying eq. (3) on 3 different types of 
windows/overlaps. Root Hann window 50 % overlap (TOP),  

Hann window with 50% overlap (MIDDLE), and HANN window 25 % 
overlap (BOTTOM). 

3.2. FREQUENCY DOMAIN CONDITION 

To ensure that unaltered spectra can be successfully 

reconstructed in the context of frequency domain methods, 

the analysis window must adhere to the constraint overlap-

add (COLA) principle. Generally, if the analysis window 

conforms to the condition (4), the window is COLA-

compliant. Furthermore, COLA compliance can be classified 

into weak or strong categories. 

∑ 𝑔𝑎+1(𝑛 − 𝑚𝑅) = 𝑐, ∀𝑛 ∈ ℤ.∞
𝑚= − ∞              (4) 

Weak COLA compliance signifies that the Fourier 

transform of the analysis window features zeros aligned with 

frame-rate harmonics, represented as: 

However, spectral alterations disrupt alias cancellation. 

Weak COLA relies on alias cancellation within the 

frequency domain. Hence, perfect reconstruction is feasible 

using weakly COLA-compliant windows, provided the 

signal remains unaltered spectrally. The “iscola” function 

can be utilized to verify weak COLA compliance. The 

window length and hop size determine the number of 

summations employed for COLA compliance assessment.  

4. TIME-DOMAIN METHODS 

The time domain methods for fundamental frequency 

detection are most suitable for applications that work on only 

sound sources (for instance, a human voice or a single 

instrument).  

4.1. AUTOCORRELATION FUNCTION (ACF) 

The autocorrelation method and its modification can be 

classified as the most used fundamental frequency detection 

method for its simplicity and efficiency. The ACF is 

represented by the similarity ratio of the selected input signal 

to its copy shifted by m samples. The function of one-side 

autocorrelation is defined as follows at (5), where R(m) is the 

autocorrelation value, s(n) is the input speech signal, n is the 

sample order, m is the mutual shift, and N is the total number 

of samples embedded in processed signal segment. Figure 2 

illustrates a frame from a baritone interpretation of a song, to 

which all the time domain methods under this chapter will be 

applied, and its relevant ACF is shown in Fig. 3, where local 

peaks can be observed. The distance between these peaks is 

related to the fundamental frequency of the analyzed signal. 

By the ACF peak position, the fundamental frequency is 

calculated as the mean value of the sum of partial 

fundamental frequencies between two consequence peaks 

leading to equation (6), where fs is the sampling frequency, 

a is the position of partial peaks of the total peak number A 
 

𝑅(𝑚) = ∑ 𝑠(𝑛)𝑠(𝑛 + 𝑚) 
𝑁−1−𝑚

𝑛=0
,      (5) 

m = 0, 1, 2, … N–1 , 

𝐹0 =
𝑓𝑠  ∙𝐴

∑ 𝑎𝑖+𝑎𝑖+1
𝐴−1
𝑖=0

 .      (6) 
 

Fig. 2 – Example of real input signal waveform on one frame.  

 

Fig. 3 – The ACF of the input signal. 

4.2. MODIFIED AUTOCORRELATION  

FUNCTION (MACF) 

MACF is formed by ACF method modified by so-

called central clipping leading to analysis of observed 

signal peaks and removing its central part. The central 

clipping is defined by eq. (7), where y(n) is signal value 

after central clipping and CL is clipping threshold mostly 

set as the 50% value of maximal signal amplitude on 

current segment. After the central clipping, the 

autocorrelation function is applied on the current segment. 

Figure 4 presents centrally clipped signal waveform and 

Fig. 5 shows its autocorrelation function. The big 
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advantage of this function can be found in the formant 

attenuation of the input signal, leading to better 

fundamental frequency detection [4] 

    𝑦(𝑛) =   {

(𝑠(𝑛) − 𝐶𝐿)  , 𝑠(𝑛) ≥  𝐶𝐿

0,                     |𝑠(𝑛)| <  𝐶𝐿

(𝑠(𝑛) + 𝐶𝐿)   , 𝑠(𝑛) ≤ − 𝐶𝐿

.                       (7) 

 

Fig. 4 – Centrally clipped input signal. 

 

Fig. 5 – ACF of the centrally clipped input signal. 

4.3 NORMALIZED CROSS-CORRELATION 

AUTOCORRELATION FUNCTION (NCCF) 

The NCCF method is very similar to ACF and 

improves its lacks. The value of NCCF is calculated as shown 

in (8), where NCCF(m) is the final value, M0 is the total 

number of autocorrelation points that must be calculated, and 

m takes values between 0 and M0. 

 
Fig. 6 – The NCCF of the input signal. 

Figure 6 illustrates the final waveform [3]. 

 

      NCCF(𝑚) =
∑ 𝑠(𝑛)∙𝑠(𝑛+𝑚)𝑁−1−𝑚

𝑛=0

√∑ 𝑠2(𝑛)∙∑ 𝑠2(𝑛+𝑚)𝑁−1−𝑚
𝑛=0

𝑁−1−𝑚
𝑛=0

  .      (8) 

4.4. AVERAGE MAGNITUDE DIFFERENCE 

FUNCTION (AMDF) 

The AMDF can also be defined as modifying the 

autocorrelation function using multiplying substituted by 

subtraction. The Average Magnitude Difference function is 

defined by eq. (9), where R(k) is the AMDF function final 

value and k is the time shift of the input signal. The big 

advantage of the AMDF function is sharper and narrower 

local extremes, leading to better resolution of fundamental 

frequency detection. The AMDF result of the input signal 

illustrated in Fig. 2 is shown in Fig. 7. 

 

 

Fig. 7 – The AMDF of the input signal. 

5. FREQUENCY-DOMAIN METHODS 

The discrete Fourier transform (DFT) offers a fixed-in-

time portrayal of signal frequencies. As music contains 

diverse frequency components, it becomes necessary to 

compute the DFT at multiple time instances to extract 

meaningful insights. Introducing a DFT size denoted as N, 

along with a window function w[n] that operates within the 

range −N/2 ≤ n ≤ N/2, and an input signal x[n] of length Ns 

samples, the short-time Fourier transform (STFT) extends 

this concept by incorporating the temporal dimension. It is 

mathematically defined as follows: 

This concept can be envisioned as performing multiple 

DFT calculations on a signal, multiplying the signal by a 

sliding window that varies over time. In this context, I will 

refer to these modified signal versions as "frames." Each 

instance of sliding the window and performing the 

multiplication on the input signal creates a new frame. 

Subsequently, a DFT computation is conducted on each of 

these frames. The STFT is used in the frequency domain 

algorithms discussed in this section. 

5.1. SPECTRAL YIN  

The classic version of the YIN algorithm is a time 

domain method used for fundamental frequency detection 

[5]; however, it first requires a modified version of the 

AMDF function, and the algorithm has a time complexity 
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of. In contrast, the spectral YIN has a time complexity of 

𝑂(𝑛 ∙ log(𝑛)). As a result, only the spectral YIN will be 

analyzed. Moreover, when subjected to testing using pure 

sinusoidal signals, the relative error achieved by spectral 

YIN consistently remains under 0.01Hz.  

These compelling advantages position spectral YIN as the 

favored and preferred pitch detection technique. It is called 

spectral YIN because this function is computed in the 

frequency domain. If xt [k] is the input frame and Xt [k] is its 

DFT, then the tapered AMDF computation in the frequency 

domain is as shown  

 

dt(τ) =
2

𝑁
∑ |𝑋[𝑘]|2

𝑁−1

𝑘=0
(1 − cos (

2𝜋𝑘τ

𝑁
)) .      (9) 

5.2. SPECTRAL METHOD 

This method is based on analyzing the input signal in the 

frequency domain. In the case of spectral method usage, the 

conversion into the frequency domain is performed by 

discrete Fourier transform defined by: 

 

𝑆(𝑘) = ∑ 𝑆(𝑛) ∙ 𝑒−j𝑘
2π

𝑁
𝑛,    𝑘 =  0,1, 2, … , 𝑁 − 1,𝑁−1

𝑛=0    (10) 
 

where S(k) is the value of k-th spectral component. The 

spectrum of an input signal is shown in Fig. 8. 

 

 

Fig. 8 – Fundamental frequency (the highest peak) detection of the input 
signal by spectral method. 

6. SELF-REPAIRING ALGORITHMS  

It is advisable to incorporate a self-repairing algorithm 

after the selected pitch detection method to enhance the 

efficiency of fundamental frequency detection. Generally, 

within the domain of recognition tasks, a range of self-

repairing algorithms are available to maximize efficiency or 

likelihood. For instance, in speech recognition scenarios, the 

Baum-Welch algorithm is commonly employed in 

conjunction with Hidden Markov Models. At the same time, 

more advanced self-repairing algorithms have been 

proposed. For the specific application mentioned, a 

developed self-repairing algorithm could be designed to be 

simpler yet effective. 

6.1. BAUM-WELCH ALGORITHM 

As a preliminary step to introducing the self-repairing 

algorithm, a basic algorithm is integrated, focusing on 

associating the identified fundamental frequency with the 

nearest musical note, precisely aligning it with the note's 

corresponding frequency for potential subtle adjustments. 

Fig. 10. ACF detected fundamental frequency (blue) and the 

nearest note assignment (red) on the part of the recorded 

soprano female voice. The resultant assigned note values are 

stored within a workspace table for subsequent processing [3]. 

In the case of recorded real soprano female voice, the 

disparity between the determined notes and the assigned 

notes in the processed segments (pertaining to fundamental 

frequencies) is presented in Fig. 9. The blue curve represents 

the found notes. In contrast, the nearest detected notes are 

depicted in red, showcasing the visual distinction. 

The self-repair mechanism is based on the previously 

identified notes enumerated within the workspace table. The 

underlying concept revolves around the notion that a single 

segment cannot adequately represent an entire musical note 

due to the temporal extent of the segment. This prompts a 

comparison of frequencies between neighboring segments 

and the current segment. 

 

 

Fig. 9 – ACF detected the fundamental frequency (blue), and the nearest note 
assignment (red) was on the part of the recorded soprano female voice. 

The algorithm for self-repair, as presented, can be 

described as a sliding window traversing the entire input 

signal and scrutinizing three consecutive segments at a time. 

Suppose the identified frequency (and the corresponding 

note) remains consistent for the boundary segments while 

differing for the central segment. In that case, the frequency 

of the central segment is adjusted to match the found 

frequency value of the boundary segments. 

It is important to note that a distinct approach is necessary 

for the initial and concluding three segments of the input 

recorded signal. These segments undergo verification once 

the repair process for all other segments has been completed. 

For the first triplet, if the pitch value of the initial segment 

differs from that of the subsequent two, it is rectified to align 

with the pitch value of the second and third segments. 

 

 

Fig. 10 – The function of the self-repairing algorithm (green) applied on 
detected fundamental frequencies of real female soprano voice (blue) by ACF. 

The final segment of the analyzed input signal undergoes 

assessment based on the preceding two segments, 

specifically considering their respective pitch values. If the 

detected pitch value in the final segment deviates, it is 

adjusted to match the pitch values of the two preceding 

segments. 

For this reason, establishing the shortest detectable note 

(segment) as half the duration of the actual shortest note 

present in the input signal is strongly recommended and 

necessary. This is essential to ensure the effective operation 
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of the self-repairing algorithm. The fundamental concept 

draws inspiration from a previously published retroactive-

checking algorithm employed in vowel recognition within 

fluent speech. This technique resulted in an average 36.7 % 

reduction in false detections. Figure 10 offers a visualization 

of a portion of the analyzed input signal (depicted in blue in 

Fig. 9, which has been corrected by the self-repairing 

algorithm (displayed in green). 
Applying the self-repairing algorithm merits minimizing 

the error rate in fundamental frequency detection. Its 
judicious integration with the detection method can achieve 
highly satisfactory outcomes. 

6.2. ADAPTIVE AUTOCORRELATION 

In this subsection, we delineate the operational essence of 
the AAC algorithm [6]. The algorithm's primary aim is to 
gauge the fundamental frequency of a given sampled speech 
signal, denoted as x. This objective is achieved by computing 
autocorrelations between signal x and a designated self-
segment, referred to as s. 

The chosen segment encompasses the initial Ms data 
points of the speech signal. Ms is determined as Ms = fs / Fl, 
where fs represents the sampling frequency, and Fl signifies 
the lowest resolvable frequency. The duration of this 
segment, denoted as Ts, equals Ms / fs in seconds. 

Estimating the fundamental frequency of the speech signal 
involves identifying maxima within an autocorrelation 
function, as discussed in the third section. 

The operational principle is elucidated through the aid of 
a periodic signal. The diagram illustrates sequential 
algorithmic steps, progressing from left to right. The top row 
highlights the fixed signal segment, shaded for emphasis, 
while the periodic signal, slightly shifted concerning the 
segment, is displayed in the bottom row. 

Function zk exhibits maxima at k values where the 

segment and the shifted signal align most effectively, 

including at k = 0 and integer multiples of the period linked 

to the signal's fundamental frequency. However, due to the 

potential presence of extra maxima resulting from higher 

frequency components, more than relying on the 

correlation function zk maxima is required. To address this, 

a peak detector function yk is introduced, defined as 

yk = zk0 exp(−(k−k0)/(fsτ)). 

The visual representation in the illustration captures the 

evolution of functions zk and yk. Only segments of these 

functions pertinent to fundamental frequency estimation at 

specific algorithmic snapshots are depicted as solid lines. 

Conversely, values that do not contribute to the estimation at 

those moments, encompassing future values and values that 

have already led to an estimation, are illustrated as dotted lines. 

Column (A) portrays the algorithm's initial phase, 

wherein the signal segment and the signal overlap. Column 

(B) illustrates the algorithm's progression, ultimately 

culminating in determining the fundamental frequency in 

column (C). Here, the first peak of the correlation function 

zk, after its intersection with the peak detector function yk, 

yields the estimation of the period Nperiod (in samples), and, 

consequently, the fundamental frequency F0 = fs/Nperiod of 

the signal. Upon obtaining a new F0 estimate, the algorithm 

resets, employing the signal starting from the estimation 

point as the new reference. This iterative process unfolds as 

represented in column (D) for successive fundamental 

frequency estimations. If k surpasses the maximum 

expected period Tmax = 1/Fl, the algorithm returns the most 

recent valid estimate and initiates anew with a fresh 

segment.  

Figure 11 presents an instance wherein the algorithm is 

applied to an authentic speech signal, which typically lacks 

strict periodicity. 

 

Fig. 11 – Principle of operation of the AAC algorithm in four steps.  

 

7. CONCLUSIONS 

The Baum-Welch algorithms perform exceptionally well 

on noisy inputs, which is the case for most real-world 

recording environments. However, the computational 

complexity is high. The adaptive autocorrelation has a lower 

time complexity but performs worse on noisy inputs. 

Although, considering the affordability and accessibility of 

quality recording equipment, for most applications in the 

domain of audio engineering, like designing audio plugins that 

depend on fundamental frequency detection, the ACF or 

MACF provides satisfactory results with the bonus of being 

able to provide other useful parameters of the input signal that 

then can be used for detection of voiced/unvoiced frames. 

Received on 1 September 2023 
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