
Rev. Roum. Sci. Techn.– Électrotechn. et Énerg. 

Vol. 69, 1, pp. 103–108, Bucarest, 2024 
Génie biomédical 

Biomedical Engineering 

 

1 P.S.R Engineering College, Sivakasi, India. E-mail: arun.r@psr.edu.in 
2 Sri Sarada College for Women (Autonomous)Tirunelveli, India. E-mail: parvathi54@gmail.com 
3 PSN College of Engineering and Technology, Tirunelveli, India. E-mail: akhilanappathurai@psncet.ac.in 
4 Sri Eshwar College of Engineering, Coimbatore, India. E-mail: muthukumaran.n@sece.ac.in 

  DOI: 10.59277/RRST-EE.2024.69.1.18 

DETECTION OF PARKINSON'S DISEASE VIA CLIFFORD 
GRADIENT-BASED RECURRENT NEURAL NETWORK USING 

MULTI-DIMENSIONAL DATA 
ARUN RAMAIAH1, PARVATHI DEVI BALASUBRAMANIAN2, AHILAN APPATHURAI3,  

NARAYAN APERUMAL MUTHUKUMARAN4 

Keywords: Parkinson's disease; Magnetoresonance imaging (MRI) and electroencephalographic (EEG) signal; Clifford gradient 
recurrent neural networks (RNN); Deep learning; Stationary wavelet transform (SWT); Multiscale Retinex. 

Disease prediction is a vital step in the early diagnosis of many diseases in the overpopulated modern world. The prediction has 
gotten simpler due to advancements in various machine learning (ML) techniques. However, the complexity of the model and the 
choice of the best machine-learning method for the given dataset significantly impact its accuracy. Globally, there are many 
datasets, but their unstructured nature prevents them from being used in any useful way. To extract anything valuable for use in 
the actual world, various strategies are therefore accessible. To evaluate the model, accuracy now serves as a key metric. This 
research proposes a novel Cliff-PD to detect Parkinson's disease using a Clifford gradient RNN classifier with MRI and EEG 
signals. Initially, the MRI images are denoised using multi-scale Retinex (MSR), and the EEG signal is denoised using Stationary 
Wavelet Transform filters to reduce the noise artifacts. Then, the Clifford Gradient RNN is employed to classify the normal, Non-
specific white matter hyperintensity and global brain atrophy using MRI images. Furthermore, the Clifford Gradient RNN is 
employed to classify the normal, generalized background slowing using an EEG signal. The performance of the proposed Cliff-PD 
model achieved an accuracy of 99.18 %. Compared with SVMs, AlexNet's, and CROWD autoencoder, the accuracy range is 
improved overall by 5.38 %, 10.36 %, and 3.2 %, respectively.

1. INTRODUCTION 

The second most prevalent neurological ailment is 
Parkinson's disease (PD), which affects more than 6 million 
individuals globally. PD is one of the primary causes of 
neurological impairment, and during the past 30 years, its 
prevalence has increased by a factor of 2.5 [1]. Brain cell loss 
in the substantia nigra and other areas is linked to Lewy bodies 
and Lewy neurites, which are characteristic of Parkinson's 
disease. PD is categorized as a synucleinopathy because Lewy 
bodies are mostly made up of aggregated and misfolded -
synuclein species [2]. According to Braak and colleagues, the 
Lewy pathology pattern is believed to begin in the caudal 
brainstem and move rostrally to the upper brainstem, limbic 
areas, and eventually the neocortex. Though certainly not 
widespread, such spread exists. Potential disease-progression 
pathways include permissive synuclein templating, cell-to-cell 
transmission, and prions-like traits [3].  

Over the past five years, clinical diagnostic criteria intended 
to improve Parkinson's disease diagnosis accuracy have been 
validated. A clear diagnosis cannot be made from the early 
stages due to tests or biomarkers, and clinical symptoms of this 
disorder can overlap with those of other neurodegenerative 
diseases [4]. As a result, even when the illness has fully 
developed, clinical diagnostic accuracy is still below ideal. 
Prodromal sickness diagnosis is required since this is when 
future disease-modifying drugs will have the highest potential 
of being effective [5]. Finally, it is necessary to characterize 
the many subtypes of PD more clearly, each of which requires 
a unique strategy for therapy due to its unique clinical 
presentation, prognosis, and underlying disease processes. 
Monogenic Parkinson's disease is the most prominent 
example, and there are now clinical trials testing subtype-
specific treatments for this condition [6]. 

Analysis of medical imaging, particularly dopamine 
transporter scans (DaTscans) and magnetic resonance 
images (MRIs) [7], can be used to predict the development 
of PD. The primary goal of MRI analysis is to identify 
morphological differences in different brain regions, with 
particular attention paid to the volume of the lenticular 
nucleus, head of the caudate nucleus, and surface of the 
substantia nigra [8]. Single photon emission computer 
tomography is used to create DaT scans, and patients are 
given 123-I-Ioflupane before the scans are taken. Whether 
dopaminergic neurons in the substantia nigra are 
degenerating may be determined using DaTscans [9]. The 
regions around the caudate nucleus head are chosen and 
compared to the cerebellum, and ratios of specified volumes 
are calculated and used to diagnose Parkinson's disease. 
These areas are centered on the images and scans that are 
thought to be the most typical and used to create predictions 
[10]. When creating models for PD prediction, several data 
sources, such as imaging, genetics, clinical, and 
demographic data, are considered. Measurements of 
handwriting were used in other methods to diagnose 
Parkinson's. A potential method for diagnosing the condition 
has been developed based on handwriting measures taken 
from PD patients. It has been demonstrated that including 
age and sex information in the decision-making process 
improves PD diagnosis [11]. The key contribution of the 
research is summarized as,  
• This research proposes a novel Cliff-PD to detect 

Parkinson's disease using a Clifford gradient recurrent 
neural networks (RNN) classifier with model images 
like MRI and EEG signals.  

• The MRI images are initially denoised using MSR, and 
EEG signals are pre-processed using stationary wavelet 
transform filters to reduce noise artifacts.  
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• Then, the Clifford gradient RNN is employed to classify 
normal, non-specific white matter hyperintensity and 
global brain atrophy using MRI images.  

• Furthermore, the Clifford gradient RNN is employed to 
classify the normal, generalized background slowing 
using an EEG signal. 

The remaining components of this work were divided into 
the next five categories. The literature review is presented in 
section 2, the suggested strategy is discussed in section 3, the 
findings and analysis are shown in section 4, and the 
conclusion and recommendations for more studies are 
presented in section 5. 

2. LITERATURE SURVEY 

One of the most prevalent and fatal brain conditions, 
Parkinson's disease, has a devastating effect on many 
people's lives and has claimed many of them. Diverse 
literature works have been written about recent 
developments in deep learning and machine learning 
techniques. 

In [12] a PD diagnosis based on ML was provided. The 
steps for feature selection and classification make up the 
suggested diagnostic approach. The feature selection 
challenge was approached using the Recursive Feature 
Elimination and Feature Importance techniques. The tests to 
categorize Parkinson's patients utilized Support Vector 
Machines, Regression Trees, and Artificial Neural 
Networks. It was shown that recursive feature removal in 
SVMs outperformed the other methods. The accuracy 
percentage for Parkinson's diagnosis with the fewest vocal 
characteristics was 93.84 %.  

In [13] two convolutional neural network-based 
classification frameworks for PD based on sets of vocal 
(voice) features were suggested. Leave-one-person-out 
cross-validation (LOPO CV) assesses the proposed models. 
The method was trained on data from the UCI ML 
repository. The F-measure and Matthews’s correlation data 
include an unbalanced distribution of classes. Thus, 
coefficient metrics are employed for assessment in addition 
to accuracy. Extracted deep features effectively improve the 
discriminative ability of the classifiers and successfully 
separate PD patients from healthy individuals. 

In [14] was suggested a deep learning neural network to 
attempt to categorize the MR pictures of healthy controls and 
PD cases. For a more accurate diagnosis of PD, AlexNet's 
CNN architecture is employed. The MR images are used to 
train and assess the transfer learning network's accuracy 
metrics. With the suggested system, an accuracy of 88.9 % 
is attained. Shortly, DL algorithms will produce an objective 
and superior patient group classification that will aid doctors 
in diagnosing PD. 

In [15] it was suggested to introduce an ideal feature 
selection technique based on DL and ACSA. The CROWD 
autoencoder model is evaluated using three feature selection 
techniques for six supervised classification strategies. The 
findings show that the CROWD autoencoder feature 
selection model better diagnoses PD than the mRMR, RFE, 
and CFS feature selection approaches. The healthcare 
industry will benefit from this research since it will improve 
categorization accuracy by 0.96 %. 

In [16] was developed a method for diagnosing PD using 
a ResNet architecture originally designed for image 
classification and vowels with prolonged phonation. 100 

patients (50 healthy and 50 with PD) comprise the PD dataset 
(from the PC-GITA database). Three instances were noted 
for each patient. Compared to the most recent state-of-the-
art methods, the obtained accuracy on the validation set is 
over 90 %. The findings are encouraging because they 
showed that features picked up from studying natural images 
may be applied to synthetic images representing the speech 
signal's spectrogram. 

In [17], six machine learning models each employ BO to 
optimize their hyperparameters were proposed. The target 
feature's class label is 1 and 0, with 1 denoting someone with 
Parkinson's disease and 0 denoting someone without the 
condition. Six machine learning models were tested for 
efficacy on the dataset before and after the hyperparameter 
tuning method. The experimental findings showed that the 
SVM model outperformed rival ML models before and after 
the hyperparameter tweaking approach. It uses BO to get an 
accuracy rate of 92.3 %. 

In [18] was developed an effective, dependable method for 
automatically differentiating between individuals with PD and 
healthy controls (HC). To improve generalization capacity, 
three strategies are employed: early halting, data 
augmentation, and the synthetic minority over-sampling 
method (SMOTE). Focusing the PD-ResNet train on the 
difficult instances and removing the anomalous data creates a 
more precisely targeted loss function to improve classification 
performance further. Additionally, in classifying PD at various 
severity levels, the F1-score, accuracy, precision, recall, 
specificity, and recall are 92.03 %, 94.29 %, 90.41 %, 
93.85 %, and 92.31 %, respectively. 

In [19] a random forest (RF) classifier on PD, and a disease 
prediction strategy were suggested. A high-dimensional 
dataset with 754 attributes was used to evaluate Random 
Forest classification. A feature reduction strategy is utilized 
with the ANN model, increasing accuracy. The feature 
reduction strategy used with the classifier model that 
guarantees high accuracy will determine this. Our comparison 
of this model's accuracy to that of an ANN model that used 
PCA revealed a clear distinction. The model achieved a 
notable accuracy of up to 90 %.  

In [20] it was presented a new framework for assessing PD 
gait patterns with cutting-edge deep-learning techniques. 
Three methods utilized in the study are (i) the energy content 
of the gait signals in the frequency domain is captured using 
spectrograms, (ii) GRU networks to incorporate temporal 
information, and (iii) a new architecture based on CNNs and 
GRUs to simultaneously capture spectral and temporal 
information [24–27]. The classification of PD vs. EHC and PD 
vs YHC was found to have accuracy levels of up to 83.7 % 
and 92.7 %, respectively. 

In [21] was developed a machine-learning method for 
telemedicine to recognize PD at an early stage. The research 
was conducted using 30 PWP and healthy individuals' 
MDVP audio data while four ML models were being trained. 
random forest classifier using ML approach for the 
identification of PD, according to a comparison of 
classification results using SVM, RF, KNN, and logistic 
regression models. RF classifier model has a sensitivity of 
0.95 and a detection accuracy of 91.83 %. The use of ML in 
telemedicine, through the findings of this paper, gives PD 
patients a new lease of life [22,23]. 
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From the literature, the existing models use a medical 
image or a signal for detecting PD. But in this work, different 
multi-modality images and signals are used as input to the 
proposed deep learning model to identify Parkinson’s 
disease better accurately. 

3. PROPOSED METHODOLOGY 

This research proposes a novel Cliff-PD to detect 
Parkinson's disease using a Clifford gradient RNN classifier 

with model images like MRI and EEG signals. The MRI 
images are initially denoised using MSR, and EEG signals 
are pre-processed using Stationary Wavelet Transform filters 
to reduce noise artifacts. Then, the Clifford gradient RNN is 
employed to classify normal, non-specific white matter 
hyperintensity and global brain atrophy using MRI images. 
Furthermore, the Clifford gradient RNN is employed to 
classify the normal, generalized background slowing using 
an EEG signal – the overall performance of the proposed 
Cliff-PD methodology displayed in Fig. 1. 

 
Fig. 1 – The overall performance of the proposed methodology. 

3.1. DATASET DESCRIPTION 
This study tests the recommended strategies utilizing two 

open-source EEG datasets. The first dataset was given by the 
University of San Diego in California (37,38). We will refer 
to this dataset as the San Diego dataset for convenience. 
While the data were being obtained, the individuals of this 
dataset were instructed to unwind by staring at a cross on a 
screen. The dataset contains two groups. EEGs from 16 
healthy individuals comprise the first group, whereas those 
from 15 PD patients comprise the second. When the mini-
mental state examination (MMSE) and the North American 
adult reading Test (NAART) were used to assess the right-
handedness, gender, age, and cognitive abilities of the PD 
patients, the results were very similar to those of the HC. The 
average length of each patient's disease was 4.5–3.5 years, 
with Hoehn and Yahr ratings II and III ranging from 
moderate to severe. EEG data from PD patients were 
collected on two days, both with and without treatment—the 
healthy subjects produced just one volunteer. EEG data was 
recorded at 512 Hz for at least three minutes using a 32-
channel Biosemi active EEG device. All the data were re-
referenced to the common average once the means for each 
channel were extracted using EEGLAB. A 0.5 Hz high-pass 
filter was used to minimize low-frequency drift. 

Due to restrictions on the use of patient data, the analyzed 
fMRI datasets are not accessible to the general public. Using 
private online cloud storage, the corresponding author will 
make the study protocol and each participant's de-identified 
raw fMRI data available to researchers upon reasonable 
request for repeatability assessments.  

3.2. DENOISING 
In the denoising stage, the MRI images are pre-processed 

utilizing MSR, and the EEG signal is pre-processed using 
stationary wavelet transform filters to reduce the noise 
artifacts. 

3.2.1. Image denoising 
Pre-processing has an important part in improving the 

numerous changes in MRI images and decreasing noise. 
Multi-scale Retinex is effective in reducing noise while 

preserving important image details. By operating at multiple 
scales, it can handle both small and large details present in the 
image. some other denoising methods, Multi-scale Retinex is 
capable of reducing noise without significantly blurring the 
image. It maintains edge sharpness and overall image clarity. 
The MSR image processing algorithm expands SSR and is 
motivated by human vision. The single-scale Retinex 
technique, which is a linear weighted of the MSR algorithm, 
is precisely represented by the following formula. 

Ni(y,z)= ∑ WK
M
k=1 {logJj(y,z)–log[Fk(y,z)*Jj(y,z)]},     (1) 

where 𝑊𝐾is the weight associated with the kth scale and the 
general value is 3, m is the number of scales, which 
represents the wraparound function at scale 𝐹𝐾. where 𝑁𝑗(y, 
z) is the intensity value of the y and z coordinates for the jth 

color channel of the RGB model. The value of K is usually 
3, and W1 =W2 =W3 =1/ 3. In addition, the result shows taking 
15,80,120 respectively. image improvement for the original 
color image after coping with minimal light. The following 
provides the surround function: 

𝐹𝑚(y, z) =𝐾𝑚𝑒−(𝑦2+𝑧2)/𝑐𝑛
2 ,                  (2) 

where the normalization factor 𝐾𝑚 = 1 / (∑ ∑ 𝐹(𝑦, 𝑧))𝑧𝑦  and 
𝑐𝑛are the scales that control the extent of the surround. Most 
weights can be fitted into three scales, and images can have 
equal weights. This is more of an experimental than a 
theoretical exercise because it is not known how an image 
will scale up in real-world scenes. It is possible to change the 
weights so that either color rendition or dynamic range 
compression is given more weight. 

3.2.2. Signal denoising 
The stationary wavelet transform (SWT) solves the 

translation invariance problem of the discrete wavelet 
transformations (DWT). The length of the sequences 
produced by the high and low pass filters is the same at every 
level. Because SWT is time-invariant, it preserves the exact 
temporal properties of the original signal at every stage of 
decomposition. To minimise repetition and increase 
robustness, the filter taps in SWT are separated by zeros as 
opposed to decimal points. The input EEG signal (I) index 
set is considered as 2𝐷[𝑥, 𝑦], 𝐼[𝑥, 𝑦] describes the xth column 
and yth row pixel. 
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To determine the approximation coefficients (LL), 

vertical coefficients (LH), horizontal coefficients (HL), and 
diagonal coefficients (HH), in that sequence, SWT performs 
first level 2D-SWT based on the EEG signal. Every sub band 
coefficient of the wavelet transform was recovered as two 
wavelet sub bands from the EEG signal using 2DSWT. The 
following is a representation of the 2DSWT's approximate 
and detailed coefficients: 

�̃�𝑖+1,𝑗,𝑛 = ∑ ℎ(𝑢)ℎ(𝑢)�̃�𝑖,𝑗+2𝑖,𝑛+2𝑖𝑉 ,
∞
𝑈=−∞            (3) 

�̃�1,𝑖+1,𝑗,𝑛 = ∑ ℎ(𝑢)ℎ(𝑣)�̃�1,𝑖,𝑗+2𝑖,𝑛+2𝑖𝑉 ,
∞
𝑈=−∞          (4) 

�̃�2,𝑖+1,𝑗,𝑛 = ∑ ℎ(𝑢)ℎ(𝑣)�̃�2,𝑖,𝑗+2𝑖,𝑛+2𝑖𝑉 ,
∞
𝑈=−∞          (5) 

�̃�3,𝑖+1,𝑗,𝑛 = ∑ ℎ(𝑢)ℎ(𝑣)�̃�3,𝑖,𝑗+2𝑖,𝑛+2𝑖𝑉 ,
∞
𝑈=−∞          (6) 

where the approximation and detailed coefficients are 
denoted by 𝐶𝑖,𝑗 and 𝑑𝑖,𝑗, respectively. The concatenation of 
the four subbands following the 2DSWT decomposition is 
consistently exactly the same size as the original EEG signal. 

3.3. CLASSIFICATION 
Clifford gradient RNN provides a classification of 

Parkinson disease such as normal, non-specific white matter 
hyperintensity and global brain atrophy. Clifford gradient 
RNNs may be able to detect Parkinson's disease symptoms 
early and predict its progression, allowing early intervention 
and treatment. Parkinson's disease is characterized by 
progressive motor symptoms that change over time. Clifford 
gradient RNNs can capture the temporal dynamics of these 
symptoms, allowing for a better understanding and 
classification of the disease stages. In addition, it has been 
used to solve several technical and scientific challenges in 
fields including neural processing, robot and computer vision, 
and control issues. Recently, researchers have begun to pay 
more attention to Clifford-valued NN (CVNN) models as a 
potential new research area for both theoretical and applied 
studies. However, CVNN models frequently exhibit more 
intricate dynamic properties than complex-valued, CVNN 
models, and real-valued. There are still few studies on CVNN 
dynamics because of the issue with multiplication's 
commutativity with respect to Clifford numbers. 

𝜕𝑥𝑓(𝑥) = 𝐸𝑖𝜕𝑥𝑖𝑓(𝑥) = 𝐸𝑖𝑓𝑖(𝑥),                    (7) 
where 𝑓𝑖(𝑥):= ∂xi𝑓(𝑥) is the partial derivative of f with 
respect to 𝑥𝑖, evaluated at x.  Specifically, if f: 𝐺𝑛

1 → 𝑅 is a 
scalar-valued function of a 1-D vector, then its can be given 
by 𝜕𝑥𝑓(𝑥) = 𝑒𝑖𝜕𝑥𝑖𝑓(𝑥) = 𝑒𝑖𝑓𝑖(𝑥).  

Consider the trivial function f: X→X, X𝜖𝐺𝑛, then 𝜕𝑋𝑓(𝑋)= 
𝑒𝑖𝜕𝑥𝑖𝑥𝑗𝐸𝑗 = 2𝑛, where n is the dimension of algebra. From 
the associativity of the geometric product, the following 
assumptions are derived: 

1) ∂XXA = 2𝑛A, where A ∈ 𝐺𝑛 . 
2) ∂XAX = E𝑖AE𝑖 ≠ 2𝑛A. 
∂XAX = E𝑖 ∂x𝑖Ax𝑗Ej = E𝑖AE𝑗 =

E𝑖AE𝑖

E𝑖E𝑖
≠ 2𝑛A,          (8) 

The physical foundation for a multispectral image pixel's 
spectral mClifford (X), is the multi-vector function of the 
spectrum intensity. Additionally, it may convey any spectral 
strength as well as the relationships between several spectra. 
The norm of the spectral gradient mClifford(X) can be 
defined as,  

∥ mClifford ∥= √∂X𝑓(𝑋) ∂X𝑓(𝑋)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 

= √∑ ǀ〈∂X𝑓(𝑋)〉𝑟ǀ2
𝑟 .                           (9) 

The spectral gradient mClifford(X) is a Clifford algebra. 

4. RESULT AND DISCUSSION 

The innovative setup of this study was implemented by 
MATLAB, a deep learning toolbox. In this result analysis, 
the input MRI images are classified into three types: normal, 
Non-specific white matter hyperintensity, and global brain 
atrophy, and the EEG signal is classified into two types: 
normal and generalized background slowing. The following 
deep toolbox operation was performed in MATLAB. 

1. Image input layer with the input size property set 
to 28,28,1; 

2. convolution 2d layer; 
3. batch Normalization layer; 
4. relu Layer; 
5. fully Connected Layer with the output size property set 

to 10; 
6. SoftMax layer; 
7. classification layer. 

 
Fig. 2 – The outcomes of the suggested Cliff-PD models. 

The following deep toolbox operation was performed in 
MATLAB. The term "Cliford Gradient RNN" might refer to a 
specific type of recurrent neural network (RNN) architecture 
that incorporates Clifford algebra or utilizes gradient-based 
RNN techniques. If this research based RNN architecture, 
need to implement it yourself using MATLAB's Deep 
Learning toolbox by creating a neural network layer or model. 

In Fig 2 simulation results of the proposed Cliff-PD model 
with MRI and EEG signal. The MRI images are denoised 
using MSR and EEG signal are pre-processed using Stationary 
Wavelet Transform filters are reducing the noise artifacts. The 
Clifford gradient RNN is employed to classifying the normal, 
Non-specific white matter hyperintensity, and global brain 
atrophy using MRI images. Furthermore, the Clifford 
Gradient RNN is employed to classifying the normal, 
generalised background slowing using EEG signal. 

4.1. PERFORMANCE ANALYSIS 
Performance analysis for this study was performed using 

specificity, accuracy, recall, precision, and F1 score. 
accuracy =

TP+TN

TP+TN+FP+FN
                     (10) 

Specificity =
TN

TN+FP
 ,                          (11) 

Precision =
TP

TP+FP
,                             (12) 
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recall =
TP

TP+FN
,                        (13) 

𝑓1 = 2
precision∗recall

precision+recall
,                     (14) 

where FP indicates false-positives, FN indicated false-
negatives, TP indicates true-positives and TF indicate true-
negatives respectively. 

Table 1 

The performance metrices for MRI and EEG signal of proposed methodology 
Input Classes Accuracy Specificity Precision Recall F1 score 

 
MRI images 

Normal 99.84 97.46 96.95 90.48 93.57 
Non-specific white 
matter hyperintensity 

 
98.37 

 
93.85 

 
90.76 

 
94.95 

 
91.28 

Global brain atrophy 99.28 89.94 94.02 98.09 95.82 
EEG signal Normal 98.83 95.06 96.09 88.26 90.37 

Generalised 
background slowing 

99.59 97.49 89.83 87.40 95.68 

 

 
Fig. 3 – Performance metrics for MRI images of three classes. 

 
Fig. 4 – Performance metrics for EEG signal of two classes. 

Figure 3 represents the performance analysis of Cliff-PD 
method, it includes three classes such as normal, Non-
specific white matter hyperintensity, and global brain 
atrophy. Figure 4 represents the performance analysis of 
Cliff-PD method, it includes two classes such as normal, 
generalised background slowing.  

 
(a) Accuracy.                            (b) Loss. 

Fig. 5 – Training and testing are proposed in Cliff-PD. 

Table 1 shows the results in terms of overall accuracy. The 
proposed Cliff-PD method yields an accuracy of 99.84 %, 
98.37 %, and 99.28 % for normal, Non-specific white matter 
hyperintensity and global brain atrophy from the MRI 
images. The proposed Cliff-PD method achieved the 
accuracy of 98.83 % and 99.59 % for normal, generalised 
background slowing from the EEG signal. 

Figure 5a shows the Cliff-PD method has better accuracy 
in training and testing, Figure 5b displays the loss. 
Performance is evaluated by specificity, recall, precision, 

and F1 score, and the Cliff-PD method an achieves 99.18 % 
accuracy. 

4.2. COMPARATIVE ANALYSIS 
The traditional neural networks and the Clifford gradient 

RNN are also compared in this division. Comparing the 
performance of Clifford Gradient RNN with existing 
methods shows more than existing methods. This 
comparative analysis compares three existing DL algorithms 
with the Clifford gradient RNN. 

Table 2 demonstrates that the findings in terms of total 
accuracy rate were attained. Traditional networks like 
DenseNet, AlexNet, and RNNs perform less accurately than 
Clifford Gradient RNNs. The accuracy obtained by CNN, 
Dense Net, GoogleNet, and Mobile Net is 94.28%, 89.27%, 
91.59%, and 98.38%, respectively, according to Fig. 6. 

Table 2 

The comparison between traditional DL networks 
Techniques Accuracy Specificity Precision Recall F1 

score 
DenseNet  96.26 90.47 87.62 91.06 79.94 
AlexNet  95.19 89.92 93.73 88.94 80.73 

RNN 97.84 93.04 90.27 94.81 85.06 
Clifford 

Gradient RNN 
99.18 95.72 94.83 96.27 91.95 

 

 

Fig. 6 – Comparison of traditional deep learning models. 

Dense net, AlexNet, RNN, and Clifford Gradient RNN all 
achieved specificities of 96.26 %, 95.19 %, 97.84 %, and 
99.18 %, respectively. The Clifford gradient RNN 
outperforms the previous models in terms of accuracy.  

To compare the effectiveness of various techniques, based 
on the efficacy of classification, previous models were 
compared using a performance criterion. Comparing the 
Cliff-PD to SVMs, AlexNet's and CROWD autoencoder the 
accuracy range is improved overall by 5.38 %, 10.36 % and 
3.2 % respectively. Our Cliff-PD is better than other 
approaches, as shown in Table 3.  
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Table 3 

The comparison of proposed Cliff-PD and the existing models 

Authors Techniques Accuracy 
Z.K. Senturk, [11] SVMs 93.84 % 

S. Sivaranjini, C.M. Sujatha [13] AlexNet's 88.9 % 
M. Masud et al. [14] CROWD autoencoder 96 % 

Proposed Cliff-PD 99.18 % 

5. CONCLUSION 

This research proposes a novel Cliff-PD to detect 
Parkinson's disease using a Clifford gradient RNN classifier 
with model images like MRI and EEG signals. The MRI 
images are initially denoised using MSR, and EEG signals 
are pre-processed using Stationary Wavelet Transform filters 
to reduce noise artifacts. Then, the Clifford gradient RNN is 
employed to classify the normal, non-specific white matter 
hyperintensity and global brain atrophy using MRI images. 
Furthermore, the Clifford gradient RNN is employed to 
classify the normal, generalized background slowing using 
an EEG signal. The performance of the proposed Cliff-PD 
method achieved an accuracy of 99.18 %. Comparing the 
Cliff-PD to SVMs, AlexNet's and CROWD autoencoders' 
accuracy ranges are improved overall by 5.38 %, 10.36 %, 
and 3.2 %, respectively. Deep fine-tuning of the advanced 
CNN model can be done using the proposed methodology to 
improve performance. Due to the rapid development of deep 
learning architectures, the physician won't have to expend as 
much time and effort in the future on making an objective 
diagnosis of Parkinson's disease. 
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