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Battery as a critical element in the stand-alone photovoltaic system remains without an appropriate protection fuse for short-
circuit failure inside it. Therefore the safety is threatened and the lifetime of the battery is reduced. To address this problem, 
supervision of battery internal short-circuit is proposed using a machine learning anomaly detection and support vector machine 
(SVM) as fault detection and diagnosis respectively. Simulation of Stand-alone photovoltaic system with battery is carried-out to 
obtain data learning. In addition, a real profile of irradiance and temperature captured from Centre de Development des 
Energies Renouvelables (CDER), Algeria, during nine days is used as input of the system simulation. The developed anomaly 
detection and SVM diagnosis model show their ability to detect and diagnose the faults with high accuracy in test real-time data. 

1. INTRODUCTION 
The deployment of stand-alone photovoltaic (SAPV) 

systems over the world is still late compared to the grid-
connected system [1]. The main reason is the lack of 
incentives governmental on the one side; on the other side, 
the high price of these systems. The battery as a storage 
element has been used for many renewable energy sources 
[2]. In addition, this component is the most sensitive and 
expensive part that needs to be permanently maintained. 
The battery is characterized to degrade faster if it operates 
in an unfavorable way, including Deep discharge, 
overcharge and internal short-circuit. The presence of these 
failures led to an early defect of the battery, and causes, 
performance degradation, loss of storing energy capability, 
and catastrophic damage like an explosion, fire, and acid 
contamination [3].  

The battery protection against internal short-circuit is a 
pretty complicated task because of the lack of selecting the 
right sizing fuse as well as the problem of the location of 
this fuse [3]. International Energy Agency (IEA) has given 
in [4] an evaluation of battery in PV-diesel hybrid system 
based on the analysis of the battery voltage graph in short- 
and long-term evaluation. However, the exact state of the 
battery cannot be guaranteed as well as many days are 
needed to detect a possible failure. Monitoring of battery 
internal resistance is proposed in [5] to supervise the 
changes related to the battery like aging. The author in [6] 
uses an estimation of solar irradiance to predict the battery 
overcharge and the increasing of internal resistance. In [7–
10], a performance assessment of the whole SAPV system 
including battery is performed from the point of view 
energy losses.  

Even though there has been a performance analysis of the 
battery or the whole system, no studies efficiently examine 
the battery faults. Furthermore, the realization of the 
battery's internal short-circuits under real working 
conditions is crucial for experimental validation. To 
overcome this issue, real-time surveillance of battery 
internal short-circuit is proposed using two machine 
learning technics: 1) anomaly detection and 2) support 
vector machine (SVM). The proposed algorithms work as 

fault detection and classification respectively, in which the 
main advantage of adopting such method consists basically 
of the amount of fault data used for training, and the high 
classification accuracy. The simulation tool is used to 
validate the proposed approach. 

The adopted methods are largely used in the field of fault 
detection and classification. Anomaly detection has been 
used for fault detection in rotating machinery [11] and in 
PV arrays grid-connected systems [12,13]. SVM knows a 
wide application area [14–17] due to its excellent 
characteristics     which consist of the high generalization 
ability (better than artificial neural network and hidden 
Markov model). Moreover, it requires a small number of 
training data [18]. The training and test data are obtained 
from the simulation model under Matlab/SimPowerSystem, 
where the system takes as input the meteorological 
measurements (irradiance and temperature) captured from 
CDER, Algeria. The battery of 12 V is divided into six sub-
batteries of 2 V connected in series to model the full cells 
and allowing the realization of internal short-circuit fault. 
Only two features are chosen as input variables to train, 
validate and test the proposed approach, where these 
features are the current and voltage of the battery. 

In this paper, a development of fault detection and 
diagnosis model is performed. Their performance is 
verified in test real-time, the results show a high accuracy 
achieved (about 98 %) for both anomaly detection and 
SVM to detect and classify these internal short-circuits. 
Furthermore, the time response is reduced as long as the 
number of short-circuited cells increases. This paper is 
organized as follows: the first part describes the SAPV 
system with their mathematical model, then the theory 
behind anomaly detection and SVM is given. Then a test 
and validation of the proposed approach is realized and 
finally, the conclusion is given. 

2. MODELISATION AND DESCRIPTION OF SAPV 
SYSTEM 

2.1 MATHEMATICAL MODEL OF SAPV SYSTEM 

A basic SAPV system constituted of PV panels, battery, and 
load connected in parallel and can be modeled by the following: 
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2.1.1 PV PANEL MODEL 
A single diode model used to develop the relation I-V of 

PV panel [19, 20] by using the following equations: 

,                  (1) 

where Iph is the generated photo-current, I0 is the saturation 
current of diode, Rs and Rsh are respectively the series and 
shunt resistance of panel, n is the ideality factor of the 
diode, and Vt  is the thermal voltage. 

The diode saturation current changes according to the 
temperature   by the equation (2): 

                   (2) 

where Tref and I0,ref are respectively the reference 
temperature and diode saturation current, k is the 
Boltzmann constant, q is the charge of the electron, and Eg 
is the bandgap energy. 

2.1.2 LEAD-ACID BATTERY MODEL 
The model of the battery included in 

SimPowerSystems/Matlab has been used [21], which has 
the expression (3) and (4) indicating the charge and 
discharge respectively. 

       (3) 

 ,                   (4) 

Vbatt is the voltage of the battery, E0 is the constant voltage 
of the battery, Q is the battery capacity, it is the actual 
capacity, k is the polarization resistance , i is the current of 
the battery, i* is the filtered current and exp(t) is the 
exponential zone voltage. 

2.1.2 LEAD-ACID BATTERY MODEL 
A resistive load is considered in this work which takes a 

fixed value during the simulation. 

2.2 PHYSICAL PROGRAMMING OF SAPV SYSTEM 
The PV panel used is Isophoton 12 V/106 W where the 

five parameters are found in [22]. The type of lead-acid 

battery used is 12V contains 6 cells, where each cell voltage 
is 2 V. In order to create faults inter-cells, the battery is 
considered as sub-batteries connected in series to represent 
cells of the battery as illustrated in Fig. 1. This configuration 
allows the study of faulty battery by assuming the battery 
cells has identical electrical characteristics as given in 
Table 1. The table gives also the electrical characteristics of 
the PV panel and load. 

Table 1 
Electrical characteristics of SAPV system component 

PV panels Battery Load 

Pmpp =212 Wp (106×2)  
Vmpp=17.40 V,   
Impp=12.20 A 
Isc=13.08 A,   
Voc=21.60 V   

C =200 Ah (200 
Ah for cell) 
Vs = 12 V (2V for 
cell) 
SOC0=90 % (90 % 
for cell) 

P =50 W 
V =12 V  
 

 
The manufacturer parameters of PV panel, battery, and 

load are described below: 
Under stc (i.e. 1000 W/m2 and 25C°), Pmpp, Impp, and 

Vmpp refer respectively to the PV power, current, and 
voltage at the maximum power point. Isc and Voc is the 
current and voltage at short and open circuit PV panels. 
C is the battery rated capacity, Vs is the nominal voltage of 
the battery, and SOC0 is the initial state of charge. 
P and V are the power and voltage of the load. 

3. BATTERY FAULT DETECTION AND DIAGNOSIS 
METHODOLOGY 

The main objective is the detection and identification of 
faults that occurred in cells of battery for SAPV system 
application (Fig. 2), where the fault detection algorithm 
proposed is anomaly detection in which it is based on the 
historical data of normal operating state, this method is 
suitable for the case of the battery where it is hard to obtain 
a database that covers all faults coming in the battery, in 
addition, the complex behavior of the battery makes the 
modelization of this system uncertain. To identify the type 
of fault a classification process may give a good solution, 
however, it needs a huge database in the stage of learning, 
for this reason, the SVM is proposed as faults classification 
since it needs a small number of data for training. In Fig. 3 
the strategy for fault diagnosis is given by the flowchart, 
it’s shown that the fault classification is activated only 
when the fault is occurring. 

Anomaly detection is a machine learning technique 
mostly used in fault detection [23] where the faulty data are 
not available or cannot be modeled, the anomaly detection 
aim to recognize any abnormal from normal data by making 

 
Fig. 1 – SimPowerSystem implementation of SAPV system. 

 
 

 

 
Fig. 2 – Schematic block of detector system used in Battery for SAPV 

system. 
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an assumption that the data are distributed under Gaussian 
distribution and calculating the Gaussian probability 
density, the fault can be determined. SVM is a successful 
classification method used in many research areas, which 
gives high accuracy in a small number of data learning and 
has the ability of generalization better than other classifiers 
such as artificial neural network [18]. As shown in Fig. 4 
SVM aims to find the optimal hyperplane that maximize the 
margin distance separating both classes, where the data that 
lies on the margin are the support vectors that create a limit 
boundary. SVM  is intended for binary classification, 
however, it can be extended to multi-class machine learning 
using several ways, in which the ’’one vs. one’’ is used in 
this work to construct C(C – 1)/2 binary SVM, where C is 
the number of class. In fault classification method, each 
class represents one type of fault or the healthy state. 

The mathematical theory behind both anomaly detection 
and classification is given, where a detailed SVM 
classification algorithm is found in [24]. These two 
methods are summarized below: 

3.1. ALGORITHM 1 (ANOMALY DETECTION) 

For each x∈Rn the Gaussian probability density is 
defined as: 

  (5) 

where the parameters µ and σ2 are respectively the mean 
and the variance defined below: 

                        ,                                     (6) 

                        .                         (7) 

The value of Gaussian probability density decide if we 
have a fault or not, this threshold (th) can be calculated using 
F1 score as evaluation metric expressed by the following : 

                         ,                               (8) 

where prec is the precision and rec is the recall given by 
these equations: 

          ,                        (9) 

tp and fp are the true and false positive respectively, where 
fn is the false negative. 

3.2. ALGORITHM 2 (BINARY SVM) 
Let the input data xn (n = 1,…,N), where N is the number 

of sample data and the corresponding output yn∈{1,–1} 
which indicate the first and second class. To find the 
optimal hyperplane separating data, the following 
minimization problem must be solved. 
 

    (10) 

 

 
subject to  

     for . 

where the Gaussian kernel function is defined as: 

, and  is the 

Lagrange multipliers. 
The optimization problem in (10) is solved in which the 

support vectors x1, x2,…, xs and the corresponding yn ,θn are 
saved, where s  is the number of support vectors. 
For given a new example x: 
 

 ,        (11) 

where b is the bias value. 

4. TEST AND VALIDATION THE FAULT 
DETECTION AND DIAGNOSIS 

4.1. DATA COLLECTION OF BATTERY 
A simulation of SAPV system as described above is 

carried out using the weather condition profile (irradiance 
and temperature) as input. These meteorological 

 
Fig. 4 – Schematic of separating binary class by SVM. 

 
Fig. 3 – Flowchart of the proposed fault diagnosis process. 
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measurements as shown in Fig. 5 are taking during Nine 
days with a sampling of 1 min from CDER, Bouzereah, 
Algeria. The Normal and faulty data of battery issued from 
the simulation of SAPV system are used for training, 
validation and testing the proposed approach. The first 
algorithm is trained with four days of Normal data which 
correspond to 5754 samples and validated with one day of 
faulty data which is equivalent to 1439 samples. The 
second algorithm is trained and validated with only one day 
(1439 samples), the rest of the days are used for testing 
both detection and classification algorithm. 

4.2. TRAINING AND VALIDATION STAGE 
The learning of detection and diagnosis system has been 

done by creating six faults between cells of the battery, 
these faults are ranged from short-circuit of one cell to six 
cells with Rfault = 0.1 ohm. Table 2 shows these faults as 
well as the symbol used. To avoid the false alarm 
happening with fault detection, the fault diagnosis is also 
trained by the Normal state to confirm the result of a fault. 
The validation set is used for choosing the best parameters: 
for anomaly detection (th = 0.0051) and for SVM (D = 1 
and σ = 10). The general accuracy in training and validation 
data are given in Table 3, where it can be seen that high 
accuracy is obtained for both anomaly detection and SVM 
classification. This means that the proposed approach is 
well trained and good parameters are chosen. 

4.3. ONLINE TEST 
Four days out of nine are intended for the test, where 

these data are not included in the stage of training or 
validation. The test is performed for all faults in real-time, 
in which the battery work in a healthy state for the first four 
days, then a fault is occurring for the rest of the days. The 
overall number of data corresponds to nine days is 12947 
data, in which the rate of good classification data, as well as 
the accuracy in test real-time for both anomaly detection 
and SVM classification, is given in Table 4. The results 
show that the Normal case is accurately detected and 
classified, and this is about 98 %. For the fault F1 to F6, the  

Table 2 
Different faults in battery for SAPV system 

State of battery Symbol 

Normal N 

Short-circuit one cell F1 

Short-circuit two cells F2 

Short-circuit three cells F3 

Short-circuit four cells F4 

Short-circuit five cells F5 

Short-circuit six cells F6 
 

Table 3 
General accuracy in training and validation data 

 Anomaly 
detection SVM 

Training data 98.61% 97.77 % 

Validation data 97.83% 98.14 % 

Table 4 
        Accuracy and number of correct data predicted for AD and SVM 

Anomaly detection SVM State 
of 

Batter
y 

 

No. of good 
classification 

Accurac
y 

No. of good 
classification Accuracy 

N 12813 98.97 % 12714 98.20 % 

F1 12332 95.25 % 12411 95.86 % 

F2 12585 97.21 % 12507 96.60 % 

F3 12678 97.93 % 12592 97.26 % 

F4 12725 98.29 % 12583 97.19 % 

F5 12752 98.50 % 12667 97.84 % 

F6 12777 98.69 % 12799 98.86 % 

accuracy of fault detection and classification worth between 
95 % and 98 % where the smallest value recorded in F1 to 
increase slowly to F6. The reason is that the battery is more 
vulnerable to the increasing of cells number short-circuited 
and this leads to more accurate results in detection and 
identification. 

To display the passage from the Normal state to the fault 
in real time for fault detection and identification, the results 
of the test, realized above is shown in Fig. 6 to Fig. 13. The 
Gaussian probability is plotted with the threshold (th) for 
fault detection, and for classification a scatter plot of 
predicted class with the actual or desired class. The moment 
of appearance the fault is the same for all the tested faults. 

Figures 6 and 7 show the test of the normal case, where it 
can be seen from Fig. 6 that the probability doesn’t drop 
below the threshold (th) with exception of two false alarms 
marked. To confirm the result a classification is performed 
as shown in Fig. 7 where it indicates Class N with some 
misclassified data. 

 

  
Fig. 5 – Irradiance and temperature profile. 
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Fig. 8 – Anomaly detection test result: short-circuit one cell (F1). 

 

 
Fig. 9 – SVM diagnosis test result: short-circuit one cell (F1). 

 

 
Fig. 10 – Anomaly detection test result: short-circuit three cells (F3). 

 

Fig. 11 – SVM diagnosis test result: short-circuit three cells (F3). 

 

Fig. 12 – Anomaly detection test result: short-circuit six cells (F6). 

 

Fig. 13 – SVM diagnosis test result: short-circuit six cells (F6). 

 
     
 

Figures 8 and 9 show the test of one cell short-circuited, 
and as indicated in Fig. 8, when the fault occurs the 
probability decrease under the threshold (th). The algorithm 
takes a certain time to detect the fault, and at this moment, 
SVM classification is launched to identify the fault F1 with 
certain delay and making some misclassification data. 

Figures 10 and 11 show the test of three cells short-
circuited, where in Fig. 10 the probability descend under 
the threshold more rapidly than in F1. As a consequence, 
the order is quickly given to SVM to recognize the fault F3 
as illustrated in Fig. 11. Some delay in the recognition 
compared the actual class has been noted with some 
misclassification data. 

Figures 12 and 13 show the test of six cells short-

 
Fig. 7 – SVM diagnosis test result: normal case. 
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circuited, where in Fig. 12, the probability descend 
immediately under the threshold indicating the presence of 
fault. The SVM classification started more rapidly as shown 
in Fig. 13 to identify the fault F6 with some error. 

From these figures, it can be seen that the time of fault 
detection reduced with the number of cells defected and by 
consequence, the time of classification is also reduced. The 
reason is that when the battery is strongly affected, the 
voltage drops immediately and this last accelerates the 
detection followed by the classification. 

The achieved results from Fig. 6 to Fig. 13 show a 
significant improvement in terms of precision and the time 
spent to recognize the faults. Whereas previous studies [4, 
10] provide only an evaluation of the battery or the SAPV 
system without determining the fault type, and the process 
is carried out at the end of the day. 

5. CONCLUSION 
In this paper, Anomaly detection and SVM machine 

learning classification are applied to detect and identify the 
internal short-circuit of battery for the SAPV system 
application. The battery current and voltage are used as 
features to train and test the detector system. Due to the 
difficulty of obtaining faulty data of battery, Anomaly 
detection and SVM algorithm offer a good solution in fault 
detection and diagnosis. By the reason that, Anomaly 
detection requires only healthy data and SVM needs a small 
number of data. This work is validated using simulation data 
of the whole SAPV system, in which the battery is 
considered as a series connection of sub-battery to represent 
cells. This way allows the realization of faults under different 
meteorological conditions of a real profile of irradiance and 
temperature taken during nine days from CDER (Algeria). 

The proposed approach shows high accuracy in fault 
detection and classification for both training and test data. In 
addition, the result can be more accurate and rapidly signals 
the fault in real-time if the number of cells defected is 
increasing. The future work consists to implement these 
methods in battery charge regulator to work in real-time. 

Received on April 14, 2019 
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