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LEARNING CONTROL FOR TRAJECTORY TRACKING OF 
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This paper proposed the iterative learning control for nonlinear underactuated systems. To improve the convergence speed of 

iterative learning control for such systems and reduce the fluctuation of the system error, an exponential variable gain D-type 

closed-loop iterative learning control algorithm was chosen. MATLAB simulation analysis was then performed on an 
underactuated, nonlinear, and unstable system, namely the inertia wheel inverted pendulum. The simulation results show that the 

algorithm is effective. Good tracking performance was achieved. The system converges to stable limit cycles after a few iterations, 

ensuring smooth errors and satisfactory convergence speed. 

1. INTRODUCTION 

Many industrial processes are intrinsically characterized 
by repetitive behavior. The iterative learning control (ILC) 
has been used to control such systems. It has grown in 
popularity considerably over the past two decades [1]. 
ARIMOTO proposed it in 1984 [2]. The ILC control is an 
efficient control concept that iteratively improves the 
behaviors of systems that perform repeated tasks such as 
assembly line tasks, chemical batch processes, reliability 
testing rigs, etc. Just as humans learn skills by trial and error, 
the ILC system learns the dynamics of the system by 
repeated trials [3]. The fundamental principle of the ILC 
algorithm is to properly refine the input sequence from one 
trial to the next so that as more and more trials are executed, 
the output will approach the desired trajectory, and the 
tracking error will converge to zero iteratively [4,5]. In the 
literature, many systems with repetitive behavior, such as 
manipulator robots, were controlled by ILC [4]. It has been 
reported that the error can be reduced to 1/1000 by 12 
iterations with only simple changes in the control signals.  

The ILCs can be classified into three major categories: the 
previous cycle learning or offline learning, the current cycle 
learning or online learning, and the previous and current 
learning control or online-offline learning. 

The online ILC only relies on current iteration errors [5]. In 
the offline ILCs, information from the previous iteration(s) 
was used to calculate the control input for the current iteration. 

The existing ILC methods use the PID controller, characterized 
by their simplicity, robustness, fast response, stability, 
adaptability, and widespread usage. It is relatively easy to 
implement and understand, can handle disturbances and 
parameter changes, responds quickly to system changes, achieves 
stable control, can be tuned for specific systems, and has a long 
history of successful application in various industries [6–8]. 

Among the iterative learning controllers, which are based 
on a combination of the PID controller, we cite D-Type 
closed-loop ILC, PD-Type closed-loop ILC, and the ILC 
with exponential variable gain [4,9]. 

All these techniques were proposed for continuous 
nonlinear systems, MIMO linear systems, and sampled linear 
systems [10]. However, considering the ILC control 
becomes more challenging for complex systems such: as 
underactuated, non-minimum phase, or nonlinear systems. In 
particular, the under-actuation has led researchers in the field 
to analyze, on a case-by-case basis, examples of under-

actuated mechanical systems of small dimensions (i.e., 
having little degrees of freedom). These systems, although 
small, exhibit strongly nonlinear dynamics, which 
complicates their control even more. Some efforts to classify 
under-actuated mechanical systems have been carried out in 
[11], where the classification is based on certain 
characteristics of the model of the studied systems. As for 
non-minimum phase systems, they often exhibit harmful 
behavior since they can even react in the opposite direction 
to the set points in transient conditions. 

This paper focuses on controlling an underactuated, 

nonlinear, and non-minimum phase system, namely the 

inertia wheel inverted pendulum. The ILC approach was 

proposed to ensure satisfactory tracking features. The 

proposed ILC controller was based on optimizing the 

reference trajectories for the unactuated coordinates. The 

control objectives were to stabilize the internal dynamics of 

the closed-loop system and converge the actuated 

coordinates to stable limit cycles. The ILC was proposed for 

the inertia wheel inverted pendulum. It was validated 

through numerical simulations. The obtained results prove 

the effectiveness of this approach and its ability to ensure 

good tracking performance. 

The remainder of this paper is organized as follows. In 

section 2, the iterative learning control structure is presented. 

Section 3 is devoted to the description of the inertia wheel 

inverted pendulum. The proposed control strategy is 

illustrated via simulation in section 4. Finally, concluding 

remarks are drawn in section 5. 

2. ITERATIVE LEARNING CONTROL 

The iterative learning control approach is a very effective 

control strategy in dealing with repeated tracking control that 

has grown in popularity significantly over the past decades. It 

aims to improve tracking performance for systems that work in 

a repetitive mode. The ILC's basic idea is that the data generated 

from the previous trial are used to construct the control input for 

the current trial. The control input in each trial is adjusted by 

using the tracking error obtained from the previous trial [3]. 

When designing a controller, the control objective is to 

ensure for a given system good performance, acceptable 

steady-state error, and transient response. Controlling the 

transient response is difficult considering the model's 

nonlinearities, uncertainties that may occur, and under-

actuation [12]. 
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2.1. MAIN OF ITERATIVE LEARNING CONTROL 

Consider a nonlinear dynamic model described as follows: 

{
𝑥(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡),

𝑦(𝑡) = 𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡),
                    (1) 

where 𝑥(𝑡) ∈ ℜ
𝑛

, ( ) my t  and ( ) ru t  are respectively 

the system state, output, and input vectors, and (.)f , (.)g are 

nonlinear vector functions. 

For the expected control ( )du t , if the initial states (0)kx  

and expected output ( )dy t  are given, for the given period 

 0,t T , according to the learning algorithm by repeated 

operation, we can realize ( ) ( )k du t u t→  and ( ) ( )k dy t y t→  

in a k  times.  

It can be represented below 

  
( ) ( ( ), ( ), )

( ) ( ( ), ( ), )

k k k

k k k

x t f x t u t t

y t g x t u t t

=


=
 .  (2) 

The iterative learning control can be derived into open-loop 

learning control and closed-loop learning control [13]. For the 

open loop control, the 1k +  times control is equal to the 

correction of the k  times control combine with the k  times 

output error: 

1( ) ( ( ), ( ))k k ku t L u t e t+ = .                        (3) 

The tracking error is defined as 

𝑒𝑘(𝑡) = 𝑦𝑑(𝑡) − 𝑦𝑘(𝑡),                         (4) 

where 𝑦𝑑(𝑡) is the desired trajectory to be tracked by the 

system and 𝑡 ∈ [0, 𝑇] and 𝑦𝑘(𝑡) is the system output at the 

iteration k. While the closed-loop learning strategy is to take 

the error in k+1  times as the correction of learning 

𝑢𝑘+1(𝑡) = 𝐿(𝑢𝑘(𝑡), 𝑒𝑘+1(𝑡)),                        (5) 

where L is a linear or nonlinear operation. 

ILC algorithms were created to improve transient responses 

for repetitive systems. In traditional control, a given repetitive 

system will produce the same error cycle after cycle since the 

error and the control input will be the same. ILC algorithms 

attempt to improve the tracking performance by adjusting the 

input for the next cycle, based on the error from the previous 

cycle. This technique has the advantage that it can be used 

without much knowledge of the system dynamics to be 

controlled [14,15]. 

 

 

Fig. 1 – Control block diagram of ILC. 

The classical formulation of the ILC design problem is to 

find an update mechanism for the input trajectory of a new 

cycle based on the information from previous cycles so that 

the output trajectory converges asymptotically to the reference 

trajectory [16]. A typical ILC idea is depicted in block diagram 

form in Fig. 1. It shows the next trial’s control input to be 

calculated from the previous trial’s control input and transient 

output error [17,18]. Here wandre 𝑦𝑘and 𝑢𝑘are respectively 

the output and the control input of the system in the previous 

iteration 𝑘, and –𝑢𝑘+1is the control input at the current 

iteration 𝑘 + 1. 

The control input 𝑢𝑘+1 is evaluated using the error 𝑒𝑘 

which represents the difference between 𝑦𝑑  and 𝑦𝑘 and the 

control signal ku collected in the previous cycle k. 

According to the block diagram illustrated in Fig. 1, the 

ILC law updated the input with the following equation: 

𝑢𝑘+1(𝑡) = 𝑢𝑘(𝑡) + 𝐾𝑒𝑘(𝑡 + 1).                   (6) 

The control input of the following cycle 𝑢𝑘+1(𝑡), is 

deduced from the previous cycle control action 𝑢𝑘(𝑡) and the 

previous error 𝑒𝑘(𝑡 + 1) multiplied by the learning gain K. 

The objective of the iterative learning control is to find a 

control sequence with the ability to reduce tracking error for 

the whole trajectory based on past tracking. 

lim
𝑘→∞

𝑒𝑘(𝑡) = lim
𝑘→∞

�̇�𝑘(𝑡) = 0.                     (7) 

2.2. DIFFERENT ITERATIVE LEARNING CONTROL 

ALGORITHMS  

There are many ILC algorithms, such as traditional P-type 

ILC, which updates the control input signal as a function of 

the previously stored control input and the stored output errors. 

In contrast, a D-type ILC updates the control input as a 

function of the previously stored control input and the stored 

derivative of the output errors. In the literature, several ILC 

algorithms were discussed and described as follows: 

2.2.1. D-type closed-LOOP ILC 

The D-type ILC is a classic ILC that uses the derivative of 

the error rather than the error itself. This means that the ILC 

seeks to perfectly follow the curvature of the trajectory and not 

the trajectory itself. As soon as the trajectory is traced, the 

derivative of the error drops to zero, and the algorithm waits 

for a disturbance that would deviate the system from the 

desired trajectory. The D-type ILC can potentially reduce the 

tracking errors caused by the disturbances [19]. 

The following equation describes the control law output of 

the D-type iterative learning of the system: 

𝑢𝑘+1(𝑡) = 𝑢𝑘(𝑡) + 𝐾𝑑(�̇�𝑑(𝑡) − �̇�𝑘+1(𝑡)),         (8) 

where Kd  is the constant gain matrix. 

2.2.2. PD-type closed-LOOP ILC 

One advantage of the P-type ILC is the sole measurement 

requirement. However, P-type ILC alone is poorly suited to 

integrating plants and is particularly sensitive to non-repeating 

disturbances; therefore, it is often coupled with a feedback 

controller. Therefore, a combination of P-type and D-type 

ILC, or PD-type ILC, is a promising approach to improving 

the tracking performance and reducing the influence of the 

disturbance [20,21]. The PD-type ILC combines the 'P' and 'D' 

approaches to achieve a fast convergence speed and better 
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tracking performance. It is possible to vary the gains to give 

more priority to a part of the algorithm. In addition, it is 

important to do this since the magnitude of the error and its 

derivative may be completely out of proportion. The control 

input equation for such an algorithm is as follows: 

𝑢𝑘+1(𝑡) = 𝑢𝑘(𝑡) + 𝐾𝑝(𝑦𝑑(𝑡) − 𝑦𝑘+1(𝑡)) + 

+𝐾𝑑(�̇�𝑑(𝑡) − �̇�𝑘+1(𝑡)),                            (9) 

where pK  is the constant gain matrix. 

2.1.3. EXPONENTIAL VARIABLE GAIN D-TYPE 

CLOSED-LOOP ILC 

The exponential variable gain D-type learning law is defined 

by eq. (10). The current control input is derived from the 

derivative signal of the past control input and the current output 

error signal by learning law. At the end of each repeated 

operation, the new control is calculated according to the learning 

law and stored to refresh the old control quantity [22] 

𝑢𝑘+1(𝑡) = 𝑢𝑘(𝑡) + λ(𝑡)𝐾𝑑(�̇�𝑑(𝑡) − �̇�𝑘+1(𝑡)),     (10) 

where λ(𝑡) = 𝑒𝑛𝑡(𝑛 > 0). 

To evaluate the initial value of n, we begin by exploring a 

range from 0.1 to 10 and then adjusting based on the simulation 

results and the system's performance. A higher value is 

recommended if the response is slow and a lower value if there 

is instability. The iterative adjustment of n relies on analyzing 

results and understanding dynamic characteristics, considering 

stability, response speed, and damping. 

3. THE INERTIA WHEEL INVERTED PENDULUM 

The inertia wheel inverted pendulum is a nonlinear, 

underactuated mechanical system with fewer actuators than 

degrees of freedom. Underactuated mechanical systems 

bring challenges to the control task since conventional 

controls for fully actuated mechanical systems cannot be 

implemented for such systems [23,24]. The control inputs act 

only on the actuated dynamics. Besides, these systems 

present non-minimum phase behaviour which complicates 

their control even more. Suitable control techniques should 

then be considered to control and stabilize the actuated 

coordinates and the remaining part of the system called 

internal dynamics [25–27]. 

The inertia wheel inverted pendulum, depicted in Fig. 2, 

was widely considered as an academic system to implement 

new control approaches. It includes an inverted pendulum 

equipped with a rotating wheel [29].  
 

 

Fig. 2 – The inertia wheel inverted pendulum [29]. 

Figure 3 shows the geometry of the inverted pendulum in 

a Galilean frame. θ1 is the angle between the axis of the 

pendulum and the vertical which corresponds to the so-called 

passive connection. As for θ2, it designates the angle between 

the inertia wheel and the pendulum which corresponds to the 

active connection. G1 presents the center of gravity of the 

pendulum and G2 is that of the inertia wheel. We denote by 

G the center of gravity of the global system. 

 

Fig. 3 – Schematic view of the system. 

The Euler-Lagrange formalism is based on the Lagrange 

equation [11,26,29]: 

d

d𝑡
(

𝜕𝐿

𝜕𝑞𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
= 𝑄𝑖 ;    𝑖 = 1,2,                   (11) 

where 𝐿 = 𝑇 − 𝑉 is the Lagrangian of the system where T is 

the total kinetic energy of the system and V is the total 

potential energy of the system, 𝑞𝑖 = [
𝑞1

𝑞2
] = [

θ1

θ2
] are the 

vectors of the generalized coordinates, 𝑄𝑞 = [
𝑄1

𝑄2
] = [

τ1

τ2
]: 

the vector of generalized forces associated with i. 

The total kinetic energy T is decomposed into pendulum 

energy and inertia wheel energy [11,26,29]:  

𝑇 =
1

2
(𝑚1𝑙1

2 + 𝑖1)θ̇1
2 +

1

2
𝑚2𝑙2

2θ̇2
2 +

1

2
𝑖2(θ̇1 + θ̇2)2.  (12) 

The total potential energy of the system is decomposed as 

follows [11, 26, 29] :  

            𝑉 = 𝑚1𝑙1𝑔 cos θ1 + 𝑚2𝑙2𝑔 cos θ1.                 (13) 

Using the equations for the kinetic and potential energies 

eq. (12) and (13), the Lagrangian can be defined as follows 

𝐿 = 𝑇 − 𝑉 =
1

2
𝐼θ̇1

2 +
1

2
𝑖2(θ̇1 + θ̇2)2 − 𝑚𝑙𝑔 cos θ1, (14)  

with 𝐼 = 𝑚1𝑙1
2 + 𝑚2𝑙2

2 + 𝑖1 and 𝑚𝑙 = 𝑚1𝑙1 + 𝑚2𝑙2, where: 

𝑚1 and 𝑚2are the pendulum and the inertia wheel masses, 𝑙1 

and 𝑙2are respectively the distances between the origin to the 

gravity center of the pendulum and the wheel; 𝑖1and 𝑖2are 

respectively the inertia moments of the beam and the wheel; 

–θ̇1 and θ̇2 are respectively the velocity of the pendulum body 

and the velocity of inertia wheel. 

By replacing eq. (14) in eq. (11), the nonlinear model of 

the inertia wheel inverted pendulum is described by the 

following equation 

{
θ̈1 =

1

𝐼
[τ1 − τ2 + 𝑚𝑙 𝑔sin θ1],

θ̈2 =
1

𝐼𝑖2
[−𝑖2τ1 + (𝑖2 + 𝐼)τ2 − 𝑖2𝑚𝑙 𝑔sin θ1],

     (15) 

where –θ̈1and θ̈2 are respectively the acceleration of the 

pendulum body and the acceleration of the inertia wheel; -τ2 is the 

torque induced by the motor while τ1 is the disturbing torque 

which is assumed to be zero [11,29]. Table 1 presents the 

summary of the geometric and dynamic parameters of the system. 
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Table 1.  

The parameters of the inertia wheel inverted pendulum 

Description Parameters values 

Body mass  m1 = 3.3081 kg 

Wheel mass m2 = 0.33081 kg 
Body center of mass position l1 = 0.06 m 

Wheel center of mass position l2 = 0.044 m 

Body inertia i1 = 0.03146 kgm2 
Wheel inertia i2 = 0.00041 kgm2 

Gravity acceleration g = 9.81ms-2 

 

In the next step, we will implement the PD-type iterative 
learning control on the inertia wheel inverted pendulum 
system. This PD controller provides the advantages of 
stability and precision for our study system [31,32]. 

4. SIMULATION RESULTS 

An inverted inertia wheel pendulum has the dynamic 
characteristics of high nonlinearity of an underactuated 
system and strong coupling. Iterative learning control seems 
effective for underactuated systems because a simple 
learning algorithm characterizes it and is independent of the 
detailed model of the controlled system.  

A fundamental algorithm for the iterative learning control 
algorithm involves using proportional-derivative (PD) 
control. In this iterative process, the control input is 
iteratively adjusted based on the proportional and derivative 
components. This allows the system to learn from past errors 
and enhance its performance in tracking a specified 
trajectory over successive iterations. The iterative learning 
control algorithm is given as follows: 

 

▪ Step 1: Initialize 

Set iteration count k = 1 
Initialize control input u[k-1] 
Set reference trajectory r[k] 

▪ Step 2: Repeat until convergence 

1. Measure system output y[k] 
2. Compute tracking error e[k] = r[k] - y[k] 
3. PD Control : 

     a. Compute proportional term : Kp_term = Kp * e[k] 
     b. Compute derivative term:       

                             Kd_term = Kd * (e[k] - e[k-1]) 
     c. Compute updated control input :   

                                u[k] = u[k-1] + Kp_term + Kd_term 
4. Apply control input u[k] to the system 
5. Increment iteration count: k = k + 1 
6. Check convergence criteria: 

▪ Step 3: Store current control input for the next 

iteration 

Set u[k-1] = u[k-1] 
▪ End Repeat 

 

Here k is the iteration index; u[k] is the control input at 
iteration k; y[k] is the system output at iteration k; r[k] is the 
reference trajectory at iteration k; e[k] is the tracking error at 
iteration k; Kp and Kd are respectively the proportional and 
derivative gains. 

To underline the interest and the performance of the iterative 
learning control, this command is applied to the inertia wheel 
inverted pendulum and is described by the eq. (15). 

The system's desired trajectories to be tracked are 
described by: 

 

{
θ1𝑟𝑒𝑓(𝑡) = sin(3𝑡) , 𝑡 ∈ [0, 𝑇]

θ2𝑟𝑒𝑓(𝑡) = cos(3𝑡) , 𝑡 ∈ [0, 𝑇]
 .                  (16) 

The desired trajectories of the velocities θ̇1𝑟𝑒𝑓 , θ̇2𝑟𝑒𝑓  are 

obtained by deriving the outputs described by eq. (16). They 
can be calculated as in eq. (17). 

{
θ̇1𝑟𝑒𝑓(𝑡) = 3 cos(3𝑡) , 𝑡 ∈ [0, 𝑇]

θ̇2𝑟𝑒𝑓(𝑡) = −3 sin(3𝑡) , 𝑡 ∈ [0, 𝑇]
  .              (17) 

The tracking errors of pendulum angular position Error 1 

and inertia wheel position Error 2 are described by: 

{
Error1 = θ1𝑟𝑒𝑓 − θ1

Error2 = θ2𝑟𝑒𝑓 − θ2
                       (18) 

The tracking errors of pendulum angular velocity Error 3 

and inertia wheel velocity Error 4 are then defined as: 

{
Error3 = θ̇1𝑟𝑒𝑓 − θ̇1,

Error4 = θ̇2𝑟𝑒𝑓 − θ̇2.
                       (19) 

The simulation parameters are selected as T = 3 s, n = 0.8, 

𝐾𝑑 = [
400 0

0 400
] and 𝐾𝑝 = [

80 0
0 80

]. The maximum 

number of iterations is 20, and the simulation lasts 3 seconds. 

The system simulation results are shown in Fig. 4 to Fig. 15. 

Scenario 1: D-type closed-LOOP ILC  

Figure 4 shows the evolution of the outputs θ𝟏 and θ𝟐 their 

references to the last tracking process of the final iteration. 

We notice that the outputs in the blue line of the system 

suitably follow their references represented in the red line. 

 

Fig. 4 – Pendulum angular position θ𝟏 and inertia wheel position θ𝟐 of the 

last iteration using D-type closed-loop ILC algorithm. 

 

Fig. 5 – Pendulum angular velocity θ̇1 and inertia wheel velocity θ̇2of the 

last iteration using D-type closed-loop ILC algorithm. 

 

In Fig. 5, the two angular velocity signals θ̇1 and θ̇2, both 

have very good tracking effects. ILC method with D-type 

closed-loop can stably and completely track the expected 

trajectories after 20 iterations. 
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Fig. 6 – Maximum absolute values of Error 1 and Error 2 in 20 
iterations using D-type closed-loop ILC algorithm. 

Figure 6 shows a curve chart that describes the maximum 

absolute values of Error 1 for the pendulum angular position, 

which is represented by blue data, and Error 2 for the inertia 

wheel position, which is represented by red data. These 

errors are shown in 20 iterations. With the increase in the 

number of iterations, the maximum angular errors for θ1 and 

θ2 decrease rapidly and converge faster to zero, showing 

very good tracking effects.  

The maximum errors Error 3 and Error 4 have very low 

values which show that the D-type closed-loop ILC command, 

applied in this scenario is very effective and that the inverted 

pendulum system is very precise because the steady state errors 

of velocities for outputs are very close to zero. 

 

Fig. 7 – Maximum absolute values of Error 3 and Error 4 in 20 
iterations using D-type closed-loop ILC algorithm. 

Simulation results demonstrate the effectiveness of the 

ILC algorithm of closed-loop D-type in terms of stability, 

rapidity response of the system, and accuracy for inertia 

wheel inverted pendulum control. 

Scenario 2: PD-type closed-LOOP ILC 

Figure 8 represents the evolutions of θ1 and θ2 in solid line 

while their references are in dashed line. This figure shows 

clearly that the static steady-state errors converge to zero. 

The output trajectories converge asymptotically to the 

desired reference trajectories after 20 iterations with good 

tracking performance. 

 

Fig. 8 – Pendulum angular position θ1 and inertia wheel position θ2of 

the last iteration using PD-type closed-loop ILC algorithm. 

Figure 9 shows that outputs θ̇1 and θ̇2 match perfectly with 

their reference inputs. Figure 10 shows the variations of 

Error 1 and Error 2 corresponding to the errors between theta 

sub 1, theta sub 2, and their references. We notice that the 

errors decrease with the number of iterations and tend 

towards zero. The system corrects itself, and after only one 

iteration, the real output θ1 tends towards the desired output. 

After 5 iterations, the real output θ2converges to its reference 

too. 

Figure 11 illustrates the maximum absolute values of 

Error 3, for θ̇1, and Error 4, for θ̇2, with iterative times. It is 

quite clear that the ILC law in this scenario manages to bring 

the trajectories back around their references in a few learning 

cycles, hence the effectiveness of the ILC control for 

nonlinear under-actuated systems. 

 
Fig. 9 – Pendulum angular velocity θ̇1 and inertia wheel velocity θ̇2 of 

the last iteration using PD-type closed-loop ILC algorithm. 

 

Fig. 10 – Maximum absolute values of Error 1 and Error 2 in 20 
iterations using PD-type closed-loop ILC algorithm. 

 

Fig. 11 – Maximum absolute values of Error 3 and Error 4 in 20 
iterations using PD-Type closed-loop ILC algorithm. 

The maximum error amplitudes for Error 1, Error 2, 

Error 3, and Error 4 are reduced, which shows the superiority 

of the closed-loop PD-type algorithm over the closed-loop 

D-type algorithm. 
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Scenario 3: Exponential variable gain  

D-type closed-LOOP ILC 

From Fig. 12, we notice that the angular positions of the 

pendulum and the inertia wheel perfectly follow the desired 

trajectories with zero static errors. In addition, the system can 

carry out a complete follow-up of the reference trajectories. 

Similarly, the velocities (θ̇1, θ̇2) of the inertia wheel inverted 

system follow one another at their references according to 

Fig. 13. 

According to Fig. 14, the output pendulum angular 

position θ1 and position of the inertia wheel θ2 are precise. 

From iteration 1, the output θ1 follows its setpoint. While 

from iteration 5, output θ2 and her input reference follow one 

another. 

 

 

Fig. 12 – Pendulum angular position θ1and inertia wheel position θ2 of 

the last iteration using exponential variable gain D-type closed-loop ILC. 

 

Fig. 13 – Pendulum angular velocity θ̇1and inertia wheel velocity θ̇2 of 

the last iteration using exponential variable gain D-type closed-loop ILC. 

 

Fig. 14 – Maximum absolute values of Error 1 and Error 2 in 20 
iterations using exponential variable gain D-Type closed-loop ILC. 

Figure 15 shows θ̇1 follows its input reference from 

iteration 1 while θ̇2 follows its reference with a very low 

static error speed. 

 

Fig. 15 – Maximum absolute values of Error 3 and Error 4 in 20 
iterations using exponential variable gain D-type closed-loop ILC. 

During the tracking processes of the proposed three ILC 
algorithms, the comparisons of the maximum displacement 
errors and the maximum speed errors of the inertia wheel 
inverted pendulum system are shown in Table 2. The 
maximum errors of angular displacements and angular 
velocities of the third algorithm in scenario 3 are Error1 =14.8 
10-3 rad, Error2 = 3.64 10-3 rad, Error3 = 2.1 10-3 rad/s and 
Error4 = 7.1310-3 rad/s. These maximum errors are very low 
values compared to the maximum errors obtained in 
scenarios 1 and 2. Compared with the results of the former 
two algorithms controlling the P-type closed-loop ILC 
algorithm and PD-type closed-loop ILC algorithm, the best 
advantage is demonstrated. The Exponential variable gain D-
type closed-loop ILC algorithm shows better error results; 
hence, this algorithm has higher iteration accuracy and is 
recommended preferentially. 

Table 2 

Comparisons of the maximum displacement and maximum velocity 
errors of inertia wheel inverted pendulum 

Name of controllers Max error position Max error velocity 

D-type closed-loop 
ILC 

Error 1=2.21 10-3 

Error 2= 3.66 10-3 

Error 3=3.11 10-3 

Error 4= 7.14 10-3 

PD-type closed-loop 
ILC 

Error 1=2 10-3 

Error 2= 2.79 10-3 

Error 3=3.15 10-3 

Error 4=7.73 10-3 

Exponential variable 
gain D-type closed-

loop ILC 

Error 1=14.8 10-3 

Error 2= 3.64 10-3 

Error 3=2.1 10-3 

Error 4= 7.1310-3 

4. CONCLUSIONS  

This paper studies an iterative learning control for a class 
of nonlinear underactuated systems. The PD-Type ILC was 
chosen and proposed for the inertia wheel inverted pendulum. 
We have proved that the proposed algorithm can guarantee 
that the output scan tracks the desired trajectories completely on 
a finite and small-time interval. The simulation example of an 
inertia wheel inverted pendulum shows the effectiveness of the 
proposed iterative learning control algorithm. 

The proposed control approach can be extended to deal 
with robustness towards disturbances and for online learning 
strategies. In future work, the proposed method can also be 
implemented on real platforms, such as industrial shock 
absorbers, which present characteristics very close to those 
considered in our contribution. 

The simulation results show that the algorithm is effective. 
the improved iterative learning law makes the iterative error 
smoother and improves the convergence speed. Applying the 
iterative learning control in trajectory tracking of an inertia 
wheel inverted pendulum has achieved a good control effect. 

Received on 29 June 2023 
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