
Rev. Roum. Sci. Techn.– Électrotechn. et Énerg. 
Vol. 68, 3, pp. 301–306, Bucarest, 2023 

1 University Politehnica of Bucharest, Bucharest, Romania. E-mails: alinafglavan@gmail.com, croitoru@adcomm.pub.ro 
   DOI: 10.59277/RRST-EE.2023.68.3.9 
 
 

INCREMENTAL LEARNING FOR EDGE NETWORK INTRUSION 
DETECTION  

ALINA FLORINA GLAVAN1, VICTOR CROITORU2 

Keywords: Edge; Supervised learning; Incremental learning; Intrusion detection.  

The paper presents incremental learning as a solution for adapting intrusion detection systems to edge network conditions. 
Extreme gradient boost trees are proposed and evaluated with the Network Security Laboratory - Knowledge Discovery in 
Databases (NSL-KDD) benchmark dataset. The accuracy of the XGBoost classifier model improves by 15 % with 1 % of the KDD-
test+ data used for training. A mechanism based on unsupervised learning that triggers retraining of the XGBoost classifier is 
suggested. These results are relevant in model retraining on resource-scarce environments (relative to a cloud environment), such 
as the network edge or edge devices.

1. INTRODUCTION 
The evolution of 5G networks is facilitated by 

technologies like network function virtualization (NFV), 
multi-access edge computing (MEC), software-defined 
networks (SDN), and network slicing (NS) [1]. MEC is 
considered a core 5G technology that can lighten the load on 
the mobile core network by serving requests locally [2], 
considering the growing number of connected devices. Paper 
[1] estimates Internet of Things (IoT) devices number will 
increase during 2019 – 2030. The number of IoT-connected 
devices in 2023 is estimated at 15.1 billion and is expected 
to reach as much as 29.4 billion devices by 2030 [1]. Figure 
1 presents the positioning of edge computing in the network. 

Nencioni et al. [3] appreciate MEC by 3 criteria: security, 
dependability, and performance. MEC is the closest network 
layer to customers that offers computing capabilities. At the 
same time, it represents a wide attack surface to control. The 
MEC vulnerabilities presented in papers [2,4] are related to: 

- inherited vulnerabilities of the applications 
deployed at the edge and the shared host platform; 

- physical security, due to geographically distributed 
locations; 

- known vulnerabilities of micro-service architecture. 
Regarding the types of attacks, paper [3] and [4] mentions 

eavesdropping, data capture, denial of service (DoS), partial 
or total physical damage, malware, credential theft, and 
rogue/fake entities.  

 

The main cybersecurity controls at the network edge, with 
significant cost benefits, are the deployment of firewalls and 
intrusion detection controls [5]. As the number of deployed 
use cases rises, paper [5] reports an increased interest in 
implementing network cybersecurity controls. The top two 
are privileged access management (PAM) control and 
intrusion detection and prevention control. Paper [5] ranks 
industrial Internet of things/operational technology 
(IIoT/OT) edge at the top edge types for implementation in 
the next 3 years. In an edge setup, ensuring availability in 
industrial IoT/OT is critical, and distributed denial of service 
(DDoS) attacks are the first concern of respondents from 
report [5]. Figure 2 presents an IIoT configuration with a 
firewall and an intrusion detection system (IDS) deployed in 
the edge network. 

Intrusion detection systems (IDSs) are used to monitor 
network traffic to detect anomalies and signs of misuse [6]. 
IDS is a commonly implemented countermeasure, and 
attackers constantly evolve their methods to compromise the 
network – with new attack methods, IDSs must also evolve. 

Artificial intelligence/machine learning (AI/ML) for 
intrusion detection is being studied by many researchers in 
various topics [6–10]. Usually, training and evaluating a 
machine learning model requires high computational power 
and storage capacity. Considering the large volume of traffic 
entering the edge network, implementing machine learning-
based IDSs at the edge can be challenging.  

Fig. 1 – 5G network technologies. 
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Training and testing are mostly performed in high-
performance environments like the cloud. Although the edge 
is marketed as a cloud, edge resources are limited [11]. 

This paper studies incremental learning as a solution for 
keeping edge-deployed detection models up to date with 
minimal resource consumption. The experimental setup 
considers the network security laboratory - knowledge 
discovery in database (NSL-KDD) dataset. The experiment 
aims to solve a classification task using supervised learning 
in an evolving environment. Considering the limited 
resources at the edge and the large amount of data, a scalable 
and performant model is considered for incremental 
learning. A gradient boost tree, specifically extreme gradient 
boost (XGBoost), is proposed as the machine learning 
algorithm. As incremental learning needs a trigger, an 
algorithm based on unsupervised learning is proposed to 
trigger retraining. K-means and silhouette coefficient are 
parts of the suggested triggering mechanism architecture. 

The next part of the paper is organized as follows: the 
second chapter introduces incremental learning and NSL-
KDD datasets, and a short review of related work is 
presented. Chapter three presents the experimental setting, 
providing details on the dataset preprocessing, machine 
learning algorithm, and environment. Chapter four is a dive 
into the training and testing results. The incremental learning 
results are explained by feature importance analysis. A 
machine learning-based mechanism to trigger the model 
updating is proposed in chapter five. Conclusions and future 
work are discussed in the final chapter. 

2. CURRENT STATE OF AI AND INTRUSION 
DETECTION RESEARCH 

AI/ML solutions are suggested to address a wide range of 
topics. Among them, disease prediction is studied in [12,13] 
ML-based diagnosis for battery cells is suggested in [14], and 
an evaluation of ML models for network intrusion detection 
is presented in [15,16]. The design and deployment of ML 
solutions for and at the network edge are studied in [17,18]. 
The last two topics are presented in more detail in the next 
subchapters. 

2.1 NSL-KDD DATASET FOR INTRUSION 
DETECTION 

The NSL-KDD is an intrusion detection dataset and 
represents the cleaned version of KDD CUP 99 dataset [19]. 
The NSL-KDD dataset is available in [20]—the authors of 
[19] present NSL-KDD as a benchmark dataset. One of the 

reasons is that the train and test data are from different 
probability distributions, and the test data has examples of 
new attack types (compared to the training dataset) [19]. 
Still, the examples can be classified into 5 categories: normal 
traffic, DDoS attack, probing attack, privilege escalation 
attacks (user to root – U2R), and remote access attacks 
(remote to local – R2L) [19].  

The dataset was used in the training of various models. 
Paper [15] presents the dataset structure. The paper proposes 
feature selection for accuracy enhancement of SVM (support 
vector machine), J48, and Naïve Bayes.  

The paper's authors [21] employ unsupervised 
autoencoders and 2 isolation forest modules to perform 
binary classification of examples for the fog environment.   

Paper [16] presents a solution for anomaly detection based 
on bidirectional long short-term memory and attention 
mechanism. long short-term memory (LSTM), convolutional 
neural networks (CNN), and recurrent neural networks 
(RNN) are compared in [22]. Synthetic minority 
oversampling technique (SMOTE) is proposed as a 
preprocessing step for accuracy improvement.  

Wang et al. [18] use NSL-KDD for few-shot class-
incremental learning evaluation in intrusion detection. The 
model aims to identify the new attack classes from the test 
dataset. 

2.2 INCREMENTAL LEARNING 
Incremental learning is a way of performing stateful 

training [23]. Stateful training means that once the model is 
trained on a data set, the model can enhance and adapt to new 
environmental conditions by continuing training on a recent 
relevant data set. Training continuation can be scheduled or 
triggered by a performance decrease or data distribution shift 
[23]. Web article [23] mentions a reduction of training costs 
by a factor of 45 for a specific use case with stateful daily 
retraining compared to retraining on the whole dataset. 
Continual learning is viewed as an evolution of incremental 
learning [23]. 

BrainyEdge [17] is a solution for keeping edge-deployed 
models relevant in evolving IoT environments. Transfer 
learning and incremental learning are considered for better 
adaptation to context and resource usage.  

Paper [24] presents transparent learning as a solution for 
training deep learning models at the network edge. Each edge 
node's computing capability is considered to share the 
computing burden of model training.  

Paper [18] proposes few-shot class-incremental learning 
to adapt to a rapidly evolving environment in case of 
intrusion detection. 

3. MACHINE LEARNING MODEL WORKFLOW 
The next section describes the dataset preprocessing and 

the machine learning algorithm as part of the model 
development workflow.  

3.1 DATASET PREPROCESSING 
Table 1 presents a summary of the train and test dataset. 

The table resulted from dataset exploration. 
The preprocessing is performed on a train and test 

concatenated dataset. The feature “level” is not interesting 
and is dropped during preprocessing. The label will be 
encoded by categories (values from 0 to 4) and then by traffic 

Fig. 2 – IoT network protected by firewall and IDS deployed at the edge. 
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type (normal = 0, attack =1). Feature “su_attempted” has 3 
values, although it is a binary feature [15]: value 2 is assumed 
as 0, and the change affects 62 rows. Feature 
“num_outbound_cmds” has one value only, which is 
dropped [25]. One-hot-encoding is used for encoding 
categorical features “protocol_type”, “flag”, and “service”. 
This process adds 81 features to the dataset. Then, all 
features in the dataset (except for the label) are transformed 
with a scikit MinMax scaler. The default parameters are 
assumed for MinMax scaler. The dataset is split back into 
train and test, each containing the same examples as the 
original datasets. No other filter was performed on the 
datasets. 

Table 1 
Summary of NSL-KDD (source: designed by authors) 

Dataset 
Total number of 

Records Traffic 
types Categories Normal 

class 
Attack 
class 

KDD 
Train+ 125972 23 5 67342 58630 

KDD 
Test+ 22543 38 5 9711 12832 

3.2 MACHINE LEARNING MODEL 
XGBoost is an open-source library [26] of supervised 

algorithms. XGBoost is based on gradient-boosting decision 
trees, which perform well on large amounts of data [27]. It is 
considered efficient and scalable and does not need to 
optimize parameters or tuning [27]. Still, the implementation 
permits the control of overfitting with the introduction of 
penalties on each tree’s weights and biases. It is considered 
to perform better than other algorithms [27]. XGBoost 
classifier allows the usage of a parameter named xgb_model. 
The parameter value is given by the model that is to be 
loaded before training and allows training continuation [28]. 
XGBClassifier algorithm was considered in the current paper 
because it simplifies the machine learning pipeline from data 
exploration to data classification. 

3.3 IMPLEMENTATION SETUP 
Jupyter Lite [29] is used for quick environment setup. 

Python libraries are used for data handling (numpy, pandas) 
and figure generation (matplotlib, seaborn).  

The xgboost library is used for algorithm implementation 
and sklearn for preprocessing, train-test split, and evaluation 
metrics.  

Experiments were performed on a personal computer with 
the following specifications: intel I7 9700K processor and 
32GB DDR4 1667mhz random access memory. 

4. INCREMENTAL LEARNING RESULTS AND 
ANALYSIS 

4.1 INITIAL TRAINING 
XGBClassifier is loaded from the xgboost library – this is a 

classification class compatible with scikit-learn application 
programming interface (API) [30]. Sklearn library [31] is used 
for performance metrics extraction. The default parameters are 
considered for the implementation of the model. 

We are implementing a binary classification for 
identification of normal and attack traffic. We consider 
training the model on the whole train dataset, followed by 
evaluation on the test dataset. The incremental actualization of 

the model is presented in subsection 4.2 and uses multiple 
batch sizes from the test dataset to update the model. The 
purpose is to detect the smallest number of samples needed to 
increase the old model's accuracy and observe accuracy 
evolution. The confusion matrix for the model was designed 
and presented in Fig. 3.  

The matrix on the left represents the model's fit on train 
data. The matrix on the right represents the evaluation of the 
model on test data. The negative class is the normal traffic 
class, and the positive class is the attack class. True negative 
(TN) represents the negative examples (normal traffic) and is 
predicted negatively. True positive (TP) is the number of 
positive examples (attack traffic) and predicted positive. False 
negative (FN) is the number of positive examples predicted as 
negative, while false positive (FP) is the number of negative 
examples predicted as positive.  

Accuracy is the chosen metric, offering an overall 
classification performance evaluation. Inaccurate predictions 
are considered to have the same cost. Accuracy is “the ratio 
between the number of correct predictions to the total number 
of predictions” [32].  

The model performs well on train data, with an accuracy of 
99 %. Still, the accuracy drops to 78.7 % at testing time, with 
many FN (attacks that the model omits). As this is a supervised 
learning algorithm, the model is expected to perform well on 
data from the same distribution. It is already known that the 
test data is generated with a different probability distribution 
function [19]. Since the probability distribution function has 
changed, the intrusion detection system should be able to 
adapt to the new environment. Dimensionality reduction 
through feature selection is proposed in [15] to enhance the 
accuracy of other models. Incremental learning is studied in 
the next part as a possible solution. 

4.2 INCREMENTAL TRAINING 
XGBoost classifier permits the usage of a parameter named 

xgb_model. The parameter makes the XGBoost classifier 
consider the old model and allows training continuation [28]. 
Dataset KDD Test+ will be used for model training and 
testing. 

The accuracy testing methodology is used, and the number 
of examples for each retraining is empirically chosen. Table 2 
presents the accuracy evolution over model updates with 
different train-test dataset sizes.  

The model was trained at first with 22 (0.1 %) examples 
to create the baseline. Using 1 % of the dataset (225 
examples) for training increases the test accuracy from 
78.7 % to 93.04 %. Test data accuracy stabilizes after 
training with 20 % of the dataset (4508 examples). FN and 
FP values on test data are also listed in Table 2. Starting with 

Fig. 3 – Model performance on KDD Train+ data (left) and KDD Test+ 
data (right) with confusion matrix metric.  



304 Incremental learning for edge network intrusion detection 4 
 

  

model no. 4, the average value of FP: FN ratio is 0.85. No 
improvement is associated with increasing the training 
dataset to more than 20 % of the available data. Once we start 
training with the new dataset, the new model's accuracy on 
the whole KDD Train+ (the dataset used for training the old 
model) decreases to 94.6 %. The decrease can be associated 
with catastrophic forgetting [33]. The issue of forgetting old 
tasks in favor of new learning tasks is a hot topic in continual 
learning, mostly studied in neural networks [33]. 

Table 2.  
Incremental learning results with XGBoostClassifier. Model number 4 is 

considered the best performing model (source: designed by authors) 

No. 
Train 
size 
[%] 

Test 
size 
[%] 

Train 
accuracy 

[%] 

Test 
accuracy 

[%] 

FN 
(test) 

FP 
(test) 

1 0.1 99.9  72 78.7 4523 273 
2 1 99 100 93.04 678 876 
3 10 90 99.9 97.1 236 352 
4 20 80 99.8 98.04 161 192 
5 30 70 99.8 98 149 166 
6 40 60 99.6 97.89 137 149 
7 80 20 99.5 98.60 27 36 

4.3 MODEL EXPLAINABILITY 
With respect to model evolution, we can explain model 

predictions with feature importance analysis. From Table 2, 
we choose model number four, as this is an example of high 
accuracy achieved with relatively low train dataset. The 
method is available in the xgboost library.  

Figure 4 and 5 present the feature importance generated 
on fitted trees. The figures present the importance of each 
feature in the construction of the trees. Figure 4 presents the 
15 most important features in the old model (trained on KDD 
Train+). Figure 5 presents the 15 most important features in 
the new model (trained on 20% of KDD Test+). The 
src_bytes feature maintains an important role in both new 
and old models, but the dst_bytes feature is replaced by 
dst_host_srv_count in the new model. Also, the new model 
has feature srv_count on the 11th position and feature hot is 
eliminated when learning on the new dataset. 

5. TRIGGERING MECHANISM ARCHITECTURE 
Figure 6 presents a possible edge-cloud setup that serves 

an IoT network. The edge is the first layer of the IIoT edge 
network that receives requests from both IIoT devices and 
the external world. The edge network can be seen as a sparse 
network of nodes. A network node might have more 
resources than the devices it serves, but it has less than the 
cloud. The collected data can be transmitted to the cloud to 
lessen the storage burden at the edge.  

The edge node deploys a general model trained in a cloud 
environment in this setup. The purpose of the edge model is 
to perform predictions on incoming data from both sources. 
As devices evolve at the edge (e.g., get updated, patched, or 
even become malicious) and attackers change their methods, 
at some point, the cloud model will no longer fit the 
incoming data.  

Incremental learning was proposed as a solution for 
adapting to a new dataset. Retraining on new data requires a 
degree of autonomy in deciding the retraining moment. A 
triggering mechanism is added in Fig. 6 to start updating the 
model with data gathered by the edge node. Drops in model 
performance can trigger updates, and data distribution 
changes or can be scheduled [23].  

Statistical methods can be used to identify data 
distribution shifts – but feature monitoring is a realistic 
solution for datasets with few features [23]. As the data at the 
edge node is not labeled, unsupervised methods could be 
employed for data shift identification. The unsupervised 
model should be able to distinguish outliers from valid data 
shifts. 

Clustering algorithms are implemented for anomaly 
detection in [34–36]. In the case of K-means, the silhouette 
coefficient can be used for optimal cluster number 
identification [37]. A persistent change in the examples 
would determine optimal cluster number change or cluster 
reorganization. 

Self-organizing Maps (SOM) is an unsupervised neural 
network based on competitive learning. The algorithm was 
applied for clustering microservices with similar resource 
consumption profiles in [38] and compared to K-means and 
K-shape. The algorithm proved faster than the K-clustering 
variations on a reasonable hardware setting. The effects of 
map size variation are studied in [39]. The purpose is to 
understand the dataset (old and new examples) to decide to 
retrain the model.  

A triggering mechanism algorithm is presented in Fig. 7. 
This is based on the K-means clustering algorithm. The old 
dataset (used for model training) is kept for K-means 

Fig. 4 – The 15 most important features in the old model construction. 

Fig. 5 – The 15 most important features in the new model construction. 
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training. The new examples are concatenated to the old 
dataset. The optimal number of clusters (OCN in Fig. 7) is 
calculated and will be used for fitting the K-means. If the 
OCN remains the same, then the new dataset is kept, and 
retraining of the model is triggered. A label propagation 
mechanism needs to be implemented to retrain the model 
XGBoost in a supervised manner. If OCN changes, then K-
means is trained on the merged dataset. If the new examples 
are outliers of the newly created clusters, the data is 
discarded; otherwise, the new dataset is labeled and used for 
model retraining. After retraining, the merged dataset 
represents the old dataset, and a new execution of the Fig. 7 
algorithm can begin. 

6. CONCLUSIONS 
This paper presents an end-to-end solution for intrusion 

detection using incremental learning. The authors propose a 
process involving three components: ML model, model 
explainability, and retraining trigger mechanism. 

While related work (in chapter two) focuses on deep 
learning models to demonstrate incremental learning 
advantages, the authors suggest the XGBoost classifier, as it 
offers classification explainability, along with a balance 
between accuracy, performance, and resource consumption, 
while working with large amounts of data (if compared to 
neural or deep networks). 

The paper's authors suggest the XGBoost classifier 
implementation for incremental learning on NSL-KDD 
intrusion detection dataset. To demonstrate the benefits of 
implementing incremental learning through XGBClassifier, 
the accuracy test methodology is used in chapter four. The 
accuracy on KDD-test+ dataset improves from 78 % to 93 % 
with only 225 train examples. The test accuracy reaches 
98 % with 20 % of the KDD-test+ dataset used for retraining.  

The authors suggest model explainability as a key 
advantage in implementing real-world ML-based intrusion 
detection solutions. The best-performing model from section 
four is detailed through feature importance in sub-section 
4.3. Model explainability allows for evaluating solution 
correctness and applying adjustments in time. 

To attain a degree of automation and ensure the evolution 
of the suggested intrusion detection solution in a dynamic 
environment, the authors propose a method to identify the 

need for retraining in chapter five. The authors suggest a 
logical diagram of the mechanism needed to trigger model 
retraining in Fig. 7. As the XGBoost classifier is a supervised 
model, retraining is performed on labeled examples. 
Nevertheless, the IDS is constantly exposed to new 
unlabeled data examples. Based on the authors’ former 
research – published paper [38] – an unsupervised ML 
algorithm is suggested for a decision on retrain triggering 
and label propagation. The authors will further study the 
implementation and the details of the mechanism. 

The results presented in this paper were achieved using a 
personal computer. As such, the results of this paper can 
prove helpful when model retraining is necessary for 
resource-scarce environments (relative to a cloud/enterprise 
environment) such as the network edge, edge devices, or 
personal devices. 
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