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Thanks to the positive characteristics of the double stator machine (DSIM), its high reliability, and reduced rotor torque ripples, it has 
become among the most important multiphase machines included in industrial applications. This article aims to apply the two techniques 
of artificial intelligence represented by the adaptive neuro-fuzzy inference systems (ANFIS) and the genetic algorithm (GA) for direct 
torque control (DTC) of the DSIM to improve the performance of the machine. The ability to learn and the parallelism of operation 
characteristics made exploiting the GA to control the machine possible instead of using the proportional integral controller (PI). Fixed 
switching frequency obtained, given with the vector selection table and hysteresis, allowed the inclusion of the ANFIS technique in the 
DTC strategy. Two-level inverters are included to feed the DSIM. Several results prove that the two techniques applied, ANFIS and GA, 
improve the quality of the electromagnetic torque and flux and the dynamic responses of the DSIM.

1. INTRODUCTION

The ever-increasing number of electrical machines 
permeating more and more aspects of human life is leading 
to increased attention regarding the noise they generate. 
Particularly due to the transformation of the energy system 
and the associated increase in the use of synchronous 
electrical machines in applications with a high-power density 
(e.g., wind energy and traction drives, electric vehicles, or 
electric aircraft...), multi-phase machines are now a strong 
focus of noise-reduction [1]. As [2,3] describe, doubly star 
(double stator) induction machines are one of the most 
widely used machines in many sectors of the industry due to 
their several advantages compared to conventional three-
phase induction motors, such as higher efficiency, 
minimized rotor harmonic currents, reduced torque 
pulsations, reliability, and fault tolerance capability. 

The dual star induction machine (DSIM), also named dual 
three-phase induction machine (DTPIM), has a structure that 
comprises in the stator two three-phase winding systems 
coupled in a star out of phase between them of an angle pi/6 
and a rotor wound in a squirrel cage. To simplify the study, we 
consider the electric circuits of the rotor to be equivalent to a 
three-phase winding in a short circuit. 

Direct torque control (DTC) is a well-known strategy in 
electrical engineering. Lately, it has increasingly been used in 
industrial applications, compared to other kinds of control, 
particularly vector control. The DTC is much less sensitive to 
parametric variations that reduce the system's performance to be 
controlled, and it also allows very fast dynamic torque responses 
[4]; despite its simplicity, DTC allows good torque control in 
steady state and transient operating conditions to be obtained. 
However, hysteresis controllers for flux and torque lead to torque 
and current ripple and variable switching frequency operation for 
the voltage source inverter. Several papers discussed different 
solutions to deal with these problems. In [5], the authors aim for 
a five-level DTC-SVM method with an efficient dc voltage 
balancing control method dedicated to a double-star induction 
machine. In [6], the paper presents the direct torque control 
(DTC) of a dual star induction machine (DSIM) employing a 
sliding mode speed controller; in [7] the research proposes a 
modified direct torque control to minimize the harmonics of the 
stator current and reduce ripples, the hysteresis controllers of the 

electrometric torque are instead by a developed 5-level regulator 
based on more vector voltages to reduce the torque ripples and 
the error torque. In addition, a PI controller is incorporated into 
the 5-level regulator to improve the torque response. Recent 
attention has been given to combining artificial intelligent 
control techniques with a DTC scheme for improved 
performance and enhanced robustness [8]. In [9,10], artificial 
intelligence was used with DTC. 

The objective of the proposed control strategy is to drive the 
dual-star asynchronous induction motor using the Direct Torque 
Control (DTC) technique. Additionally, this strategy aims to 
replace the conventional switching table in our control system 
with another intelligent table based on neuro-fuzzy techniques, 
utilizing the ANFIS GUI tool interface for optimal vector 
selection to power the DSIM motor. Furthermore, the PI speed 
controller is replaced by a new intelligent technique using a tool 
presented within the genetic algorithm to reduce torque errors at 
low and high speeds. A study on harmonic distortion (THD) 
was also conducted for DSIM. 

2. DSIM MODELING

The electrical supply for the double-star induction 
machine, operating in motor mode and variable speed, is 
provided by two voltage source inverters that are mutually 
connected to the winding of the stator. 

The dual star asymmetric induction motor comprises two 
sets of three-phase star-connected stator wings spaced 
electrically at 30° (Fig. 1); the rotor can be a short-circuited 
three-phase winding one or a squirrel cage one. A wound 
rotor is considered here [11–13] for simplicity. 

Fig. 1 – Windings of DSIM. 
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To derive the model, the following general assumptions 
are made: 
• motor windings are equivalent, sinusoidally field

distributed;
• both stars have the same parameters;
• flux path is linear;
• magnetic saturation effects are negligible;
• magnetic hysteresis is negligible.
The mathematical model can be derived from the three-

phase model by walking the Concordia hypotheses while the 
slot effect of DSIM is ignored, the core less, the saturation, 
in a stationary reference frame. As seen in eq. (1)–(10) the 
DSIM model may be stated as follows: 

• Electric equations:

Vsα1,2=Rsisα1,2+
dφ

sα1,2

dt
, (1)

Vsα1,2=Rsisα1,2+
dφ

sα1,2

dt
, (2) 

Vrα=Rrirα+
dφrα
dt

–(ωs–ωr)φrβ, (3) 

Vrβ=Rrirβ+
dφrβ

dt
–(ωs–ωr)φrα, (4) 

• Magnetic equation:
φ

sα1,2=Lsisα1,2+Lm irα, (5)
φ

sβ1,2=Lsisβ1,2+Lm irβ, (6) 
φ

rα=Lrirα+Lm irα, (7) 
φ

rβ=Lrirβ+Lm irβ, (8) 
• Mechanical equations:

Tem=p (φ
sα1isβ1–φ

sβ1isα1)+(φ
sα2isβ2–φ

sβ2isα2), (9) 
dΩr

dt
=Tem–Tr–f

r
Ωr. (10) 

3. DTC STRATEGY

The fundamental idea behind the DTC concept is to achieve 
decoupled control of both flux and torque by properly 
selecting the stator voltage analogous to the torque and flux 
error, and this choice is based on the utilization of hysteresis 
controllers, the outputs of the hysteresis regulators when 
combined with information about the flux position, determine 
the optimal voltage vectors. These vectors enable the inverter 
VSI to reach seven distinct phase-plane positions, which 
correspond to the inverter output voltage vector’s eight 
sequences [8,14,27]. 

Fig. 1 – Flux hysteresis comparator (A), torque hysteresis comparator (B). 

The stator and rotor (α,β) fluxes’ magnitudes can be evaluated 
as follows. The expression of the stator flux is given by:  

φ
sα1,2= ∫ (Vsα–Rsisα1,2)dt

t

0 , (11)

φ
sβ1,2= ∫ (Vsβ–Rsisβ1,2)dt

t

0 . (12)
The sectors of the fluxes are divided into six sectors, each 

covering an angle π/3 and represented in a complex two-
dimensional plane. The location of the space vector of fluxes in 
the complex plane can be represented as follows [14,23] 

θs1,2=arctan(
φsβ1,2

φsα1,2
). (13)

To exploit the operation possible sequences of the inverter 
on two levels, the classical selection table of the DTC is 
summarized in Table 1. It shows the commutation strategy 
suggested by Takahashi, to control the stator flux and the 
electromagnetic torque of the induction motor [15]. 

Table 1 

Applied selected voltage vectors 

∆φs ∆Ce 
Sector 

1 2 3 4 5 6 

1 

1 
V2 

1,1,0 
V3 

0,1,0 
V4 

0,1,1 
V5 

0,0,1 
V6 

1,0,1 
V1 

1,0,0 

0 V7 

1,1,1 
V0 

0,0,0 
V7 

1,1,1 
V0 

0,0,0 
V7 

1,1,1 
V0 

0,0,0 

-1 V6 

1,0,1 
V1 

1,0,0 
V2 

1,1,0 
V3 

0,1,0 
V4 

0,1,1 
V5 

0,0,1 

0 

1 V3 
0,1,0 

V4 
0,1,1 

V5 
0,0,1 

V6 
1,0,1 

V1 
1,0,0 

V2 
1,1,0 

0 V0 

0,0,0 
V7 

1,1,1 
V0 

0,0,0 
V7 

1,1,1 
V0 

0,0,0 
V7 

1,1,1 

-1 V5 

0,0,1 
V6 

1,0,1 
V1 

1,0,0 
V2 

1,1,0 
V3 

0,1,0 
V4 

0,1,1 

The whole system consists of control DTCs coupled to the 
DSIM, influenced by speed and torque references: 

1. Apply a speed step of 300 rad/s from 0 s to 5 s.
2. During the speed change process, the load torque is

applied to the system, starting from the rated load torque 
jump of 10 Nm for 2.5 s, then the motor keeps idling. 

At the beginning of the system operation, the following 
parameters were set sampling frequency:  f

S 
= 0.001 Hz ;

width of the hysteresis band: 
∆𝑇𝑒𝑚 = ±0.5 Nm, ∆φ𝑠 = ∆φ𝑟 = ±0.01 Wb.

Figure 3 shows the stator voltages delivered by the voltage 
inverters; the voltages are of the two-level type. Figures 4 
and 5 illustrate the stator currents and their THDs, 
determining the harmonic rate when using the DTC. It should 
be noted that the currents are of sinusoidal form, which are 
harmonics of the THD values of 6.37 %. If the THD rate is 
high, we will see more ripples in the torque, decreasing the 
motor’s lifetime. 

Fig. 3 – Stator Voltage Vsa of the DTC. 

Fig. 4 – Stator current THD of the DTC. 
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Fig. 5 – Stator currents of the DTC. 

4. DTC WITH NEURO-FUZZY 

The essential part of neuro-fuzzy inference comes from a 
common framework called adaptive networks, which unifies 
neural networks and fuzzy logic [16]. 

Hybrid neuro-fuzzy networks learn from reports and 
models using a supervised learning algorithm that examines 
data across a set of training that consists of sample entries 
and their associated outputs.  

During the learning phase, a hybrid neuro-fuzzy network 
modifies its internal structure to reflect the ratio of inputs to 
outputs throughout the training (knowledge base). The 
accuracy of a neuro-fuzzy network is checked after the 
learning cycle is complete using a separate set of inputs and 
outputs called the whole validation [17]. 

In this paper, we applied the distinguished adaptive neuro-
fuzzy inference system (ANFIS) of the type of integrated 
hybrid neuro-fuzzy system instead of the conventional 
switching table to control the suitable selection vector. The 
training of the adapter is done through the error 
backpropagation algorithm to optimize the parameters of the 
premise parts to produce the knowledge base automatically 
and the resolution of the consequent parameters by the least 
squares method (hybrid learning) [17,18]. The equivalent 
neuronal structure proposed in Matlab is shown in (Fig. 6).  

 

 
Fig. 6 – Topology of the neuro-fuzzy model used. 

The structure proposed contains five network layers: 
Layer 1: It is the input layer, the adaptation of the parameters of the 

antecedents to make their fuzzification. 
Layer 2: This is the trigger force layer of the rules, as each neuron in 

this layer corresponds to a simple fuzzy rule and calculates 
the implementation force of the rule it represents. 

Layer 3: This is the normalization layer of the triggering forces. 
Each neuron in this layer receives entries from all neurons 
in the ruler layer. 

Layer 4: This defuzzification layer adapts the consequent 
parameters; each neuron in this layer is connected to the 

respective normalizing neuron and receives the initial 
inputs. 

Layer 5: This is the final output layer of all defuzzification neurons; 
this layer sums up all the incoming signals. 

Table 2 

Parameters setting for ANFIS model 
ANFIS setting Parameters 
Input variables Stator flux error, electromagnetic torque 

error and Sector 
Output variables Selection voltage vector 

Type of input MFs Gauss MF 
Type of output MFs Linear 

Type inference Sugeno 
Number of rule 42 rules 
Deffuzification Wtaver 

5. GENETIC ALGORITHM CONTROLLER 

Genetic algorithms (abbreviation GA) are an optimization 
method based on natural selection and natural genetic 
mechanisms in biology. Because it uses group search and 
crossover operator (see Fig. 7) and mutation operator to 
exchange information between individuals, it has implicit 
parallelism, greatly improving search efficiency, and 
overcomes the continuous and differentiable requirements of 
traditional optimization methods for objective functions. 
Therefore, GA is the best way to control this compromise; it 
is widely used in scientific research and practical problems, 
and the fittest potential solutions are developed to produce 
even more optimal ones. Each string (chromosome) is a 
possible solution to the problem being optimized, and each bit 
(or group of bits) represents a value or some variable of the 
problem (gene) well. For the implementation of the GAs, we 
used tournament selection, arithmetic crossover, and mutation 
[19,20,26]. 

Though genetic algorithms act subtly, the basic execution 
cycle, the "central loop," is quite simple [21]: 

Step 1. From the set of classifiers, select pairs according 
to strength – the stronger the classifier, the 
more likely its selection.  

Step 2.  Apply genetic operators to the pairs, creating 
"offspring" classifiers. Cross-over is chief 
among the genetic operators, which 
exchanges a randomly selected segment 
between the pairs. 

Step 3. Replace the weakest classifiers with the 
offspring. 

 
Fig. 7 – Example of the crossover operator. 

We note that several performance indices are developed:  
The integral of squared error (ISE) 

I1= ∫ e2(t)dt.
∞

0
 

The integral of absolute Error (IAE) 

I2= ∫ |e(t)|dt.
∞

0
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The integral of time multiply squared error (ITSE) 

I3= ∫ te2(t)dt.
∞

0
 

The integral of time multiply absolute error (ITAE) 

I4= ∫ t|e(t)|dt.
∞

0
 

The speed is controlled by a PI controller in a traditional DTC 
control of undesired overshoots and static errors in non-linear 
systems. However, the DTC’s inadequacies cannot address this 
case [22]. The GA’s optimization of the parameters KP, KI, and 
KD allows for the creation of ideal PI controller values at each 
sample time that are tailored to the system’s nonlinearity. In our 
work, the performance index applied is ITSE. The optimized 
design of this regulator is done by a strategy consisting of a GA 
to precisely locate the global minimum using the ‘Gatool’ 
window under Matlab [23]. Figure 8 (Table 3), illustrates the 
gains synthesized by the conventional DTC, as well as the 
optimal optimizer gains by the GA algorithm. The parameters 
of the algorithm used are: 
• population size is 30; 
• tournament type selection; 
• the arithmetic function is used in the crossover; 
• the adaptive feasible function is used for mutation; 
• the number of generations is 26. 

 

 
Fig. 8 – The best fitness and best individual of GA_DSIM. 

Table 3 

Synthesis and optimized PI gains for DTC and GA_DTC 
Controller 
parameters DTC GA_DTC 

Kp 1500 226.066 
Ki 20 0.024 

The block diagram of a GA/NF-DTC controlled DSIM by 
a 2-level inverter is shown in Fig. 9. 
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Fig. 9 – NF-DTC control schematic applied to DSIM. 

6. SIMULATION RESULT 

In Fig. 10, both responses from the torque of C-DTC 
(conventional) and GA/NF_DTC (genetic algorithm-neuro-
fuzzy based direct torque control) will exhibit consistent 
tracking of the full load torque reference throughout the test. 
These responses represent an initial torque up to 30 Nm, 
expected due to current requirements at the start of rotation 
and during acceleration. We observe a drop in torque 
presented by the DTC, which the proposed GA-DTC corrects. 
Notably, at 2.5 s, the electromagnetic torque peaks when 
subjected to a 10 Nm load, after which it maintains a constant 
value of 10 Nm. 

 
Fig. 10 – Speed responses of both strategies C-DTC and GA/NF_DTC. 

To verify the proposed techniques in this paper, a digital 
simulation based on the Matlab/Simulink program with 
ANFISToolbox and GA Gatool is used to simulate the 
GA/NF_DTC, as shown in Figs. 11–15. 

Moving on to Fig. 11, it illustrates the speed performance 
of the DSIM. The speed C-DTC is green, indicating reference 
tracking throughout the 300 rad/s reference point. However, 
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an overshoot in speed is addressed using the GA (depicted in 
blue within the same figure), as highlighted in the zoomed-in 
section. At 2.5 s, a speed drop is caused by adding a 10 Nm 
load. Notably, the motor speed maintains its reference value 
with the presence of a speed controller. The rapid response of 
DTC_GA/NF demonstrates absolute reference tracking 
without overshoot or static error. Indeed, Fig. 15 is a 
confirmation of our arguments. 

Fig. 11 – Electromagnetic torque of the DTC and GA/NF_DTC. 

Fig. 
12 – Stator currents of the GA/NF_DTC. 

Fig. 13 – Stator current THD of the GA/NF_DTC. 

Fig. 14 – Stator flux of the GA/NF_DTC. 

Fig. 15 – Speed and electromagnetic torque of GA/NF_DTC. 

Figures 12 and 13 illustrate the stator currents of GA/NF-
DTC and their THDs. It should be noted that the currents are 
less harmonious compared to the DTC, presenting with a THD 
value of 3.60 %; this marks improvements in the THD. 

2. CONCLUSION

A neuro-fuzzy implementation on the commutation table 
and a genetic algorithm-based DTC PI optimization algorithm 
applied to DSIM were developed. This configuration was 
simulated in MATLAB/Simulink. This study shows that the 
dynamic performance of classical DTC is improved by 
optimizing and updating the PI coefficients KP and KI for 
each interval to accommodate the system's nonlinearity. The 
proposed GA/NF-DTC control significantly improves speed 
overshoot and rejection time, flux, torque ripple, and current 
THD. 

DSIM performance brings great improvements, such as 
Reducing speed overshoot with and without load torque, 
reducing response time, and minimizing flux, ripple, and 
torque ripple. At the same time, there are acceptable 
improvements in the current THD. 

Received on 10 June 2023 

APPENDIX 
The parameters of DSIM are given in Table 4. 

Table 4 

DSIM parameters 
PARAMETERS VALUES 

   Nominal power Pn [kW]  4.5 
   Stators resistance RS [Ω]  3.72 
   Rotor resistance RR [Ω]  2.12 

  Stators inductance LS [mH]  22 
   Rotor inductance LR [mH]  6 
 Mutual inductance Lm [mH]  367.2 
 Moment of inertia J [kg/m2]  0.0662 
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