
Rev. Roum. Sci. Techn.– Électrotechn. et Énerg.

Vol. 69, 3, pp. 299–304, Bucarest, 2024

Électronique et transmission de l’information

Electronics and Information Technology

1 Veltech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Chennai, India

 Emails: vtd845@veltech.edu.in (corresponding), drkalpanadevip@veltech.edu.in

DOI: 10.59277/RRST-EE.2024.69.3.8

BUFIT: FINE-GRAINED DYNAMIC BURST FAULT INJECTION TOOL
FOR EMBEDDED FIELD PROGRAMMABLE GATE ARRAY TESTING

SINDHU THAZHATHETHIL VELAYAUDHAN1, *, KALPANA DEVI1

Keywords: Field programmable gate arrays (FPGAs); Adaptive fault injection (AFI) tool; Linear feedback shift register; Multiple
bit upsets.

Fault injection (FI) is a well-known method to attack embedded systems, particularly advanced FPGAs and microcontrollers
physically. The FPGA-based embedded system constitutes SRAM for configuration data storage. Multiple-bit upset is a main
threat for FPGAs due to technology scaling and complex application bit files. Space environments additionally incur radiation
threats to these devices. This paper proposes burst error modeling and a burst fault injection tool (BUFIT) to address these issues.
BUFIT has been proposed with fine-grained and coarse-grained circuits. Built-in instrumented FPGA-based FI is proposed for
effectively injecting MBUs in configuration memory with space adaptive rate for accurately estimating soft errors. Evaluation of
proposed BUFIT on Kintex-7 target FPGA to various OR 1200-based workloads is given to analyze the speed up of the proposed
technique. Results on the OR 1200 processor show that BUFIT is three and two orders of magnitude faster than existing DPR and
SCFIT techniques. It uses only 0.4 % CLB overhead and has negligible impact on FFs of target SFPGAs.

1. INTRODUCTION

Injection of faults is a common technique for assessing a
system's resilience to physical faults [1]. The field
programmable gate array (FPGA) is widely employed in
practical field applications because of its low power
consumption and flexible programming. Unlike Von
Neumann-type devices like microcontrollers and digital
signal processing (DSP) processors, the FPGA comprises
reconfigurable logic, I/O, and connectivity blocks [2]. When
referring to environments that could be detrimental to the
field-programmable gate arrays’ (FPGAs’) dependable
operation, the term "hostile environment" is usually used.
System resilience is tested frequently when systems are
implemented in hostile contexts where errors are likely to
occur [3]. Since then, all potential uses of radiation-tolerant
circuits, such as space missions, satellites, and high-energy
physics experiments, have raised interest in exploring fault-
tolerant approaches to keep integrated circuits (ICs)
functioning in hostile environments [4].

FPGAs mimic defects in electronic systems; this
technique is known as an FPGA-based fault injector. An
extensive range of digital logic operations can be executed
using FPGAs, integrated circuits that can be programmed
after manufacturing [5]. FPGA-based fault injectors are
employed when examining how errors like bit flips affect the
dependability and efficiency of digital systems. Applying
this is essential for safety systems, such as medical devices,
aircraft, and automobiles. Experiments simulating the impact
of MBUs can be conducted with FPGA-based fault injectors
by purposefully flipping several bits in the data memory or
configuration of the FPGA. Researchers can examine the
behavior of the FPGA under practical fault scenarios and
validate MBU mitigation strategies by injecting faults based
on MBU models.

Multiple-bit upset (MBU) modeling studies and simulates
scenarios where multiple bits in a memory unit are corrupted
simultaneously. MBU occurs due to high-energy particles,
radiation, or other environmental factors that can flip
multiple bits in a memory cell, leading to data corruption [6].
MBU modeling helps develop error detection and correction
mechanisms to mitigate the impact of such faults.

Over the past few decades, applications for FPGAs in
high-energy physics and aerospace have grown in
popularity. FPGAs are popular for these applications
because of their many advantages, including great
adaptability, cheap cost, and fast turnaround time. This is
especially true compared to more expensive, specialized
alternatives like application-specific integrated circuits [7].

Since commercial SRAM-based FPGAs are more cost-
effective and perform better than radiation-hardened FPGA
systems, they are now often utilized in radiation settings.
Commercial SRAM-based FPGAs are undoubtedly less
expensive than radiation-hardened FPGA solutions, but
whether or not they "work better" will rely on the particular
needs and limitations of the application and the radiation
environment [8]. Because of their wider market availability
and higher production numbers, commercial SRAM-based
FPGAs are more economical than radiation-hardened
FPGAs [9].

Advanced techniques in silicon manufacture are employed
to attain elevated frequencies and superior performance.
Additionally, FPGAs are machines that can be programmed.
It can alter their behavior during development to satisfy
different mission objectives [10]. One unresolved matter is
the relationship between hardware- and software-based fault
injection vulnerability detection. Here, fault injection
vulnerabilities are found by utilizing both hardware and
software. Hardware-based detection is achieved using an
EMP generator [11].

The effects of SETs happening during configuration
memory re-writing should be thoroughly examined, as
reconfiguration tasks are critical to the availability,
flexibility, and dependability of FPGA applications. A
methodology has been proposed to assess SET pulses' effects
when reconfiguring configuration memory in SRAM-based
FPGAs [12]. Additionally, SRAM-based FPGAs have more
memory elements than their ASIC counterparts, so they are
more susceptible to Single Event Upset (SEU). Due to their
higher operating voltages, early SRAMs were more resilient
to soft errors. On the other hand, the node capacitance and
operating voltage decrease with each successive SRAM
generation [21,22]. Burst error modeling and burst fault
injection tool (BUFIT) have been proposed to overcome
these challenges. The major contribution of BUFIT is,

300 Fine-grained dynamic burst fault injection tool 2

• Built-in Instrumented FPGA-based FI for effectively
injecting MBUs into the configuration memory of
SFPGAs.

• FI is based on an adaptive rate for accurate estimation of
soft errors.

• Evaluation of BUFIT on Kintex-7 target FPGA to

various OR 1200-based workloads to analyze the

speedup of the proposed technique.

The rest of the research will be shown below. Section 2

reviews past research on AD detection using the ADNI

database and other databases. Section 3 explains the

proposed approach in extensive detail. Section 4 discusses

the outcome and discusses the discussion. Section 5 provides

future research directions and a summary.

Table 1

List of abbreviations

Abbreviation Description

FPGA Field programmable gate array

FI Fault injection

(DSP) Digital signal processing

(EMP) Electromagnetic pulse

SRAM Static random access memory

MBU Multiple bit upsets

(SEU) Single event upset

QEMU Quick EMUlator

ARM Advanced RISC machines

TRAITOR TRAnsportable glItch aTtack platfORm

(EMFI) Electromagnetic fault injection

SIFA Statistical ineffective fault analysis

(DUT) Design under test

(PDR) Partial dynamic reconfiguration

(ICAP) Internal configuration access port

(LFSR) Linear feedback shift register

ICAP Internal configuration access port

FG-LFSR Fine grained LFSR circuit

 (FFs) Flip flops

2. LITERATURE SURVEY

This section discusses the various fault injection

techniques for FPGA-based embedded systems.

In 2022, Metawie H. et al. [13] suggested a framework for

fault injection using the Quick EMUlator (QEMU). It can

simulate faults in the control and execution channels of an

ARM processor and extend the fault model for memory

coupling problems. They illustrate the usefulness of the

approach by evaluating a memory exam.

In 2023, Lanzieri L. et al. [14] proposed age detection and

monitoring in embedded systems. Hardware aging is an

increasing issue for embedded devices that play critical roles

in reliable or safety-critical applications. The primary goal of

this work is to facilitate future research efforts in this area by

organizing all major approaches.

In 2021, Claudepierre, L. et al. [15] proposed a low-cost

TRAITOR platform that can inject numerous, accurate bursts

of faults using clock glitches. The errors are caused by clock

glitch injection, which has high repeatability and reliability.

This platform is inexpensive, simple to use, and capable of

injecting many spurts of faults. Future development will

extract an exact fault model for TRAITOR using the

STM32F100RB board. Furthermore, the investigation of

software or hardware countermeasures is being explored.

In 2022, Richter-Brockmann, J. et al. [16] proposed

revisiting adversary model hardware faults. Additionally,

using custom models makes comparing various designs and

evaluation results more difficult. Furthermore, it

demonstrates that the suggested adversary model can be

incorporated into VerFI, a cutting-edge fault-proof tool.
In 2019, according to a recent study, Liao H. et al. [17]

suggested that the security of embedded devices is
significantly impacted by electromagnetic fault injection
(EMFI) techniques. This paper proposes a novel EMFI
backside technique based on overclocking and an enlarged
fault model based on the concept of critical charge. The
security and fault injection resistance of embedded
processors and their instruction set designs depend heavily
on this research. Part of the study's funding comes from
contributions from XtremeEDA.ds and NSERC.

In 2020, Breier J. et al. [18] developed a novel method to
protect implementations against SIFA based on error-
correcting codes. They created an electronic logic analysis tool
that checks the output for errors, cycles through all potential
inputs, and injects a stuck-at-fault at each gate in the circuit.

In 2018, Cerveira F. et al. [19] suggested analyzing the
exploratory data of fault injection campaigns. This essay
adopts a contemporary perspective on these problems by
organizing and executing information extraction using
exploratory (big) data analysis techniques, tools, and
approaches. As a result, a previously undiscovered possibility
for a sharp acceleration of the FI process has been discovered.

Several techniques were used to inject the faults in single-
bit and multiple-bit scenarios. However, it faces challenges
like immediate practical needs of mitigating hardware aging
in current systems and more complex fault models beyond
clock glitches. In this work, a novel BUFIT has been
proposed to address these issues

3. PROPOSED BUFIT FOR MBU INJECTION

A simulation framework for MBU injection and its
associated design methodology is described in this section.
The early estimation of sensitivity to run-time MBUs of
SFPGA is much required to reduce the further accumulation
of MBUs. It allows for the exploration of MBU modeling
and the anticipation of its design before the implementation
of an efficient MBU injector. The MBU injection framework
shown in Fig. 1 is based on modeling an event-driven
simulator by including the functional models for the FPGA.
The designer can redefine the readback rate, MBU injection
rate, frame address, and fault list. This scalable,
configurable, and versatile framework allows for virtualizing
real-time fault emulation experiments under dynamic
radiation environments.

Radiation-induced MBUs are emulated by synthetically
changing the contents of the FPGA configuration memory
through in-built FI. The FPGA's output is then monitored to
decide the impact of a given configuration memory upset on
the originally implemented design behavior.

An efficient FI technique requires knowledge of possible
fault models; this knowledge will vary for different FPGA
resources. For example, Stuck-at-1 or Stuck-at-0 model is
used to induce the fault in the routing resource of FPGAs,
and the bit flip fault model is used to induce the fault in the
memory resources of FPGAs. The recent radiation
experiment shows that more than 48 % [20] of the faults are
MBUs; in particular, 2-bit upset, 3-bit upset, and 4-bit upset
play an important role, and a maximum of 8-bit upset is
possible to occur in the same word of the memory units.
Based on the real-time radiation experiments on recent
technological devices, the modeling of different SBU and
MBU fault patterns is done in this work. The 4-bit Linear

3 Sindhu Thazhathethil Velayaudhan, Kalpana Devi 301

Feedback Shift Register (LFSR) produces a 4-bit random
fault with any seed value. The number of possibilities for

generating the random faults for any 4-bit seed value is
shown in Table 2.

Fig. 1 – Proposed MBU injection framework.

The polynomial equation for 4-bit LFSR is given by

x4⨁ x3⨁1. (1)

The general representation of MBU models is given in eq.

(2) to (5), where n represents the bit width of the LFSR

circuit and m represents the number of errors in the MBU set.

fm=1 = n, (2)

fm=2 = n + m, (3)

fm=3 = n, (4)

fm=4 = 2n−m. (5)

Table 2

Random fault modeling using 4-bit LFSR

Bit Flip Fault Models f1 f2 f3 f4

For Different Seeds 4 6 4 1

The eight 4-bit LFSRs are connected in parallel to

generate 32-bit random data. The polynomial equation for

32-bit LFSR is given by

x32⨁ x22⨁x2⨁ x1⨁1. (6)

The seed of six LFSRs is considered constant, and the seed

of another two LFSRs is varied. If the number of ones in the

4-bit variable seed changes, it can generate a maximum of 4-

bit upset. Table 3 shows the modeling of MBUs based on a

fine-grained LFSR circuit (FG-LFSR).

Table 3

Fine-grained LFSR-based MBU model

FG-LFSR Mechanism Proposed fault model

SBU 1-bit 25 %

MBU 2-bit
3-bit

4-bit
5-bit

6-bit

75%

37 %
25 %

7 %
2 %

4 %

3.1. PROPOSED BUFIT

The proposed FPGA-based fault injector is performed in

two steps: i) fine-grained and ii) coarse-grained.

3.1.1. Fine-grained fault injector

The issue is caused by the XOR operation of the data from

the FPGA memory and the random vector produced by the

linear feedback shift register (LFSR).

Fig. 2 – Proposed fine-grained 4-bit fault injector circuit.

The existing and proposed fault models can derive from

LFSR's seed and feedback polynomial vectors. The proposed

fine-grained is a 4-bit fault injector, and the circuit is shown

in Fig. 2. The 4-bit data D [3:0] from memory is XOR with

the seed to generate a random 4-bit vector from the LFSR.

3.1.2. COARSE-GRAINED FAULT INJECTOR

The reconfiguration signal is used to select the error data

for FI and error-less data for normal operation. Figure 3

shows the coarse-grained 32-bit fault injector circuit, in

which eight 4-bit fault injector circuits are concatenated to

inject a 32-bit fault at a time.

Fig. 3 – Proposed coarse-grained 32-bit MBU fault injection circuit.

The fine-grained fault injector may be single, double,

triple, or four-bit upsets. Table 1 matches the possibility of a

fault occurrence. The influence from Table 2 and Table 3

indicates that the fault occurrences are similar.

3.2. BUFIT FLOW

The fault injector flow of the proposed BUFIT is shown in

Fig. 4 and consists of 3 phases:

i) Initialization phase

ii) Emulation phase

iii) Classification phase.

In a harsh radiation environment, the initialization phase

converts the given FPGA clock rate into an adaptive fault

injection (AFI) rate. The emulation phase consists of a read-

back manager and adaptive fault injector to induce the

adaptive rate MBUs in the configuration memory. Finally, the

fault classification phase analyzes the faults to improve the

controllability and observability of FI. Equation (7) gives the

relationship between fault rate, read-back rate, and AFI rate

Fault rate  Read back rate  AFI rate. (7)

The real-time space environment is largely ionized, which

leads to a high fault rate and a highly respected read-back

rate, which makes for fast FI. The small ionization present in

Output

Seed LFSR_out

D [3:0]

302 Fine-grained dynamic burst fault injection tool 4

the space environment leads to a slow fault rate and a slow,

respected read-back rate, which makes for slow FI.

3.2.1. Initialization phase

The main function of the initialization phase is setting the

host FPGA clock and defining the fault list. The FI rate can

be fixed or varied. The target FPGA is based on a particular

frequency, and the rate converter is required to realize

efficient FI. The function of the rate converter is to either

increase or decrease the initial FPGA clock frequency based

on the system requirement.

Fig. 4 – BUFIT flow.

3.2.2. Emulation phase

The heart of the proposed BUFIT is the emulation phase,

which consists of configuration ma read-back manager, and

an adaptive fault injector module. The read-back manager

gives an adaptive fault injection rate and specifies

configuration data for input tonput of the adaptive fault

injector module, generating dynamic faulty data.

3.2.3. Classification phase

The fault classification is performed in a computer

connected with host FPGA. Serial communication interface

is used to connect the laptop or computer with the host

FPGA. A designer can evaluate the expected failure rate of

the circuit and the effectiveness of the implemented fault

mitigation mechanisms by using fault classification.

4. RESULTS AND DISCUSSION

The proposed BUFIT is simulated and implemented on

FPGA to generate faults suitable for dynamic system

4.1. SIMULATION ANALYSIS

The proposed MBU Injection framework consists of

different sub-modules like rate converter to realize the real-

time radiation environment, fine-grained fault injection

circuit, and integration of all sub-modules to realize the

complete MBU injection task. The rate converter module

converts the original FPGA clock to the expected radiation

environment. This could be achieved by ‘sel’ 00, 11, 10

inputs. For the different values of ‘sel’, the simulation plots

are given in Fig. 5.

(a)

(b)

5 Sindhu Thazhathethil Velayaudhan, Kalpana Devi 303

(c)

Fig. 5 – Rate converter: a) – sel: ‘00’; b) – sel: ‘11’; c) – sel: ‘10’.

4.2. FINE-GRAINED FAULT INJECTOR

The simulation plot of the proposed fine-grain LFSR-

based 4-bit FI is shown in Fig. 6, which gives the random 4-

bit outputs. This fault injector circuit gets the clock signal

from the previously said rate converter circuit for sel: ‘00’,

sel: ‘11’, sel: ‘10’.

Fig. 6 – Fine grain fault generation.

4.3 COARSE-GRAINED FAULT INJECTOR

Similarly, the simulation plot of the proposed LFSR-based

32-bit fault injector gives the random 32-bit outputs, as the

circuit shown in Fig. 7.

Fig. 7 – Coarse grain fault generation.

The MBU injection framework, BUFIT simulation, is

performed with different radiation environments and

memory locations. Different memory locations are

represented by the signal ‘fault list’. Figure 8(a) shows the

simulation plot of BUFIT with the memory location of fault

list ‘00’. The 128-bit original configuration word is taken as

input, and the 2-bit fault list is taken as another input for

inducing the 32-bit MBU in the LSB part of the original

configuration word. Similarly, a fault list for the

‘10’simulation plot of BUFIT with the memory location was

also generated.

(a)

Fig. 8 – Simulation plot of AFITO (a) impact of fault list ‘00’.

4.4. COMPARATIVE ANALYSIS

The MBU vulnerability of the OR 1200 processor under

various real application workloads is evaluated in Nintex-7

FPGA xc7k70t-2-fbg676. Table 4 provides a comparison of

different fault injection methods in terms of their efficiency

and performance. The efficiency of the proposed BUFIT

method compared to DPR and SCFIT. BUFIT demonstrates

a significantly lower total injection time and a higher

injection frequency, suggesting that it can inject faults more

rapidly and efficiently. BUFIT has the shortest injection time

(18.7 ms) compared to DPR (54 ms) and SCFIT (36 ms). As

shown in Table 4, the proposed BUFIT is three and two times

faster than the existing DPR and SCFIT, respectively.

Table 4

Fault injection time

Injection

Method

Instru-

ment

delay
(ms)

Write

delay

(ms)

Injection

Time

(ms)

Frequency

(Hz)

DPR – 54 54 18.5

SCFIT 18 18 36 27

Proposed
BUFIT

7 18 18.7 53.4

Table 5 shows the fault injection time and speed up

comparison for different workloads. Counter and Bubble sort

circuits occupies 36 and 144 frames respectively in the chosen

target FPGA. 4-bit adder and 4-bit multiplier circuits also

implemented with the proposed BUFIT and the existing DPR.

Table 5

Speedup comparison of fault injection techniques

Work load DPR

(ms)

SCFIT

(ms)

Proposed

BUFIT

(ms)

Speed up

DPR SCFI

T

Counter 1944 1296 673 ~3 ~2

Bubble sort 7779 5184 2693 ~3 ~2
4-bit adder 1466 983 512 ~3 ~2

4-bit
multiplier

3122 2042 1064 ~3 ~2

The speed-up of the proposed technique over existing

DPR and SCFIT are 3× and 2×, respectively. The proposed

BUFIT method has the lowest instrument delay at 7 ms and

a write delay of 18 ms, resulting in a total injection time of

18.7 ms. This method achieves the highest injection

frequency at 53.4 Hz, making it the most efficient in injecting

faults quickly and frequently. Overall, the table highlights

the efficiency of the proposed BUFIT method in terms of

lower injection time and higher frequency compared to DPR

and SCFIT, suggesting that BUFIT is superior for

applications requiring rapid and frequent fault injections.

Table 5 compares the fault injection times for different

workloads using three techniques: DPR, SCFIT, and the

proposed BUFIT. Table 6 shows FPGA resource overhead

analysis due to FI instrument added with the target FPGA.

The SCFIT technique consumes 4.8% CLBs and 5.8 % flip

flops (FFs) overhead in addition to the target FPGA. The

required FFs are much higher than the maximum available

FFs in the Kintex-7 FPGA. This result shows the practical

limitation of using the SCFIT technique. However, the

proposed BUFIT does not have such a limitation, and it

needs only 0.4 % additional CLBs and a negligible amount

of FFs.

hp
Sticky Note
spațiu înainte de procent

304 Fine-grained dynamic burst fault injection tool 6

Table 6

FPGA resource overhead due to built-in AFITO

TARGET TOTAL CLBs TOTAL FFs

Kintex-7 FPGA 69120 69120

OR1200 34228 66847

OR1200+SCFIT 35873 (4.8 %) 70737 (5.8 %)
OR1200+ proposed AFITO 34357 (0.4 %) 66853 (~0 %)

5. CONCLUSION

The proposed BUFIT injects MBUs into the memory

elements of SFPGA. These MBU's sizes varied similarly to

real-time radiation environments. Both single bits upset and

MBU were realized by using a coarse-grained circuit.

Results on the OR 1200 processor show that BUFIT is three

and two orders of magnitude faster than existing DPR and

SCFIT techniques, and it uses only 0.4 % CLB overhead and

has negligible impact on FFs of target SFPGAs. The future

scope of this work is to implement additional features with

the BUFIT proposed for improving fault classification

performance on SFPGA. Moreover, the deterministic nature

and finite cycle length of LFSRs should be addressed by

exploring the integration of true random number generators

(TRNGs), which could be more appropriate in the future.

ACKNOWLEDGEMENTS

The author would like to express his heartfelt gratitude to

the supervisor for his guidance and unwavering support

during this research for his guidance and support.

Received on 25 May 2023

REFERENCES

1. A. Gangolli, Q.H. Mahmoud, A. Azim, A systematic review of fault
injection attacks on IOT systems. Electron., 11, 13, p. 2023 (2022).

2. Z. Gao, X. Liu, An overview on fault diagnosis, prognosis and resilient

control for wind turbine systems, Processes, 9, 2, p. 300 (2021).
3. M. Carminati, G. Scandurra, Impact and trends in embedding field

programmable gate arrays and microcontrollers in scientific

instrumentation, Rev. Sci. Instrum., 92, 9, p. 091501 (2021).
4. A. Appathurai, P. Deepa, Design for reliability: A novel counter matrix

code for FPGA based quality applications, 6th Asia Symposium on

Quality Electronic Design (ASQED), pp. 56–61 (2015).

5. L.A. Aranda, A. Sánchez-Macián, J.A. Maestro, ACME: A tool to

improve configuration memory fault injection in SRAM-based

FPGAs, IEEE Access, 7, pp.128153–128161 (2019).
6. S. Medjmadj, D. Diallo, A. Arias, Mechanical sensor fault-tolerant

controller in PMSM drive: experimental evaluation of observers
and signal injection for position estimation. Rev. Roum. Sci.

Techn. – Électrotechn. Et Énerg., 66, 2, pp.77–83 (2021).

7. A. Ahilan, P. Deepa, Modified decimal matrix codes in FPGA configuration
memory for multiple bit upsets, International Conference on Computer

Communication and Informatics, 10 (2015).
8. T. Given-Wilson, N. Jafri, A. Legay, Combined software and hardware

fault injection vulnerability detection. Innovations Syst. Software
Eng., 16, pp. 101–120 (2020).

9. S. Mandal, S. Sarkar, W.M. Ming, A. Chattopadhyay, A. Chakrabarti,
Criticality aware soft error mitigation in the configuration memory
of SRAM based FPGA, 32nd International Conference on VLSI
Design and 18th International Conference on Embedded Systems
(VLSID), pp. 257–262 (2019).

10. A. Ramos, R.G. Toral, P. Reviriego, J.A. Maestro, An ALU protection
methodology for soft processors on SRAM-based FPGAs, IEEE
Trans. Comput., 68, 9, pp.1404–1410 (2019).

11. R.V.W. Putra, M.A. Hanif, M. Shafique, Respawn: energy-efficient
fault-tolerance for spiking neural networks considering unreliable
memories, 2021 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), pp. 1–9.
12. I. Bentchikou, K. Halbaoui, F. Boudjema, D. Boukhetala, T. Abdelhalim,

Alternative hybrid control of switched systems. An application to
machine DC fed by multicellular converter, Rev. Roum. Sci.

Techn. – Électrotechn. Et Énerg., 67, 3, pp. 247–252 (2022).
13. H. Metawie, M. Safar, M.W. El-Kharashi, An evaluation method for

embedded software dependability using QEMU-based fault
injection framework, 6th International Conference on System
Reliability and Safety (ICSRS), pp. 548–555 (2022).

14. L. Lanzieri, G. Martino, G. Fey, H. Schlarb, T.C. Schmidt, M. Wählisch,
A Review of Techniques for Ageing Detection and Monitoring on
Embedded Systems. arXiv preprint arXiv:2301.06804 (2023).

15. L. Claudepierre, P.Y. Péneau, D. Hardy, E. Rohou, TRAITOR: a low-
cost evaluation platform for multifault injection, Proceedings of the
2021 International Symposium on Advanced Security on Software
and Systems, pp. 51–56.

16. J. Richter-Brockmann, P. Sasdrich, T. Guneysu, Revisiting fault
adversary models-hardware faults in theory and practice, IEEE
Trans. Comput, 2022.

17. H. Liao, C. Gebotys, Methodology for em fault injection: Charge-based
fault model, Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 256–259 (2019).

18. J. Breier, M. Khairallah, X. Hou, Y. Liu, A countermeasure against
statistical ineffective fault analysis, IEEE Transactions on Circuits
and Systems II: Express Briefs, 67, 12, pp. 3322–3326 (2020).

19. F. Cerveira, I. Kocsis, R. Barbosa, H. Madeira, A. Pataricza, Exploratory
data analysis of fault injection campaigns, IEEE International
Conference on Software Quality, Reliability and Security (QRS),
pp. 191–202 (2018).

20. A. Chatzidimitriou, G. Papadimitriou, C. Gavanas, G. Katsoridas, D.
Gizopoulos, Multi-bit upsets vulnerability analysis of modern
microprocessors, IEEE International Symposium on Workload
Characterization (IISWC), pp. 119–130 (2019).

21. B.M. Kumar, J. Ragaventhiran, V. Neela, Hybrid optimization integrated

intrusion detection system in WSN using ELMAN network,
International Journal of Data Science and Artificial Intelligence,
02, 02, pp. 55–62 (2024).

22. M. Anisha, V.A. Beenu, Double secure cloud medical data using
Euclidean distance-based Okamoto Uchiyama homomorphic
encryption, International Journal of System Design and
Computing, 02, 01, pp. 1–7 (2024).

hp
Sticky Note
(2021).

hp
Sticky Note
spațiu

hp
Sticky Note
spațiu

hp
Sticky Note
spațiu

hp
Sticky Note
spațiu

hp
Sticky Note
spațiu

hp
Sticky Note
spațiu

hp
Sticky Note
spațiu

hp
Sticky Note
spațiu

hp
Sticky Note
spațiu

hp
Sticky Note
spațiu

hp
Sticky Note
spațiu

