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Fault injection (FI) is a well-known method to attack embedded systems, particularly advanced FPGAs and microcontrollers 
physically. The FPGA-based embedded system constitutes SRAM for configuration data storage. Multiple-bit upset is a main 
threat for FPGAs due to technology scaling and complex application bit files. Space environments additionally incur radiation 
threats to these devices. This paper proposes burst error modeling and a burst fault injection tool (BUFIT) to address these issues. 
BUFIT has been proposed with fine-grained and coarse-grained circuits. Built-in instrumented FPGA-based FI is proposed for 
effectively injecting MBUs in configuration memory with space adaptive rate for accurately estimating soft errors. Evaluation of 
proposed BUFIT on Kintex-7 target FPGA to various OR 1200-based workloads is given to analyze the speed up of the proposed 
technique. Results on the OR 1200 processor show that BUFIT is three and two orders of magnitude faster than existing DPR and 
SCFIT techniques. It uses only 0.4 % CLB overhead and has negligible impact on FFs of target SFPGAs. 

1. INTRODUCTION 

Injection of faults is a common technique for assessing a 
system's resilience to physical faults [1]. The field 
programmable gate array (FPGA) is widely employed in 
practical field applications because of its low power 
consumption and flexible programming. Unlike Von 
Neumann-type devices like microcontrollers and digital 
signal processing (DSP) processors, the FPGA comprises 
reconfigurable logic, I/O, and connectivity blocks [2]. When 
referring to environments that could be detrimental to the 
field-programmable gate arrays’ (FPGAs’) dependable 
operation, the term "hostile environment" is usually used. 
System resilience is tested frequently when systems are 
implemented in hostile contexts where errors are likely to 
occur [3]. Since then, all potential uses of radiation-tolerant 
circuits, such as space missions, satellites, and high-energy 
physics experiments, have raised interest in exploring fault-
tolerant approaches to keep integrated circuits (ICs) 
functioning in hostile environments [4]. 

FPGAs mimic defects in electronic systems; this 
technique is known as an FPGA-based fault injector. An 
extensive range of digital logic operations can be executed 
using FPGAs, integrated circuits that can be programmed 
after manufacturing [5]. FPGA-based fault injectors are 
employed when examining how errors like bit flips affect the 
dependability and efficiency of digital systems. Applying 
this is essential for safety systems, such as medical devices, 
aircraft, and automobiles. Experiments simulating the impact 
of MBUs can be conducted with FPGA-based fault injectors 
by purposefully flipping several bits in the data memory or 
configuration of the FPGA. Researchers can examine the 
behavior of the FPGA under practical fault scenarios and 
validate MBU mitigation strategies by injecting faults based 
on MBU models. 

Multiple-bit upset (MBU) modeling studies and simulates 
scenarios where multiple bits in a memory unit are corrupted 
simultaneously. MBU occurs due to high-energy particles, 
radiation, or other environmental factors that can flip 
multiple bits in a memory cell, leading to data corruption [6]. 
MBU modeling helps develop error detection and correction 
mechanisms to mitigate the impact of such faults. 

Over the past few decades, applications for FPGAs in 
high-energy physics and aerospace have grown in 
popularity. FPGAs are popular for these applications 
because of their many advantages, including great 
adaptability, cheap cost, and fast turnaround time. This is 
especially true compared to more expensive, specialized 
alternatives like application-specific integrated circuits [7].  

Since commercial SRAM-based FPGAs are more cost-
effective and perform better than radiation-hardened FPGA 
systems, they are now often utilized in radiation settings. 
Commercial SRAM-based FPGAs are undoubtedly less 
expensive than radiation-hardened FPGA solutions, but 
whether or not they "work better" will rely on the particular 
needs and limitations of the application and the radiation 
environment [8]. Because of their wider market availability 
and higher production numbers, commercial SRAM-based 
FPGAs are more economical than radiation-hardened 
FPGAs [9]. 

Advanced techniques in silicon manufacture are employed 
to attain elevated frequencies and superior performance. 
Additionally, FPGAs are machines that can be programmed. 
It can alter their behavior during development to satisfy 
different mission objectives [10]. One unresolved matter is 
the relationship between hardware- and software-based fault 
injection vulnerability detection. Here, fault injection 
vulnerabilities are found by utilizing both hardware and 
software. Hardware-based detection is achieved using an 
EMP generator [11]. 

The effects of SETs happening during configuration 
memory re-writing should be thoroughly examined, as 
reconfiguration tasks are critical to the availability, 
flexibility, and dependability of FPGA applications. A 
methodology has been proposed to assess SET pulses' effects 
when reconfiguring configuration memory in SRAM-based 
FPGAs [12]. Additionally, SRAM-based FPGAs have more 
memory elements than their ASIC counterparts, so they are 
more susceptible to Single Event Upset (SEU). Due to their 
higher operating voltages, early SRAMs were more resilient 
to soft errors. On the other hand, the node capacitance and 
operating voltage decrease with each successive SRAM 
generation [21,22]. Burst error modeling and burst fault 
injection tool (BUFIT) have been proposed to overcome 
these challenges. The major contribution of BUFIT is, 
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• Built-in Instrumented FPGA-based FI for effectively 
injecting MBUs into the configuration memory of 
SFPGAs. 

• FI is based on an adaptive rate for accurate estimation of 
soft errors. 

• Evaluation of BUFIT on Kintex-7 target FPGA to 

various OR 1200-based workloads to analyze the 

speedup of the proposed technique. 

The rest of the research will be shown below. Section 2 

reviews past research on AD detection using the ADNI 

database and other databases. Section 3 explains the 

proposed approach in extensive detail. Section 4 discusses 

the outcome and discusses the discussion. Section 5 provides 

future research directions and a summary. 

Table 1 

List of abbreviations 

Abbreviation Description 

FPGA Field programmable gate array 

FI Fault injection 

(DSP) Digital signal processing 

(EMP) Electromagnetic pulse  

SRAM Static random access memory 

MBU Multiple bit upsets 

(SEU) Single event upset  

QEMU Quick EMUlator  

ARM Advanced RISC machines 

TRAITOR TRAnsportable glItch aTtack platfORm 

(EMFI) Electromagnetic fault injection  

SIFA Statistical ineffective fault analysis 

(DUT) Design under test  

(PDR) Partial dynamic reconfiguration  

(ICAP) Internal configuration access port  

(LFSR) Linear feedback shift register  

ICAP Internal configuration access port  

FG-LFSR Fine grained LFSR circuit 

 (FFs) Flip flops 

2. LITERATURE SURVEY 

This section discusses the various fault injection 

techniques for FPGA-based embedded systems.  

In 2022, Metawie H. et al. [13] suggested a framework for 

fault injection using the Quick EMUlator (QEMU). It can 

simulate faults in the control and execution channels of an 

ARM processor and extend the fault model for memory 

coupling problems. They illustrate the usefulness of the 

approach by evaluating a memory exam.  

In 2023, Lanzieri L. et al. [14] proposed age detection and 

monitoring in embedded systems. Hardware aging is an 

increasing issue for embedded devices that play critical roles 

in reliable or safety-critical applications. The primary goal of 

this work is to facilitate future research efforts in this area by 

organizing all major approaches. 

In 2021, Claudepierre, L. et al. [15] proposed a low-cost 

TRAITOR platform that can inject numerous, accurate bursts 

of faults using clock glitches. The errors are caused by clock 

glitch injection, which has high repeatability and reliability. 

This platform is inexpensive, simple to use, and capable of 

injecting many spurts of faults. Future development will 

extract an exact fault model for TRAITOR using the 

STM32F100RB board. Furthermore, the investigation of 

software or hardware countermeasures is being explored. 

In 2022, Richter-Brockmann, J. et al. [16] proposed 

revisiting adversary model hardware faults. Additionally, 

using custom models makes comparing various designs and 

evaluation results more difficult. Furthermore, it 

demonstrates that the suggested adversary model can be 

incorporated into VerFI, a cutting-edge fault-proof tool.  
In 2019, according to a recent study, Liao H. et al. [17] 

suggested that the security of embedded devices is 
significantly impacted by electromagnetic fault injection 
(EMFI) techniques. This paper proposes a novel EMFI 
backside technique based on overclocking and an enlarged 
fault model based on the concept of critical charge. The 
security and fault injection resistance of embedded 
processors and their instruction set designs depend heavily 
on this research. Part of the study's funding comes from 
contributions from XtremeEDA.ds and NSERC.  

In 2020, Breier J. et al. [18] developed a novel method to 
protect implementations against SIFA based on error-
correcting codes. They created an electronic logic analysis tool 
that checks the output for errors, cycles through all potential 
inputs, and injects a stuck-at-fault at each gate in the circuit. 

In 2018, Cerveira F. et al. [19] suggested analyzing the 
exploratory data of fault injection campaigns. This essay 
adopts a contemporary perspective on these problems by 
organizing and executing information extraction using 
exploratory (big) data analysis techniques, tools, and 
approaches. As a result, a previously undiscovered possibility 
for a sharp acceleration of the FI process has been discovered. 

Several techniques were used to inject the faults in single-
bit and multiple-bit scenarios. However, it faces challenges 
like immediate practical needs of mitigating hardware aging 
in current systems and more complex fault models beyond 
clock glitches. In this work, a novel BUFIT has been 
proposed to address these issues 

3. PROPOSED BUFIT FOR MBU INJECTION 

A simulation framework for MBU injection and its 
associated design methodology is described in this section. 
The early estimation of sensitivity to run-time MBUs of 
SFPGA is much required to reduce the further accumulation 
of MBUs. It allows for the exploration of MBU modeling 
and the anticipation of its design before the implementation 
of an efficient MBU injector. The MBU injection framework 
shown in Fig. 1 is based on modeling an event-driven 
simulator by including the functional models for the FPGA. 
The designer can redefine the readback rate, MBU injection 
rate, frame address, and fault list. This scalable, 
configurable, and versatile framework allows for virtualizing 
real-time fault emulation experiments under dynamic 
radiation environments.  

Radiation-induced MBUs are emulated by synthetically 
changing the contents of the FPGA configuration memory 
through in-built FI. The FPGA's output is then monitored to 
decide the impact of a given configuration memory upset on 
the originally implemented design behavior.  

An efficient FI technique requires knowledge of possible 
fault models; this knowledge will vary for different FPGA 
resources. For example, Stuck-at-1 or Stuck-at-0 model is 
used to induce the fault in the routing resource of FPGAs, 
and the bit flip fault model is used to induce the fault in the 
memory resources of FPGAs. The recent radiation 
experiment shows that more than 48 % [20] of the faults are 
MBUs; in particular, 2-bit upset, 3-bit upset, and 4-bit upset 
play an important role, and a maximum of 8-bit upset is 
possible to occur in the same word of the memory units. 
Based on the real-time radiation experiments on recent 
technological devices, the modeling of different SBU and 
MBU fault patterns is done in this work. The 4-bit Linear 
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Feedback Shift Register (LFSR) produces a 4-bit random 
fault with any seed value. The number of possibilities for 

generating the random faults for any 4-bit seed value is 
shown in Table 2. 

 

Fig. 1 – Proposed MBU injection framework.  

The polynomial equation for 4-bit LFSR is given by 

x4⨁ x3⨁1.                             (1) 

The general representation of MBU models is given in eq. 

(2) to (5), where n represents the bit width of the LFSR 

circuit and m represents the number of errors in the MBU set. 

fm=1 = n,                                   (2) 

fm=2 = n + m,                                (3) 

fm=3 = n,                                   (4) 

fm=4 = 2n−m.                               (5) 

Table 2 

Random fault modeling using 4-bit LFSR 

Bit Flip Fault Models f1 f2 f3 f4 

For Different Seeds 4 6 4 1 

The eight 4-bit LFSRs are connected in parallel to 

generate 32-bit random data. The polynomial equation for 

32-bit LFSR is given by 

x32⨁ x22⨁x2⨁ x1⨁1.                       (6) 

The seed of six LFSRs is considered constant, and the seed 

of another two LFSRs is varied. If the number of ones in the 

4-bit variable seed changes, it can generate a maximum of 4-

bit upset. Table 3 shows the modeling of MBUs based on a 

fine-grained LFSR circuit (FG-LFSR). 

Table 3  

Fine-grained LFSR-based MBU model 

FG-LFSR         Mechanism Proposed fault model   

SBU 1-bit 25 % 

MBU 2-bit 
3-bit 

4-bit 
5-bit 

6-bit 

 
75% 

37 % 
25 % 

7 % 
2 % 

4 % 

3.1. PROPOSED BUFIT 

The proposed FPGA-based fault injector is performed in 

two steps: i) fine-grained and ii) coarse-grained. 

3.1.1. Fine-grained fault injector 

The issue is caused by the XOR operation of the data from 

the FPGA memory and the random vector produced by the 

linear feedback shift register (LFSR).  

 

Fig. 2 – Proposed fine-grained 4-bit fault injector circuit. 

The existing and proposed fault models can derive from 

LFSR's seed and feedback polynomial vectors. The proposed 

fine-grained is a 4-bit fault injector, and the circuit is shown 

in Fig. 2. The 4-bit data D [3:0] from memory is XOR with 

the seed to generate a random 4-bit vector from the LFSR.  

3.1.2. COARSE-GRAINED FAULT INJECTOR 

The reconfiguration signal is used to select the error data 

for FI and error-less data for normal operation. Figure 3 

shows the coarse-grained 32-bit fault injector circuit, in 

which eight 4-bit fault injector circuits are concatenated to 

inject a 32-bit fault at a time. 

 

Fig. 3 – Proposed coarse-grained 32-bit MBU fault injection circuit. 

The fine-grained fault injector may be single, double, 

triple, or four-bit upsets. Table 1 matches the possibility of a 

fault occurrence. The influence from Table 2 and Table 3 

indicates that the fault occurrences are similar. 

3.2. BUFIT FLOW 

The fault injector flow of the proposed BUFIT is shown in 

Fig. 4 and consists of 3 phases: 

i) Initialization phase 

ii) Emulation phase 

iii) Classification phase. 

In a harsh radiation environment, the initialization phase 

converts the given FPGA clock rate into an adaptive fault 

injection (AFI) rate. The emulation phase consists of a read-

back manager and adaptive fault injector to induce the 

adaptive rate MBUs in the configuration memory. Finally, the 

fault classification phase analyzes the faults to improve the 

controllability and observability of FI. Equation (7) gives the 

relationship between fault rate, read-back rate, and AFI rate  

Fault rate  Read back rate  AFI rate.          (7) 

The real-time space environment is largely ionized, which 

leads to a high fault rate and a highly respected read-back 

rate, which makes for fast FI. The small ionization present in 

 

 

 

 

Output 

Seed LFSR_out 
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the space environment leads to a slow fault rate and a slow, 

respected read-back rate, which makes for slow FI. 

3.2.1. Initialization phase 

The main function of the initialization phase is setting the 

host FPGA clock and defining the fault list. The FI rate can 

be fixed or varied. The target FPGA is based on a particular 

frequency, and the rate converter is required to realize 

efficient FI. The function of the rate converter is to either 

increase or decrease the initial FPGA clock frequency based 

on the system requirement.  

 

Fig. 4 – BUFIT flow. 

3.2.2. Emulation phase 

The heart of the proposed BUFIT is the emulation phase, 

which consists of configuration ma read-back manager, and 

an adaptive fault injector module. The read-back manager 

gives an adaptive fault injection rate and specifies 

configuration data for input tonput of the adaptive fault 

injector module, generating dynamic faulty data. 

3.2.3. Classification phase 

The fault classification is performed in a computer 

connected with host FPGA. Serial communication interface 

is used to connect the laptop or computer with the host 

FPGA. A designer can evaluate the expected failure rate of 

the circuit and the effectiveness of the implemented fault 

mitigation mechanisms by using fault classification.  

4. RESULTS AND DISCUSSION 

The proposed BUFIT is simulated and implemented on 

FPGA to generate faults suitable for dynamic system  

4.1. SIMULATION ANALYSIS 

The proposed MBU Injection framework consists of 

different sub-modules like rate converter to realize the real-

time radiation environment, fine-grained fault injection 

circuit, and integration of all sub-modules to realize the 

complete MBU injection task. The rate converter module 

converts the original FPGA clock to the expected radiation 

environment. This could be achieved by ‘sel’ 00, 11, 10 

inputs. For the different values of ‘sel’, the simulation plots 

are given in Fig. 5. 

 

(a) 

 

 

(b) 
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(c) 

Fig. 5 – Rate converter: a) – sel: ‘00’; b) – sel: ‘11’; c) – sel: ‘10’. 

4.2. FINE-GRAINED FAULT INJECTOR 

The simulation plot of the proposed fine-grain LFSR-

based 4-bit FI is shown in Fig. 6, which gives the random 4-

bit outputs. This fault injector circuit gets the clock signal 

from the previously said rate converter circuit for sel: ‘00’, 

sel: ‘11’, sel: ‘10’. 

 

Fig. 6 – Fine grain fault generation. 

4.3 COARSE-GRAINED FAULT INJECTOR 

Similarly, the simulation plot of the proposed LFSR-based 

32-bit fault injector gives the random 32-bit outputs, as the 

circuit shown in Fig. 7. 

 

Fig. 7 – Coarse grain fault generation. 

The MBU injection framework, BUFIT simulation, is 

performed with different radiation environments and 

memory locations. Different memory locations are 

represented by the signal ‘fault list’. Figure 8(a) shows the 

simulation plot of BUFIT with the memory location of fault 

list ‘00’. The 128-bit original configuration word is taken as 

input, and the 2-bit fault list is taken as another input for 

inducing the 32-bit MBU in the LSB part of the original 

configuration word. Similarly, a fault list for the 

‘10’simulation plot of BUFIT with the memory location was 

also generated. 

 
(a) 

Fig. 8 – Simulation plot of AFITO (a) impact of fault list ‘00’.  

4.4. COMPARATIVE ANALYSIS 

The MBU vulnerability of the OR 1200 processor under 

various real application workloads is evaluated in Nintex-7 

FPGA xc7k70t-2-fbg676. Table 4 provides a comparison of 

different fault injection methods in terms of their efficiency 

and performance. The efficiency of the proposed BUFIT 

method compared to DPR and SCFIT. BUFIT demonstrates 

a significantly lower total injection time and a higher 

injection frequency, suggesting that it can inject faults more 

rapidly and efficiently. BUFIT has the shortest injection time 

(18.7 ms) compared to DPR (54 ms) and SCFIT (36 ms). As 

shown in Table 4, the proposed BUFIT is three and two times 

faster than the existing DPR and SCFIT, respectively.  

Table 4  

Fault injection time 

Injection 

Method 

Instru-

ment 

delay 
(ms) 

Write 

delay 

(ms) 

Injection 

Time 

(ms) 

Frequency 

(Hz) 

DPR – 54 54 18.5 

SCFIT 18 18 36 27 

Proposed 
BUFIT 

7  18 18.7 53.4 

 

Table 5 shows the fault injection time and speed up 

comparison for different workloads. Counter and Bubble sort 

circuits occupies 36 and 144 frames respectively in the chosen 

target FPGA. 4-bit adder and 4-bit multiplier circuits also 

implemented with the proposed BUFIT and the existing DPR.  

Table 5 

Speedup comparison of fault injection techniques 

Work load DPR 

(ms) 

SCFIT 

(ms) 

Proposed 

BUFIT 

(ms) 

Speed up 

DPR SCFI

T 

Counter 1944 1296 673 ~3 ~2 

Bubble sort 7779 5184 2693 ~3 ~2 
4-bit adder 1466 983 512 ~3 ~2 

4-bit 
multiplier 

3122 2042 1064 ~3 ~2 

 

The speed-up of the proposed technique over existing 

DPR and SCFIT are 3× and 2×, respectively. The proposed 

BUFIT method has the lowest instrument delay at 7 ms and 

a write delay of 18 ms, resulting in a total injection time of 

18.7 ms. This method achieves the highest injection 

frequency at 53.4 Hz, making it the most efficient in injecting 

faults quickly and frequently. Overall, the table highlights 

the efficiency of the proposed BUFIT method in terms of 

lower injection time and higher frequency compared to DPR 

and SCFIT, suggesting that BUFIT is superior for 

applications requiring rapid and frequent fault injections. 

Table 5 compares the fault injection times for different 

workloads using three techniques: DPR, SCFIT, and the 

proposed BUFIT. Table 6 shows FPGA resource overhead 

analysis due to FI instrument added with the target FPGA. 

The SCFIT technique consumes 4.8% CLBs and 5.8 % flip 

flops (FFs) overhead in addition to the target FPGA. The 

required FFs are much higher than the maximum available 

FFs in the Kintex-7 FPGA. This result shows the practical 

limitation of using the SCFIT technique. However, the 

proposed BUFIT does not have such a limitation, and it 

needs only 0.4 % additional CLBs and a negligible amount 

of FFs. 
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Table 6  

FPGA resource overhead due to built-in AFITO 

TARGET TOTAL CLBs TOTAL FFs 

Kintex-7 FPGA 69120 69120 

OR1200 34228 66847 

OR1200+SCFIT  35873 (4.8 %) 70737 (5.8 %) 
OR1200+ proposed AFITO  34357 (0.4 %) 66853 (~0 %) 

5. CONCLUSION 

The proposed BUFIT injects MBUs into the memory 

elements of SFPGA. These MBU's sizes varied similarly to 

real-time radiation environments. Both single bits upset and 

MBU were realized by using a coarse-grained circuit. 

Results on the OR 1200 processor show that BUFIT is three 

and two orders of magnitude faster than existing DPR and 

SCFIT techniques, and it uses only 0.4 % CLB overhead and 

has negligible impact on FFs of target SFPGAs. The future 

scope of this work is to implement additional features with 

the BUFIT proposed for improving fault classification 

performance on SFPGA. Moreover, the deterministic nature 

and finite cycle length of LFSRs should be addressed by 

exploring the integration of true random number generators 

(TRNGs), which could be more appropriate in the future. 
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