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A wireless sensor network (WSN) comprises several individual sensor nodes (SNs) that can perceive, analyze, and interact with data. 
Energy constraints and security are widely acknowledged as the two most challenging problems with WSNs. To overcome these 
drawbacks, a novel African aquila-optimized fuzzy deep belief network (AAVO-FDBN) framework is introduced in this paper. The 
AAVO model chooses the most reliable aggregator node based on ideal node selection criteria. After selecting the aggregator node, the 
cluster head (CH) data will be encrypted using the novel Crystal Kyber encryption (CKE) technique. An optimal routing path is 
established using a fuzzy deep belief network (Fuzzy-DBN), which considers the network lifespan, aggregate degree, aggregate coverage, 
and the distance between the aggregate and the sink. By using the NS2 simulator, we evaluate the suggested architecture based on 
parameters such as network lifetime (NL), energy consumption (EC), packet delivery ratio (PDR), and end-to-end delay (E2ED). 
According to experimental findings, AAVO-FDBN outperforms SEPC, REDAA, and SCDAP in terms of NL, with improvements of 
22.80%, 12.50%, and 17.65%, respectively. The proposed AAVO-FDBN approach is more efficient and secure for real-time applications.

1. INTRODUCTION 
WSNs are essential to the creation of smart systems, as 

they are composed of dispersed sensor nodes that collect and 
transmit data independently. These sensor nodes are outfitted 
with a transceiver, microprocessor, and power source, 
typically with a small battery. WSNs are becoming 
increasingly important due to the Internet of Things (IoT), 
which has enabled the deployment of interconnected devices 
on a large scale. However, these networks remain 
challenging to manage due to their limited resources. 

EC is one of the most significant problems affecting 
WSNs, as SNs are often located in remote areas where it is 
not feasible to change the batteries. Data transmission (DT) 
without disruption rapidly depletes the battery, resulting in 
node failure and a shorter network lifespan. Due to the 
random dispersion of sensor nodes (SNs) throughout the 
network, conserving energy is a key concern for wireless 
sensor network (WSN) designs, which further complicates 
routing and management.  

Clustering algorithms can help address these issues in 
WSNs. In networks with many clusters, cluster heads (CH) 
are in charge of gathering data from nearby SNs and 
transferring it to the base station or sink. WSNs, especially 
those installed in hostile or dynamic environments, may be 
vulnerable to security flaws that conventional routing 
protocols cannot address adequately. To overcome these 
drawbacks, a novel Aquila African vulture-optimized fuzzy 
deep belief network (AAVO-FDBN) approach is proposed 
in this paper. This model addresses the challenges of efficient 
data transmission, security, and energy conservation in 
WSNs. The significant contributions of the developed 
AAVO-FDBN technique are as follows. 
• The proposed method uses the AAVO algorithm to elect 

the most reliable aggregator node based on optimal node 
selection criteria.  

• After aggregator node selection, the data from the CH 
will be encrypted using the novel Crystal Kyber 

encryption algorithm to ensure security during 
transmission.  

• The fuzzy deep belief network (Fuzzy-DBN) is utilized 
to establish an efficient routing path, further improving 
network efficacy. 

• The efficacy of the proposed AAVO-FDBN technique 
has been evaluated in terms of specific parameters, 
including E2ED, EC, PDR, alive sensors (AS), and NL. 

The structure of this paper is as follows: section 2 provides 
an in-depth literature review. Section 3 describes the 
preliminaries for the suggested AAVO-FDBN work and 
section 4 describes the AAVO-FDBN technique in detail. 
section 5 describes the results and discussions. Finally, 
Section 6 presents conclusions based on the study's findings. 

2. LITERATURE REVIEW 
Wireless sensor networks pose significant challenges in 

achieving energy efficiency and securing data. Many 
researchers have proposed cluster-based and trust-based 
strategies for WSNs to enhance energy efficiency. Among 
those, a few have been reviewed in this section. 

In 2022, Robinson Y.H., et al. [23] introduced the secure 
energy-efficient and clustering (SEPC) method for sending 
data packets to the sink. Efficiency analysis indicates that the 
developed strategy outperforms competing methods in terms 
of throughput and energy consumption (EC). In 2023, 
Kingston Roberts, M, and Thangavel, J. [24] presented the 
residual-energy-based data availability approach (REDAA) 
to extend NL. Simulation findings show that compared to the 
MH-LEACH technique, the suggested REDAA approach 
may increase throughput by 37% respectively.  

In 2023, Lavanya et al. [25] introduced a secure cluster-
based data aggregation protocol (SCDAP) designed to 
enhance security. Through actual testing, the suggested 
system demonstrates that it can improve the packet delivery 
ratio while lowering high EC and E2ED. In 2024, Dinesh and 
Santhosh Kumar [26] proposed an energy-efficient cluster-
based sparrow search optimization algorithm (NF-SSOA) to 
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provide energy-efficient trust-aware cluster-based secure 
data transmission (DT) in WSNs. Comparing the suggested 
approach to other protocols already in use, the simulation 
results demonstrate improvements in EC analysis, 
throughput, E2ED, NL, and PDR. 

In 2024, Rajaram et al. [27] introduced the enriched 
energy-optimized LEACH framework. Based on simulation 
findings, EE-OLEACH outperforms other current protocols 
in terms of energy efficiency by 30%, and throughput by 
38%. In 2024, Osamy et al. [28] modified the sand cat swarm 
optimization method (SCSO) to create the secure and 
energy-aware clustering technique (SEACDSC) for WSNs. 
Based on the simulation findings, SEACDSC outperforms 
the existing approaches in terms of number of live nodes, 
energy efficiency, average trust value of CHs, and NL. 

In 2024, Saravanaselvan, A., and Paramasivan, B., [29] 
proposed a feed forward back propagation neural network 
(FFBPNN) optimized with woodpecker mating algorithm, 
dynamic cluster-based secure routing in WSN (FFBPNN-
WMA-ECHC-WSN). When comparing the FFBPNN-
WMA-ECHC-WSN method's performance to other models, 
including EHCERA-SDT-WSN, DSA-ECC-PSO-SDT-
WSN, IPECC-PDF-ABC-SDT-WSN, and IBFA-LDCSN-
BSHHO-SDT-WSN, it shows lower latency of 99.01%, 
98.34%, 95.23%, and 97.45%, and greater throughput of 
97.25%, 90.12%, 89.39%, and 95.47%, respectively. 

While the methods discussed significantly enhance energy 
efficiency, security, and overall network efficiency in 
WSNs, several drawbacks persist. Many of these protocols 
rely heavily on clustering, which, although it reduces energy 
consumption, can introduce computational overhead and 
complexity during the selection of cluster heads. To 
overcome these drawbacks, a novel AAVO-FDBN 
framework has been proposed in this work. 

3. PRELIMINARIES 
This section provides a brief description of the two AOA 

and AVA algorithms, which are essential building blocks for 
creating the combined AAVA algorithm. 

3.1 AQUILA OPTIMIZATION ALGORITHM 
Aquila algorithms typically use social behavior 

mimicking to ensnare their targets. The population of N 
agents is initialized at the beginning. The initial population 
P, which is made up of N solutions, is produced by using 

𝑃! = 𝑚𝑎 + 𝐵	and	(1, 𝐶) ∗ (𝑣𝑎 −𝑚𝑎),              (1) 
where the number of features is denoted by C. A random 
vector with C values is shown by B and (1, C). The bounds 
of the search space are va and ma. Then, use equation 2 to 
convert 𝑃!  to binary. 

𝑅𝑃!" = 41				𝑖𝑓	𝑃!" > 0.5,
0						otherwise.

                       (2) 

Equation (2) has the effect of reducing the number of 
chosen features by ignoring the characteristics that are not 
important and correspond to zero values in |$%!|

&
 |. Next, the 

value of fitness is calculated as follows: 
   𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = β ∗ γ! + (1 − β) ∗ (

|$%!|
&
),          (3) 

where the weights used to balance the ratio of relevant 
characteristics |$%!|

&
 and classification error γ! are indicated 

by β𝜖[0,1].  
Algorithm 1 Aquila Optimizer (AO) 
Set the initial value for the parameters  

Initial population generation. 
while (condition is false) do 
Fitness values computation for each Px. 
Find Pbest(s) 
for (x=1,2…, m) do 
if s≤ (23) *T then 
Update Px  
if Fit (P1(s + 1)) < Fit(P(s)) then 
Pbest(s) = P1(s + 1) 
end if 
Update Px  
if Fit (P2(s + 1)) < Fit(P(s)) then 
Pbest(s) = P2(s + 1) 
end if 
else 
Update Px 
if Fit (X3(t + 1)) < Fit(X(t)) then 
Xbest(t) = X3(t + 1) 
end if 
Update Xi  
if Fitness (X4(t + 1)) < Fitness(X(t)) then 
Xbest(t) = X4(t + 1) 
end if 
end if 
end for 
end while 
return (Xbest). 

3.2 AFRICAN VULTURE OPTIMIZATION 
The AVA is motivated by its hunt for food. The procedure 

is as follows: for the N amount of vulture population 
examining for food, vultures are divided into two groups, 
where every vulture determines the capability to facilitate, 
and the second finest result in either is swapped, as the 
crowds have numerous abilities for examining for food.  
Initialization Stage 

The inhabitant is feasting over the examine zone: 
𝑆 = rand(𝑚, 1) ∗ (𝑈' − 𝑉') + 𝑉',                (4) 

Where the solution parameter is represented as	𝑆. A random 
value is denoted as	rand. The upper limit and lower limits 
are represented as 𝑈' 	and	𝑉'. The number of the vulture 
population is denoted as	𝑚. 
Famine rate of eagles 

Vultures frequently search for food while they are 
overfilled and have great vitality. However, in the instance 
of hunger, they didn’t need sufficient energy to wing over 
elongated spaces to find food, unlike the robust eagle. 

𝑃( = (2	rand + 1)𝑥 Q1 − )
)"#!

R + 𝑡,             (5) 
where fulfilled position of eagles is represented as 𝑃(. 
Current and maximum iterations are denoted as	𝐼	𝑎𝑛𝑑	𝐼*+!. 
A random amount in the range (-1, 1) is denoted by	𝑥. 
Exploration stage 

In the African vulture optimization algorithm, there is 
parameter P1 which works to choose one of the two plans in 
this stage, the value of P1 is between 0 and 1, and the plan is 
designated using the following formulation: 

𝑆(𝑡 + 1) = 

(
𝐶(𝑖) − |𝑍 − 𝐶(𝑖) − 𝑆(𝑖)| × 𝑃 × 𝑆1 ≥ rand!",

𝐶(𝑖) − 𝑃 + rand# − 6(𝑈$ − 𝑉$) × rand% + 𝑉$9𝑆1
< rand!",

        (6) 

where one of the best eagles is denoted as	𝐶(𝑖). The space 
that the eagle changes to guard the food from others is 
represented as	𝑍. 
Exploitation stage 

In this algorithm, exploitation is the last stage. It has two 
plans and everyone is designated based on two 
parameters.The first phase in the exploitation stage is 
measured when the value of f is in the middle of 0.5 and 1, 
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and then two revolving expeditions and a restriction flight 
are led. In this phase, the eagles require enough energy to 
hunt food. 

𝑆(𝑡 + 1) =

⎩
⎪
⎨

⎪
⎧

|𝑍 − 𝐶(𝑖) − 𝑆(𝑖)|(𝑃 + rand&) −
6𝐶(𝑖) − 𝑆(𝑖)9𝑆2 ≥ rand!#

𝐶(𝑖) − 𝐶(𝑖) × @'($)#* A rand+ × cos6𝑆(𝑖)9 +

rand, × sin6𝑆(𝑖)9𝑆2 < rand!#

       (7) 

𝑆(𝑡 + 1) = 

⎩
⎪
⎨

⎪
⎧0.5 @𝐶"(𝑖) + 𝐶#(𝑖) − @

-!($)×'($)
-!($)/'($)"

+ -"($)×-($)
-"($)/-($)"

A × 𝑃A
𝑆3 ≥ rand!%

𝐶(𝑖) − |𝐶(𝑖) − 𝑆(𝑖)| × 𝑃 − 𝑉(𝐶(𝑖) −
𝑆(𝑖))𝑆3 < rand!%

 8) 

In eq. (15), the second phase in the exploitation stage is 
shown. At this stage, the actions of two eagles appeal to 
numerous vultures based on their needs, and a passionate 
battle for food restriction ensues. 

4. AQUILA AFRICAN VULTURE OPTIMIZED 
FUZZY DEEP BELIEF NETWORK MODEL 

 
Fig. 1 – AAVO-FDBN framework. 

This section presents a novel approach called the AAVO-
FDBN. The developed method employs the AOA algorithm 
to elect the most reliable aggregator node based on optimal 
node selection criteria. After aggregator node selection, the 
data from the CH will be encrypted using the novel Kyber 
encryption algorithm to ensure security during transmission. 
To create an ideal routing path and increase network 
efficiency, the fuzzy deep belief network (fuzzy-DBN) is 
employed. The central block diagram of the suggested model 
is depicted in Fig. 1. 

4.1 CH SELECTION USING AQUILA AFRICAN 
VULTURE OPTIMIZATION ALGORITHM 

This section details how the AOA and AVA algorithms 
are combined to carry out CH selection. Figure 2 depicts the 
flow diagram of the suggested AAVA model for CH 
selection in a WSN context.  

Equation (2) yields the objective function, which is then 
used to generate the fitness function. The best solution is 
determined as the one with the lowest energy value. The 
competition between AOA and AVA operators is used to 
update the solutions—consequently, eq. (9) is used to update 
the answer Pi. The solutions are updated until the halting 
condition is satisfied. 

𝐵! =
,'-!

∑ ,'-!$
!%&

  .                           (9) 
 

 
Fig. 2 – Flow diagram of the AAVA model. 

Therefore, the solution 𝑝𝑠! is updated using the following 
equation: 

𝑝𝑠! = 4operators	of	𝐴𝑂𝐴																					𝐵! > 𝑡ℎ,
operators	of	𝐴𝑉𝐴																otherwise.       (10) 

Updating the solutions continues until the stopping 
condition is reached. Afterwards, the optimal fit aggregator 
node has been determined.  

4.2 ENCRYPTION USING CRYSTAL KYBER 
Data from the aggregator node will be encrypted with the 

Crystal Kyber encryption algorithm before being transmitted 
to the sink node. Let n = 256 and the parameters p, st, su, sv 
be positive integers. Let 𝐴 = {0,1}/01 represent the message 
space, where each message 𝑚 ∈ 𝐴 may be thought of as a 
polynomial in L with coefficients in {0,1}. Cipher text is of 
the form of (𝑏, 𝑎) ∈ {0,1}/01∙34' × {0,1}/01∙34(. 

Algorithm :1 Kyber: Key generation 
1. 𝛅, 𝛍 ← {𝟎, 𝟏}𝟐𝟓𝟔 
2. 𝑩~𝑺𝒍

𝒑×𝒑 ≔ 𝐦𝐬𝐠(𝛅) 
3. (r, E)	~𝜶𝒎

𝒑 × 𝜶𝒎
𝒑 :𝐦𝐬𝐠(𝝁) 

4. 𝒄 ≔ 𝐜𝐨𝐦𝐩𝐫𝐞𝐬𝐬𝒌	(𝑩𝒓 + 𝑬, 𝒔𝒕) 
5. 𝐫𝐞𝐭𝐮𝐫𝐧	(𝑷𝒖𝒃𝒑 ≔ (𝒕, 𝒔), 𝑳𝒓𝒑 ≔ 𝑳𝒑 

Algorithm :2 Kyber. Enc (𝑷𝒖𝒃𝑷 = (𝒄, 𝛅),𝒎 ∈ 𝑨): 𝐞𝐧𝐜𝐫𝐲𝐩𝐭𝐢𝐨𝐧 
1. 𝒑 ← {𝟎, 𝟏}𝟐𝟓𝟔 
2. 𝒄 ≔ 𝒅𝒆𝒄𝒐𝒎𝒑𝒓𝒆𝒔𝒔𝒌(𝒄, 𝒔𝒕) 
3. 𝑩~𝑳𝒍

𝒑×𝒑 ≔ 𝒎𝒔𝒈(𝛅) 
4. (𝒑, 𝑬𝟏, 𝑬𝟐)~𝛂𝒎

𝒑 × 𝜶𝒎
𝒑 × 𝜶𝒎 ≔ 𝐦𝐬𝐠(𝒑) 

5. 𝒃 ≔ 𝐜𝐨𝐦𝐩𝐫𝐞𝐬𝐬𝒍(𝑩𝑻𝒑 + 𝑬𝟏, 𝒔𝒗) 
6. 𝒂 ≔ 𝐜𝐨𝐦𝐩𝐫𝐞𝐬𝐬𝒍(𝒕𝑻𝒑	 + 𝑬𝟐 + V

𝑳
𝟐
W ∙ 𝒎, 𝒔𝒖 

7. 𝐫𝐞𝐭𝐮𝐫𝐧	𝒄 ≔ (𝒃, 𝒂) 
Algorithm :3 Kyber (𝑳𝒓𝒑 = 𝑳𝒑, c= (b, a)): decryption 

1. 𝒃 ≔ 𝐃𝐞𝐜𝐨𝐦𝐩𝐫𝐞𝐬𝐬𝒍(𝒃, 𝒔𝒗) 
2. 𝒂 ≔ 𝐃𝐞𝐜𝐨𝐦𝐩𝐫𝐞𝐬𝐬𝒍(𝒂, 𝒅𝒖) 
3. 𝐫𝐞𝐭𝐮𝐫𝐧	𝐜𝐨𝐦𝐩𝐫𝐞𝐬𝐬𝒍(𝒂 − 𝒓𝑻𝒂, 𝟏) 

Let 𝐽: {0,1}∗ → {0,1}/×/01 and 𝐿: {0,1}∗ → {0,1}/01 be 
hash function. The data packets from the aggregator node 
have been securely encrypted using the Crystal Kyber 
algorithm, and the encrypted data is then transmitted to the 
sink node. 

4.3 OPTIMAL ROUTE SELECTION USING FUZZY-DBN 
Using fuzzy-DBN rules, the proposed method determines 

the shortest route from the nodes to the aggregators and 
finally to the sink nodes. Equation 11 illustrates how to 
compute, using this model, the energy needed to send an m-
bit message over the WSN for a distance called D: 
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𝐸𝐺7(𝑚,𝐷) = h
𝑚𝐸𝐺88 +𝑚𝐸,4𝐷/	𝑓𝑜𝑟	𝐷 < 𝐷9,
𝑚𝐸𝐺88 +𝑚𝐸*3𝐷;	𝑓𝑜𝑟	𝐷 ≥ 𝐷9.

  (11) 

A threshold distance 𝐷9 determines the energy level in this 
case. To receive a message of size m bits, the energy 𝐸𝐺$(𝑚) 
required is as follows: 

𝐸𝐺$(𝑚) = 𝑚𝐸𝐺88 .                     (12) 
Fuzzification  
For Fuzzification in eq. (13) of this model, the Mamdani 

inference rules in conjunction with trapezoidal membership 
functions are employed. R indicates the value of trust for the 
user in this equation. 

𝑓(𝑤, 𝑥, 𝑦, 𝑧, 𝜇) =

⎩
⎪
⎨

⎪
⎧
0	when	𝑅 < 𝑤	and	𝑅 > 𝑧,
(>?$)A
>?!

when	𝑤 ≤ 	𝑅 ≤ 𝑥,
µ	when	𝑥 ≤ 	𝑅 ≤ 𝑦,

(B?$)A
B?"

	when	𝑦 ≤ 	𝑅 ≤ 𝑧.

      (13) 

The inputs and outputs are not exact; instead, they are 
imprecise estimations that establish broad categories as 
opposed to inflexible, defined sets. The output calculated in 
this study was created by using seven levels: weak (W), less 
weak (LW), less medium (LM), medium (M), very medium 
(VM), less strong (LS), and strong (S). 

Table 1 
Fuzzy rules. 

Network 
lifetime 

Aggregator 
degree 

Distance 
between  
aggregator 
and sink 

Aggregator 
coverage 

Output 
calculated 

Less High Distant High W 
Less Average Distant Average LW 
Less Low Distant Low M 

Medium High Medium 
Distant High LM 

Medium Average Medium 
Distant Average M 

Medium Low Medium 
Distant Low HM 

High High Distant High M 
High Average Distant Average LS 
High Low Distant Low S 
Defuzzification is the final step in fuzzy rule-based 

inference. The method of analysis used in this study is a 
weighted average. Using the weighted average method, the 
result of the sum of the weighting functions µC is divided by 
the maximum value of the membership value, �̅�, to calculate 
the crisp output value 𝑔∗. This idea is presented in: 

𝑔∗ =
∑DA)(CE)×CED
∑A)(CE)

 .                       (14) 

The phases in this routing method are given in 
the following: 

Step 1: Evaluate the energy and position (ex lx) of the 
sensor nodes Nx, where x = {1,2…, m}.  
Step 2: Discover the route by calculating the shortest path 
through the aggregator nodes from each node to the sink. 
Step 3: Use the shortest path and fuzzy rules found in step 
2 to transfer the data collected by nodes through the 
aggregators. 
Step 4: Obtain data from the sink. 
Step 5: If nodes lose at least 50% of their energy, STOP. 
This method transfers the data gathered by the SNs to the 

sink nodes on a regular basis.  

5. RESULTS AND DISCUSSION 
Simulations of the suggested technique were conducted in 

the NS2 simulator. Furthermore, an extensive range of nodes 
was tested, beginning with 100 and extending up to 500, in 
each of the trials. The list of parameters used in this proposal 
is found in Table 2. 

Table 2 
Parameters for simulation. 

Number of sensors 100 

Simulation area 200m×200m 

Initial energy 2J 

BS coordinate (80,120) 

Number of clusters 25 

Efs 10PJ/bit/m2 

Emp 0.0013PJ/bit/m4 

EGee 50nJ/bit 

5.1 PERFORMANCE ANALYSIS 
The suggested model has been assessed, and the 

experimental results are presented in this section. For 
creating the inference system, four input variables were used: 
network lifetime, aggregate degree, aggregate coverage, and 
distance between aggregate and sink. 

 
Fig. 3 – Fuzzy output for network lifetime 

Figure 3 illustrates the semantic variable, NL, and its 
values. The sink was located at (50,50). The values low, 
medium, and high are used in this fuzzy set. Using the 
trapezoidal membership function yields the low and high 
values, while using the triangular membership function 
yields the medium value. 

 
Fig. 4 – Fuzzy output for the distance between the aggregator and the sink. 

As can be seen in Fig. 4, the semantic variable represents 
the distance between the aggregator and the shows. 
Additionally, low, average, and high values are used in this 
simulation. A triangular and a trapezoidal function indicate 
low and high values, respectively. 

 
Fig. 5 – Fuzzy output for aggregator degree. 

Fig. 5 shows the degree of the fourth semantic variable of 
the aggregator. A set of low, average, and high values is 
included in this set. As before, the triangle function is applied 
to other values and the trapezoidal function is used to low 
and high values. 
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Fig. 6 – Fuzzy output for member choice. 

The fuzzy output variable of member selection is shown 
in Figure 6. It consists of nine values, namely W, LW, M, 
LM, HM, LS, and S. The triangle function is used for all 
other values of the semantic variable’s output. In contrast, 
the trapezoidal function is employed for its boundary values. 

5.2 COMPARATIVE ANALYSIS 
The developed AO-FDBN framework is compared with 

existing methods, such as SEPC [23], REDAA [24], and 
SCDAP [25], in terms of specific parameters, including EC, 
E2ED, PDR, AS, and NL.  

 
Fig. 7– Energy consumption 

Figure 7 illustrates that the proposed AAVO-FDBN 
system uses less energy than SEPC, REDAA, and SCDAP 
systems. A SEPC network runs for approximately 280 
rounds before there is only 7% residual energy remaining. 
After 1000 rounds of SCDAP and AAVO-FDBN, the 
remaining energy is 10% and 11%, respectively.  

 
Fig. 8 – Comparison of average end-to-end delay. 

The E2ED with a range of nodes is shown in Fig. 8. The 
delays shown in Fig. 8.  a, 8.b, 8.c, and 8.d indicate the 
number of nodes at 100, 200, 300, and 400, respectively, and 
indicate the corresponding delays. Figure 8 compares the 
packet delivery ratio (PDR) of the proposed AAVO-FDN 
model with existing techniques, including SEPC, REDAA, 
and SCDAP. Figure 9,a shows the PDR when there are 100 
nodes, Fig. 9,b shows the PDR when there are 200 nodes, 
Figure 9.c shows the PDR when there are 300 nodes, and 
Figure 9.d shows the PDR when there are 400 nodes. The 
proposed approach achieves a higher packet delivery ratio 
than current methods. 

 
Fig. 9 – PDR comparison. 

 
Fig. 10 – Alive sensors comparison 

 
Fig. 11– Network lifetime. 

Figure 10 describes the number of alive nodes after the 
simulation is complete. A comparison is made between the 
four protocols. Due to increased energy consumption, SEPC, 
REDAA, and SCDAP have fewer alive nodes. However, in 
the proposed AO-FDBN protocol, there are many active 
nodes. The network lifetime of the suggested AAVO-FDBN 
system is compared with the existing models, such as SEPC, 
REDAA, and SCDAP, as shown in Fig. 11. The proposed 
AAVO-FDBN method has better performance of 22.80%, 
12.50%, and 17.65% than SEPC, REDAA, and SCDAP 
methods. 

6. CONCLUSION 
In this paper, a novel Aquila African Vulture Optimised 

Fuzzy DBN (AAVO-FDBN) model has been suggested to 
address the issues of EC and security in WSN. The 
recommended approach has been tested using NS2 
simulator, where variables like aggregator degree, 
aggregator energy, aggregator coverage, distance and 
network lifetime between sink and aggregator were 
employed as fuzzy variables in fuzzy-DBN. The 
experimental findings show that the developed protocol 
outperforms in terms of PDR, EC, E2ED, and NL than the 
existing techniques, such as SCDAP, REDAA, and SEPC. 
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The proposed AAVO-FDBN method achieves better 
network lifetime of 22.80%, 12.50% and 17.65% than SEPC, 
REDAA and SCDAP methods. In the future, this method 
will be used to analyse more deep learning enabled robust 
routing protocols and to help develop a new protocol that will 
be more resilient to denial-of-service attacks. 
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