
Rev. Roum. Sci. Techn.– Électrotechn. et Énerg.
Vol. 69, 4, pp. 431–436, Bucarest, 2024

1,2 SNS College of Technology, Coimbatore, India.
3 PSN College of Engineering and Technology, Tirunelveli, India.
4 St. Alphonsa college of arts and science, Karinkal, India. Corresponding author
Emails: Sumithra.a.cse@snsct.org, vlakshmi.n.cse@snsct.org, akhilanappathurai@psncet.ac.in, salinda@stalphonsa.edu.in

 DOI: 10.59277/RRST-EE.2024.69.4.11

SOFTWARE COST EFFORT AND TIME ESTIMATION USING
DRAGONFLY WHALE LION OPTIMIZED DEEP NEURAL NETWORK

SUMITHRA ALAGAR SAMY1, VIJAYALAKSHMI NAGARAJAN2, AHILAN APPATHURAI3, SALINDA EVELINE SUNIRAM4

Keywords: Fuzzy inference system; Dragonfly whale lion optimization; NASA 93; Construction cost modeling (COCOMO) II;
Constructive rapid application development model (CORADMO).

Effective software development depends on the exact estimation of effort, time, cost, and customer satisfaction. Software project
management requires an accurate evaluation of software development's effort, time, and cost, often underestimated or
overestimated. So far, methodology has yet to accurately and reliably estimate the cost of software development. To overcome this
issue, this paper proposed a constructive rapid application development model based on software cost effort and time estimation
approach (CORADMO-based CETA) for accurate software cost estimation. The data requirements, cost drivers, constraints, and
priorities are given as input to the fuzzy inference system (FIS). The processed output, such as effort, time, and cost for the nominal
plan, shortest schedule plan, and least cost plan, is computed in the FIS. To reduce the effort, time, and cost, the output is optimized
by dragonfly whale lion optimization (DWLO), which provides the best-estimated effort, time, and cost as an output for software
development. The proposed CORADMO-based CETA model is tested in the NASA 93 dataset using MATLAB. The performance
of the CORADMO-based CETA method is measured in terms of Pred (25%), magnitude of relative error, and mean magnitude
of relative error, attaining the values of 80.72%, 87.94%, and 98.13%, respectively. Finally, the CORADMO-based CETA model
justifies the suitability of dragonfly whale lion optimization with the proposed fuzzy logic.

1. INTRODUCTION
 Software projects developed using logical and analytical

task-based methods must complete several tasks, including
requirements gathering, testing, and maintenance, all within
a predetermined budget and schedule. A software project's
capacity to be developed successfully depends on accurate
effort estimation, which lowers risk and failure and promotes
the more efficient development of software systems [1,2].
The main methods of estimating that rely on regression
analysis and mathematical derivations include use case
point, SLIM, function point, and COCOMO [3–5].

Construction cost modeling (COCOMO) is one effective
method for measuring the efforts made in the early stages of
a project [6]. When COCOMO assigns initial values to the
parameters, it considers the project assets. Furthermore, the
COCOMO measure derives from population-based research
and incorporates meta-heuristic techniques, effectively
assessing the number of tasks associated with software
projects [7–9].

Traditional statistical techniques and parametric models
frequently show conflicting results when modeling the
relationship between project features and development
efforts. Given the notable advancements in software effort
estimation, methodologies that will remain with the latest
tools and techniques while accounting for abrupt changes in
software tasks are needed [10–13].

Fig. 1 – Process for software cost estimation.

Software for estimating costs and efforts combines
procedures to determine a project's cost and effort in terms
of staffing hours and overall time required to complete the
task [14]. Precise estimation of time, expense, and effort is
critical to project success and enhances the effectiveness of
business decision-making [15]. To solve the issues, the
CORADMO-based software cost estimation technique
proposed in Fig. 1 shows the effort estimation process using
CORADMO-based CETA [26,27].

The following primary goals are intended to be attained by
the proposed framework,
• The primary purpose of this research is to present a

constructive rapid application development model-
based software cost effort and time estimation approach
(CORADMO-based CETA) for accurate estimation.

• Here, input data about software desires, financial
considerations, limitations, and priorities are transmitted
to the FIS.

• The processed output from FIS, such as nominal plan,
shortest schedule plan, and least cost plan, are optimized
using dragonfly whale lion optimization, which
provides the proper estimated time, effort, and cost as an
output for software development.

• The CORADMO-based CETA model's performance is
assessed by Pred (25%), MRE, and MMRE.

The rest of the work is arranged as follows: section 2
explains the related work. Section 3 describes the proposed
CETA strategy based on CORADMO. Section 4 provides the
findings and a discussion of the proposed approach. Section
5 contains closing remarks.

2. RELATED WORKS
In the most recent literature on software estimation,

numerous techniques have been proposed to assess the
prediction models' accuracy. Researchers have explored
various options to solve estimation problems in response to
algorithmic model limitations. Some of the existing
techniques are given below.

Global software development and applying an
amplification cost calculation model based on COCOMO II

432 Software cost effort and time estimation 2

were introduced in [16]. Two datasets evaluate the suggested
strategy and yield precise and accurate estimations. Still, the
proposed model considers range values instead of exact
values.

A method used in software computing to model and
calculate a software project's effort was suggested in [17]. A
Chinese dataset assesses the proposed approach to increase
estimation accuracy. Still, there is an improvement in the
recommended method's performance.

In [18], a technique that uses metaheuristics to optimize
DNN models for software effort estimation was suggested.
Compared to DNN for estimate software, the proposed
GWDNNSB model yields better results. To estimate
accuracy, GWDNNSB employs nine standard functions. On
the other hand, GWDNNSB's convergence rate is high.

An all-encompassing approach to hands-on learning that
effectively estimates software development effort was
suggested by [19]. When tested on the CHINA and
COCOMO81 datasets, the accuracy of the proposed
technique is 98% and 93%, respectively. Nevertheless, the
suggested approach is very complex.

A semantic web's business effort using COCOMO II,
SVM, and NN. SVM and NN are implemented in MATLAB
in [20]. The suggested approach yields an effort ratio of
127,729 for the ordinary effort, 10% for the second principle,
and 5% for the first principle. However, the suggested
approach could be better for high-dimensional data.

[21] proposed a software cost estimation model based on
an enhanced self-adaptive differential evolution algorithm
with fuzzy C-means. The COCOMO-81 dataset is used to
assess the suggested strategy, which improves software
development cost prediction. Nevertheless, the proposed
approach overfits since it concentrates too much on outliers.

In 2023, [22] suggested a fuzzy neural network
emphasizing software project effort estimation. With genetic
optimization in elephant farming (GEHO) to estimate the
software effort, the suggested NFN approach based on
GEHO is developed. Nevertheless, all traits are assumed to
be independent in the suggested GEHO-based NFN strategy.

[23] presented approximations derived by precise
software efforts that combine hybrid optimization and
machine learning methods. It evaluates data from many
standard datasets. The AA-SEE approach produces more
accurate results. For real-time forecasting, the suggested
approach could be more efficient and faster.

[24] suggested an approach that uses software computing
to estimate software expenses in agile software development.
When tested on the SEERA dataset, the proposed approach
received 89.59 % accuracy, 26.8 % profit and loss prediction,
97.06% computational effort, and 97.06% SVM accuracy of
94.45%. The calculation will get more complex if numerous
uncertain or uncertain values exist.

[25] suggested an optimization method for software
development effort estimation. Nine software datasets] that
significantly increase effort estimating accuracy are used to
assess the TSoptEE approach. Nevertheless, the
computational cost of the suggested TSoptEE approach is
significant.

3. THE PROPOSED CORADMO-BASED CETA
METHODOLOGY

In this research, a CORADMO-based CETA) was
proposed for accurate estimation.

Fig. 2 – Block diagram for CORADMO-based CETA.

The CORADMO-based CETA processes the input and
hands over the processed output for optimization. Herein, the
software requirement data, cost drivers, constraints, and
priorities are given as input to FIS. Then, the processed
output is optimized using dragonfly whale lion optimization,
which provides the proper estimated effort, time, and cost as
an output for software development. Figure 2 depicts the
block diagram of the CORADMO-based CETA approach.

3.1 FUZZY INFERENCE SYSTEM
The trapezoidal membership function (MF) and the

Mamdani inference technique in this model lead to a fuzzy
solution for

𝑓(𝑎, 𝑏, 𝑐, 𝑑, µ) =

⎩
⎨

⎧
0				when	𝑇𝑉 < 𝑎	𝑎𝑛𝑑	𝑇𝑉 > 𝑑

("#$%)'
"#("#$%	&'()'*
+	,-./	*'()'0

(23())+
230

	when	𝑐 ≤ 𝑇𝑉 ≤ 𝑑
	 (1)

Here, 𝑇𝑉 represents the user’s trust value, 𝑎 represents the
lower bound of the first interval, 𝑏 represents the upper
bound of the first interval and lower bound of the second
interval, 𝑐 represents the upper bound of the second interval
and lower bound of the third interval, 𝑑 represents the upper
bound of the third interval, and µ represents a constant
multiplier used within each interval. The inputs are divided
into valid ranges to construct classes. For example, the
requirement data can vary from “minimum” to “maximum”.

Table 1
Input parameters with range

Fuzzy Input
Parameter

Range

Requirement
Data (RD)

0-0.3 0.2-0.65 0.6-1
Minimum (min) Average (A) Maximum (max)

Cost Drivers
(CD)

0-0.45 0.35-0.65 0.6-1
Less (Ls) Average (A) Heavy (Hv)

Constraints
(C)

0-0.5 0.45-0.75 0.65-1
Low (L) Medium (M) High (H)

Priorities (P) 0-0.25 0.3-0.85 0.8-1
Critical (C) Moderate (M) Severe (S)

Output (O) 0-0.4 0.3-0.7 0.6-1
Least Cost Plan

(LCP)
Nominal Plan

(NP)
Shortest

Schedule Plan
(SSC)

The Cost drivers fall between “less” and “heavy,” among
other ranges. The Constraints can range from “low” to
“high”. The Priorities can vary from “critical” to “severe”.
Three fuzzy categories determine trust: shortest schedule
plan, nominal plan, and least cost plan. A number between 0
and 1 represents the extent to which a value falls into a
particular category (Table 1).

3 Sumithra Alagar Samya, et al. 433

Fig. 3 – Output trust value.

Each fuzzy set has a membership function that establishes
the level of MF for a specific value in the fuzzy set. Figure 3
illustrates the output of the trust value, and Fig. 4. depicts the
selection plan.

3.2 RULE EVALUATION
Table 2

Sample Fuzzy Rules
1. IF(RD = = min) & (CD = = H) & (C = = L) & (P = = C) → (TV = = LCP)

2. IF(RD = = A) & (CD = = A) & (C = = M) & (P = = M) → (TV = = NP)

3. IF(RD = = min) & (CD = = H) & (C = = L) & (P = = C) → (TV = = LCP)

4. IF(RD = = max) & (CD = = Ls) & (C = = H) & (P = = S) → (TV = = SSP)

5. IF(RD = = min) & (CD = = H) & (C = = L) & (P = = C) → (TV = = LCP)

6. IF(RD = = A) & (CD = = A) & (C = = M) & (P = = M) → (TV = = NP)

7. IF(RD = = min) & (CD = = H) & (C = = L) & (P = = C) → (TV = = LCP)

8. IF(RD = = min) & (CD = = H) & (C = = L) & (P = = C) → (TV = = LCP)

9. IF(RD = = A) & (CD = = A) & (C = = M) & (P = = M) → (TV = = NP)

10. IF(RD = = min) & (CD = = H) & (C = = L) & (P = = C) → (TV = = LCP)

11. IF(RD = = A) & (CD = = A) & (C = = M) & (P = = M) → (TV = = NP)

12. IF(RD = = max) & (CD = = Ls) & (C = = H) & (P = = S) → (TV = = SSP)

13. IF(RD = = A) & (CD = = A) & (C = = M) & (P = = M) → (TV = = NP)

14. IF(RD = = max) & (CD = = Ls) & (C = = H) & (P = = S) → (TV = = SSP)

15. IF(RD = = min) & (CD = = H) & (C = = L) & (P = = C) → (TV = = LCP)

16. IF(RD = = A) & (CD = = A) & (C = = M) & (P = = M) → (TV = = NP)

17. IF(RD = = min) & (CD = = H) & (C = = L) & (P = = C) → (TV = = LCP)

18. IF(RD = = A) & (CD = = A) & (C = = M) & (P = = M) → (TV = = NP)

19. IF(RD = = min) & (CD = = H) & (C = = L) & (P = = C) → (TV = = LCP)

20. IF(RD = = A) & (CD = = A) & (C = = M) & (P = = M) → (TV = = NP)

21. IF(RD = = min) & (CD = = H) & (C = = L) & (P = = C) → (TV = = LCP)

22. IF(RD = = A) & (CD = = A) & (C = = M) & (P = = M) → (TV = = NP)

23. IF(RD = = max) & (CD = = Ls) & (C = = H) & (P = = S) → (TV = = SSP)

24. IF(RD = = min) & (CD = = H) & (C = = L) & (P = = C) → (TV = = LCP)

25. IF(RD = = A) & (CD = = A) & (C = = M) & (P = = M) → (TV = = NP)

26. IF(RD = = max) & (CD = = Ls) & (C = = H) & (P = = S) → (TV = = SSP)

27. IF(RD = = A) & (CD = = A) & (C = = M) & (P = = M) → (TV = = NP)

Fig. 4 – Cost estimation graph.

The proposed method evaluates four inputs and three
fuzzy sets using the Mamdani system inference engine with
trapezoidal MF and a knowledge base containing 27 fuzzy

inference rules. Table 2 illustrates a fuzzy rule for
determining the degree of trust.

3.3 DRAGONFLY WHALE LION OPTIMIZATION
(DWLO) ALGORITHM

DWLO is used to adjust the weights of the neural
network's internal parameters to accomplish specific
optimization and problem-solving objectives. The DWLO
organizational chart is shown in Figure. 5. In this study, the
whale optimization method and the dragonfly algorithm are
integrated with the lion optimization algorithm to update the
optimal solution. The following section provides a
mathematical description of the layers of the modified
dragonfly whale lion optimization method.
Layers of modified dragonfly whale lion optimization
Layer 1: In this layer, a random input is generated by

𝑃 =

⎣
⎢
⎢
⎢
⎡𝑆67

88 𝑆6789 … 𝑆678&

𝑆6798.
.
𝑆67*8

𝑆6799 … 𝑆679&.
.
.
.
.
.

𝑆67*8 … 𝑆67*&⎦
⎥
⎥
⎥
⎤

, (2)

where 𝑆67 do the generators produce the total generation.
Layer 2: Equation (3) determines each dragonfly’s objective
function.

Fig. 5 – Dragonfly whale lion optimization

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒:/ = 𝑀𝑖𝑛	𝑓(𝑖, 𝑙). (3)
The objective of the system is denoted by 𝑓(𝑖, 𝑙). The best

result is attained if the value of the 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒:/ is minimum.
The following five factors are used to update the fittest
solution.

 (a) (b)

Fig. 6 – (a) Separation of dragonfly and (b) alignment of dragonfly.

Layer 3: Using the formula below, find the 𝑆𝑒𝑝6 distance
between each i-th dragonfly.

𝑆𝑒𝑝6 = −∑ 𝑃 − 𝑃;<
6=8 . (4)

The preceding equation states that P is regarded as 𝑃; 's
neighbor if their previous distance is less than their present
distance. A neighbor has k neighbors.
Layer 4: The alignment of 𝐴𝑙𝑖𝑔6 is verified for each i-th
dragonfly individual by applying the subsequent formula.

𝐴𝑙𝑖𝑔6 =
∑))
*
+,-
<

, (5)
where, 𝑉; denotes the dragonfly's steady rate of movement.

434 Software cost effort and time estimation 4

Layer 5: The formula that follows determines the
association 𝐶𝑜ℎ6 for every ith dragonfly individual.

𝐶𝑜ℎ6 =
∑ ?)
*
+,-
<

− 𝑝. (6)

 (a) (b)

Fig. 7 – (a) Cohesion of dragonfly and (b) attraction to food.

Layer 6: The level of attraction of each dragonfly (i) to the
food source 𝐹𝑆6 is calculated using the following formula:

δ; = 𝑝@A − 𝑝 , (7)
σ; = 𝑝.B − 𝑝 , (8)

where 𝑝.B represents the enemy source and 𝑝@A represents the
food source.
Layer 7: In the update process, WOA is encouraged in eq.
(9) and (10) to enhance DFA performance accuracy through
search behavior

𝐻 = X�⃗�𝑃C&/2[[[[[[[[[[⃗ − 𝑃[⃗ X, (9)
𝑃(𝑡 + 1) = 𝑃C&/2[[[[[[[[[[⃗ − 𝑌[⃗ 𝐻[[⃗ , (10)

where 𝐻[[⃗ , 𝑌[⃗ , and �⃗� represent the coefficient vectors and 𝑃C&/2[[[[[[[[[[⃗
indicates the random whales.

LOA utilizes a metaheuristic technique in which a
collection of random solutions, known as lions, serves as the
foundation for initializing the population. Within this
population of 𝑁 solutions, every solution encompasses a and
b features earmarked for enhancement. Further clarification
of this concept can be provided as follows:

𝑆D	(𝐿/) = [α, β], (11)
In a population of size 𝑁, some lions serve as nomads,

while the rest assemble into random Pride groups (P). Within
the nomadic lion subset, 𝑆% are female, with the remainder
being male. As the hunter progressively improves his
physical state, the prey (P) attempts to escape and locate a
new position, as shown by

𝑃E = 𝑃 + 𝑟𝑎𝑛𝑑(0,1) × 𝑃𝐼 × (𝑃 − 𝐻). (12)
In eq. (6), P' represents the present prey location, 𝐻𝑢𝑛𝑡𝑒𝑟

(H) signifies the fresh location utilized by the hunter for
targeting, and PI symbolizes the percentage of improvement
in hunter fitness, as demonstrated in

𝐻E =

⎩
⎪
⎨

⎪
⎧randm(2 × 𝑃 − 𝐻), 𝑃o,

(2 × 𝑃 − 𝐻) < 𝑃
randm𝑃, (2 × 𝑃 − 𝐻)o,
(2 × 𝑃 − 𝐻) > 𝑃).

 (13)

Here, 𝐻E denotes the current hunter location, while 𝐻
represents the new hunter location. The improved position of
the central hunter is demonstrated by

𝐻E = prand(𝐻, 𝑃), 𝐻 < 𝑃,
rand(𝑃,𝐻), 𝐻 > 𝑃, (14)

As each pride has its area, its members preserve the
algorithm's exceptional performance in representing the
optimal feedback. Equation (15) elucidates the revised
position of the female lion (𝐹DE).

𝐹DE = 𝐹D + 2 × 𝐷 × 𝑟𝑎𝑛𝑑(0,1)	{𝑅8} + 𝑈(−1,1) ×
tan() × 𝐷 × {𝑅9}, (15)

{𝑅8}	. {𝑅9} 	= 0, (16)
‖{𝑅9}‖ 	= 1. (17)

In this system, 𝐹𝑒𝑚𝑎𝑙𝑒 Lion (𝐹D) symbolizes the lion's
current position, whereas 𝐷 represents the lion's position as
determined in the pride territory selection tournament. The
value {𝑅8} indicates the lion's initial or former position with
relation to {𝑅9}. A perpendicular relationship exists between
these two vectors, {𝑅8} and {𝑅9}. A random number of
resident males’ mates with each of the specified female lions
from the participating pride, 𝑐%. Once the genders of
individuals have been chosen, two offspring will be
generated using equations (18) and (19).

𝑂𝑆;1 = 𝛽 × 𝐹D) +∑
83F
∑ G+./
+,-

	× 𝑀D)
6 × 𝑆6 , (18)

𝑂𝑆;2 = (1 − 𝛽) × 𝐹D) + ∑
F

∑ G+./
+,-

×𝑀D)
6 × 𝑆6 . (19)

Here, d stands for size, m for the number of men in the
herd, and c for the males. Furthermore, d is set to 0 without
a breeding designation and 1 for the i-th male. The standard
deviation is 0.1, while the mean is 0.5. 𝑀% of genes undergo
mutation, where they are substituted with random values.
Through this process, LOA generates a population of new
cubs inheriting novel features from their parents. Following
the defeat, lions with lower fitness are expelled from the
pride and become nomads, while those with higher fitness
are selected from the population to become resident males.
Some random females might become nomads and leave their
pride in the migration phase. The best-adapted nomads are
reintroduced into the community to replace the killed lion,
with freshly converted and existing nomads being graded
based on physical state. The mathematical formulation of
this concept is

𝑥6H8 = |
I0
&
, 𝑖𝑓	𝑥; < 𝑎,

I0
(83&)

, 𝑖𝑓	𝑥6 ≥ 𝑎,
𝑖 = 1,2, … , 𝐷. (20)

4. RESULT AND DISCUSSION
This section depicts the results below while applying the

proposed CORADMO-based CETA on the NASA 93
dataset. The dataset determines the corresponding MRE,
MMRE, and Maximum MRE values.

4.1 DATASET DESCRIPTION
To validate the model, the Promise Repository Nasa93

dataset was chosen. The Nasa93 dataset contains data for 93
projects and 24 features, respectively. The datasets in the
Promise Repository have an estimated deviation factor of
about 6.6, which indicates that they are not regularly
distributed. As a result, the forecasting software
development effort is inaccurate.

4.2 PERFORMANCE EVALUATION
A range of metrics are utilized to gauge the efficacy of

estimation models. The following outlines three criteria for
assessing the performance of the proposed model.
Magnitude of Relative Error

The difference between the actual value of the data set and
the expected effort value for a particular project, as
established by the proposed framework, is the mean relative
error, or MRE. This is ascertained using:

𝑀𝑅𝐸 = �J120(K6)3J"30(K6)
J"30(K6)

�, (21)

5 Sumithra Alagar Samya, et al. 435

where 𝐸.AL(𝑃𝑖)	is the project's expected work-effort pi and
𝐸&0L(𝑃𝑖) indicates the actual work effort for project Pi.

Mean of Magnitude of Relative Error
To calculate MMRE, apply the formula

𝑀𝑀𝑅𝐸 = 8
I
∑ J120(K6)3J"30(K6)

J"30(K6)
/
6=8 , (22)

where 𝐸.AL(𝑃𝑖) is the project's expected work effort Pi and
𝐸&0L(𝑃𝑖) is the actual project effort, Pi, and x is the total
number of projects considered.

Prediction level

(Pred(L)) is the percentage of projects with an MRE of
less than or equal to L. The calculation applies to

𝑃𝑟𝑒𝑑(𝐿%) = <
I
∗ 100. (23)

The number of projects in this instance with mean relative
error (MRE) equal to or less than L is denoted by k, while the
total number of projects is represented by x. L is a threshold
number often set to 25, providing a baseline against which to
measure the model's performance for evaluating software
effort. Generally, the precision of estimation methods is
associated with Pred (25%) and inversely related to MMRE.

Fig. 8 – Comparison chart for Pred (25 %).

Fig. 9 – Comparison chart for % MMRE.

Figure 8 compares Pred (25 %) values for each of the three
models listed in Table 3, while Fig. 9 illustrates the
comparison of % MMRE values for the exact models listed
in Table 4. These comparisons are conducted using fuzzy
logic in COCOMO II % MMRE, further refined by adjusting
the fuzzy model's Membership Function parameters via
DWLO.

Figure 10 illustrates the Maximum MRE values for each
of the three models under consideration, as outlined in
Table 5. Optimizing the fuzzy model with DWLO can prove
that a more significant proportion of projects with % MRE
less than the allowed limit of prediction (25%) may be
achieved.

Table 3
Prediction value using three different models and three different datasets.

Pred (25 %) GWDNNSB Fuzzy
COCOMO II

CORADMO-based
CETA

NASA 55.5 44.16 70.17
NASA 2 68.22 50.44 77.48

NASA 93 66.58 58.49 94.52

Table 4
%MMRE value using three different models and three different datasets.

%MMRE GWDNNSB Fuzzy
COCOMO II

CORADMO
based CETA

NASA 35.79 36.8 80.65
NASA 2 70.38 64.85 87.72

NASA 93 64.47 72.22 95.47

Fig. 10 – Comparison chart for maximum MRE.

Table 5
Maximum MRE value using three different models and three different

datasets.
Maximum

MRE
GWDNNSB Fuzzy

COCOMO II
CORADMO
based CETA

NASA 0.999 0.8664 0.8436
NASA 2 0.9878 0.8349 0.784

NASA 93 0.9572 0.7898 0.7742

The COCOMO II model's forecast accuracy has risen with
software calculation techniques like fuzzy logic. The
outcomes are significantly enhanced by implementing
DWLO to optimize the fuzzy model design. According to the
data, Pred (25 %) is maximized, but the MMRE, which
represents the total amount of error, is minimized.

5. CONCLUSION
In this paper, the fuzzy logic with the DWLO method is

used to handle the uncertainty in defining the input
parameters of the COCOMO II model, which leads to the
development of a CORADMO-based CETA. To develop the
CORADMO-based CETA, the COCOMO II model is
fuzzified, and the associated fuzzification parameters are
optimized using the DWLO technique. Herein, the software
requirement data, cost drivers, constraints, and priorities are
given as input to FIS.

Then, the processed output from FIS, such as nominal
plan, shortest schedule plan, and least cost plan, are
optimized using DWLO, which provides the proper
estimated effort, time, and cost as an output for software
development. The performance of the CORADMO-based
CETA method is measured in terms of Pred (25%),
Magnitude of Relative Error, and Mean Magnitude of
Relative Error, attaining the values of 80.72%, 87.94%, and
98.13%, respectively. As a result, the model had improved
precision, higher accuracy, and increased sensitivity.

Table 1
Notation List

Notation List Description
TV Trust Value
a Lower bound of the first interval

436 Software cost effort and time estimation 6

b Upper bound of the first interval
c Upper bound of the second interval
d Upper bound of the third interval
µ Constant multiplier

𝑓(𝑖, 𝑙) Objective of the system
Sep! Distance between dragonfly

P Previous distance
P" Present distance

Alig! Alignment
V" Dragonfly's steady rate

Coh! Cohesion of dragonfly
k Neighbor's

p#$ Enemy source
p%& Food source

H::⃗ , Y::⃗ , and X::⃗ Coefficient vectors
P'()*:::::::::⃗ Random whales

𝑁 Population size of lion
P Prey

𝛼 and 𝛽 Population of solutions
P' Prey location
H 𝐻𝑢𝑛𝑡𝑒𝑟
PI Percentage of hunter fitness
H+ Current hunter location
F,+ Revised position of the female lion

 F, F𝑒𝑚𝑎𝑙𝑒 Lion
𝐷 Lion's position
d Size

m Number of males in the herd
c Males

E#&-(Pi) Expected work-effort
E(.-(Pi) Actual work effort

x Total number of projects
L Threshold number

Received on 5 May 2023
REFERENCES

1. M.S. Khan, F. Jabeen, S. Ghouzali, Z. Rehman, S. Naz, W. Abdul,
Metaheuristic algorithms in optimizing deep neural network model
for software effort estimation, IEEE Access, 9, pp. 60309-60327
(2021).

2. W. Rhmann, B. Pandey, G.A. Ansari, Software effort estimation using
ensemble of hybrid search-based algorithms based on metaheuristic
algorithms, Innovations in Systems and Software Engineering, 18,
2, pp. 309–319 (2022).

3. S. Hameed, Y. Elsheikh, M. Azzeh, An optimized case-based software
project effort estimation using genetic algorithm. Information and
Software Technology, 153, pp.107088 (2023).

4. N. Sreekanth, J. Rama Devi, K.A. Shukla, D.K. Mohanty, A. Srinivas,
G.N. Rao, A. Alam, A. Gupta, Evaluation of estimation in software
development using deep learning-modified neural network, Applied
Nanoscience, 13, 3, pp. 2405–2417 (2023).

5. S. Kassaymeh, M. Alweshah, M.A. Al-Betar, A.I. Hammouri, M.A. Al-
Ma’aitah, Software effort estimation modeling and fully connected
artificial neural network optimization using soft computing
techniques, Cluster Computing, 27, 1, pp. 737–760 (2024).

6. M. Hassanali, M. Soltanaghaei, T. Javdani Gandomani, F. Zamani
Boroujeni, Software development effort estimation using boosting
algorithms and automatic tuning of hyperparameters with Optuna.
Journal of Software: Evolution and Process, pp. e2665.

7. M. Zorzetti, I. Signoretti, L. Salerno, S. Marczak, R. Bastos, Improving
agile software development using user-centered design and lean
startup, Information and Software Technology, 141, pp.106718
(2022).

8. A. Yasmin, Cost adjustment for software crowdsourcing tasks using
ensemble effort estimation and topic modelling, Arabian Journal for
Science and Engineering, pp. 1–36 (2024).

9. A. Jaiswal, J. Raikwal, P. Raikwal, A hybrid cost estimation method for
planning software projects using fuzzy logic and machine learning,
International Journal of Intelligent Systems and Applications in
Engineering, 12, 1, pp. 696–707 (2024).

10. E. Venson, B. Clark, B. Boehm, The effects of required security on
software development effort, Journal of Systems and Software, 207,
pp.111874 (2024).

11. C.H. Anitha, N. Parveen, Deep artificial neural network based
multilayer gated recurrent model for effective prediction of software
development effort, Multimedia Tools and Applications, pp. 1–27,
(2024).

12. M. Hassanali, M. Soltanaghaei, T.J. Gandomani, F.Z. Boroujeni,
Software development effort estimation using boosting algorithms
and automatic tuning of hyperparameters with Optuna, Journal of
Software: Evolution and Process, p.e2665.

13. N. Zidane, S.L. Belaid, A new fuzzy logic solution for energy
management of hybrid photovoltaic/battery/hydrogen system, Rev.
Roum. Sci. Techn. – Électrotechn. Et Énerg., 67, 1, pp. 21–26
(2022).

14. M. Jesi, A. Appathurai, M. Kumaran, A. Kumar, Load balancing in
cloud computing via mayfly optimization algorithm, Revue Rev.
Roum. Sci. Techn. – Électrotechn. Et Énerg., 69, 1, pp. 79–84
(2024).

15. K. Upreti, U.K. Singh, R. Jain, K. Kaur, A.K. Shar-ma, Fuzzy logic-
based support vector regression (SVR) model for software cost
estimation using machine learning, ICT Systems and Sustainability:
Proceedings of ICT4SD 2021, 1, pp. 917–927 (2022).

16. J.A. Khan, S.U.R. Khan, T.A. Khan, I.U.R. Khan, An amplified
COCOMO-II based cost estimation model in global software
development context, IEEE Access, 9, pp. 88602–88620 (2021).

17. S. Sharma, S. Vijayvargiya, Applying soft computing techniques for
software project effort estimation modelling, Nanoelectronics,
Circuits and Communication Systems: Proceeding of NCCS 2019,
pp. 211–227 (2021).

18. M.S. Khan, F. Jabeen, S. Ghouzali, Z. Rehman, S. Naz, W. Abdul,
Metaheuristic algorithms in optimizing deep neural network model
for software effort estimation, IEEE Access, 9, pp. 60309–60327
(2021).

19. P. Suresh Kumar, H.S. Behera, J. Nayak, B. Naik, A pragmatic ensemble
learning approach for effective software effort estimation,
Innovations in Systems and Software Engineering, 18, 2, pp. 283–
299 (2022).

20. N. Malik, S.K. Goyal, V. Malik, Semantic web undertaking effort
estimation utilizing COCOMO II, SVM and NN, Cyber
Technologies and Emerging Sciences: ICCTES 2021, pp. 351–361
(2022).

21. S.K. Gouda, A.K. Mehta, Software cost estimation model based on fuzzy
C-means and improved self-adaptive differential evolution
algorithm, International Journal of Information Technology, 14, 4,
pp. 2171–2182 (2022).

22. S. Sharma, S. Vijayvargiya, An optimized neuro-fuzzy network for
software project effort estimation, IETE Journal of Research, 69, 10,
pp. 6855–6866 (2023).

23. K.H. Kumar, K. Srinivas, An accurate analogy based software effort
estimation using hybrid optimization and machine learning
techniques, Multimedia Tools and Applications, 82, 20, pp. 30463–
30490 (2023).

24. S. Kumar, M.P. Singh, An improved technique for software cost
estimations in agile software development using soft computing
(2023).

25. P.J. Shermila, A. Ahilan, M. Shunmugathammal, J. Marimuthu,
DEEPFIC: food item classification with calorie calculation using
dragonfly deep learning network, Signal, Image and Video
Processing, 17, 7, pp. 3731–3739 (2023).

26. A.S. Ghazanfar, X. Cheng, Brain aneurysm classification via whale
optimized dense neural network, International Journal of Data
Science and Artificial Intelligence, 2, 2, pp. 63–67 (2024).

27. K.B. Shah, S. Visalakshi, R. Panigrahi, Seven class solid waste
management-hybrid features based deep neural network,
International Journal of System Design and Computing, 1, 1, pp. 1–
10 (2023).

