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Effective software development depends on the exact estimation of effort, time, cost, and customer satisfaction. Software project 
management requires an accurate evaluation of software development's effort, time, and cost, often underestimated or 
overestimated. So far, methodology has yet to accurately and reliably estimate the cost of software development. To overcome this 
issue, this paper proposed a constructive rapid application development model based on software cost effort and time estimation 
approach (CORADMO-based CETA) for accurate software cost estimation. The data requirements, cost drivers, constraints, and 
priorities are given as input to the fuzzy inference system (FIS). The processed output, such as effort, time, and cost for the nominal 
plan, shortest schedule plan, and least cost plan, is computed in the FIS. To reduce the effort, time, and cost, the output is optimized 
by dragonfly whale lion optimization (DWLO), which provides the best-estimated effort, time, and cost as an output for software 
development. The proposed CORADMO-based CETA model is tested in the NASA 93 dataset using MATLAB. The performance 
of the CORADMO-based CETA method is measured in terms of Pred (25%), magnitude of relative error, and mean magnitude 
of relative error, attaining the values of 80.72%, 87.94%, and 98.13%, respectively. Finally, the CORADMO-based CETA model 
justifies the suitability of dragonfly whale lion optimization with the proposed fuzzy logic.

1. INTRODUCTION 
 Software projects developed using logical and analytical 

task-based methods must complete several tasks, including 
requirements gathering, testing, and maintenance, all within 
a predetermined budget and schedule. A software project's 
capacity to be developed successfully depends on accurate 
effort estimation, which lowers risk and failure and promotes 
the more efficient development of software systems [1,2]. 
The main methods of estimating that rely on regression 
analysis and mathematical derivations include use case 
point, SLIM, function point, and COCOMO [3–5]. 

Construction cost modeling (COCOMO) is one effective 
method for measuring the efforts made in the early stages of 
a project [6]. When COCOMO assigns initial values to the 
parameters, it considers the project assets. Furthermore, the 
COCOMO measure derives from population-based research 
and incorporates meta-heuristic techniques, effectively 
assessing the number of tasks associated with software 
projects [7–9]. 

Traditional statistical techniques and parametric models 
frequently show conflicting results when modeling the 
relationship between project features and development 
efforts. Given the notable advancements in software effort 
estimation, methodologies that will remain with the latest 
tools and techniques while accounting for abrupt changes in 
software tasks are needed [10–13]. 

 
Fig. 1 – Process for software cost estimation. 

Software for estimating costs and efforts combines 
procedures to determine a project's cost and effort in terms 
of staffing hours and overall time required to complete the 
task [14]. Precise estimation of time, expense, and effort is 
critical to project success and enhances the effectiveness of 
business decision-making [15]. To solve the issues, the 
CORADMO-based software cost estimation technique 
proposed in Fig. 1 shows the effort estimation process using 
CORADMO-based CETA [26,27].  

The following primary goals are intended to be attained by 
the proposed framework, 
• The primary purpose of this research is to present a 

constructive rapid application development model-
based software cost effort and time estimation approach 
(CORADMO-based CETA) for accurate estimation. 

• Here, input data about software desires, financial 
considerations, limitations, and priorities are transmitted 
to the FIS. 

• The processed output from FIS, such as nominal plan, 
shortest schedule plan, and least cost plan, are optimized 
using dragonfly whale lion optimization, which 
provides the proper estimated time, effort, and cost as an 
output for software development. 

• The CORADMO-based CETA model's performance is 
assessed by Pred (25%), MRE, and MMRE. 

The rest of the work is arranged as follows: section 2 
explains the related work. Section 3 describes the proposed 
CETA strategy based on CORADMO. Section 4 provides the 
findings and a discussion of the proposed approach. Section 
5 contains closing remarks. 

2. RELATED WORKS 
In the most recent literature on software estimation, 

numerous techniques have been proposed to assess the 
prediction models' accuracy. Researchers have explored 
various options to solve estimation problems in response to 
algorithmic model limitations. Some of the existing 
techniques are given below. 

Global software development and applying an 
amplification cost calculation model based on COCOMO II 
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were introduced in [16]. Two datasets evaluate the suggested 
strategy and yield precise and accurate estimations. Still, the 
proposed model considers range values instead of exact 
values.  

A method used in software computing to model and 
calculate a software project's effort was suggested in [17]. A 
Chinese dataset assesses the proposed approach to increase 
estimation accuracy. Still, there is an improvement in the 
recommended method's performance. 

In [18], a technique that uses metaheuristics to optimize 
DNN models for software effort estimation was suggested. 
Compared to DNN for estimate software, the proposed 
GWDNNSB model yields better results. To estimate 
accuracy, GWDNNSB employs nine standard functions. On 
the other hand, GWDNNSB's convergence rate is high.  

An all-encompassing approach to hands-on learning that 
effectively estimates software development effort was 
suggested by [19]. When tested on the CHINA and 
COCOMO81 datasets, the accuracy of the proposed 
technique is 98% and 93%, respectively. Nevertheless, the 
suggested approach is very complex. 

A semantic web's business effort using COCOMO II, 
SVM, and NN. SVM and NN are implemented in MATLAB 
in [20]. The suggested approach yields an effort ratio of 
127,729 for the ordinary effort, 10% for the second principle, 
and 5% for the first principle. However, the suggested 
approach could be better for high-dimensional data.  

[21] proposed a software cost estimation model based on 
an enhanced self-adaptive differential evolution algorithm 
with fuzzy C-means. The COCOMO-81 dataset is used to 
assess the suggested strategy, which improves software 
development cost prediction. Nevertheless, the proposed 
approach overfits since it concentrates too much on outliers. 

In 2023, [22] suggested a fuzzy neural network 
emphasizing software project effort estimation. With genetic 
optimization in elephant farming (GEHO) to estimate the 
software effort, the suggested NFN approach based on 
GEHO is developed. Nevertheless, all traits are assumed to 
be independent in the suggested GEHO-based NFN strategy.  

[23] presented approximations derived by precise 
software efforts that combine hybrid optimization and 
machine learning methods. It evaluates data from many 
standard datasets. The AA-SEE approach produces more 
accurate results. For real-time forecasting, the suggested 
approach could be more efficient and faster. 

[24] suggested an approach that uses software computing 
to estimate software expenses in agile software development. 
When tested on the SEERA dataset, the proposed approach 
received 89.59 % accuracy, 26.8 % profit and loss prediction, 
97.06% computational effort, and 97.06% SVM accuracy of 
94.45%. The calculation will get more complex if numerous 
uncertain or uncertain values exist.  

[25] suggested an optimization method for software 
development effort estimation. Nine software datasets] that 
significantly increase effort estimating accuracy are used to 
assess the TSoptEE approach. Nevertheless, the 
computational cost of the suggested TSoptEE approach is 
significant. 

3. THE PROPOSED CORADMO-BASED CETA 
METHODOLOGY 

In this research, a CORADMO-based CETA) was 
proposed for accurate estimation.  

 
Fig. 2 – Block diagram for CORADMO-based CETA. 

The CORADMO-based CETA processes the input and 
hands over the processed output for optimization. Herein, the 
software requirement data, cost drivers, constraints, and 
priorities are given as input to FIS. Then, the processed 
output is optimized using dragonfly whale lion optimization, 
which provides the proper estimated effort, time, and cost as 
an output for software development. Figure 2 depicts the 
block diagram of the CORADMO-based CETA approach. 

3.1 FUZZY INFERENCE SYSTEM 
The trapezoidal membership function (MF) and the 

Mamdani inference technique in this model lead to a fuzzy 
solution for 

𝑓(𝑎, 𝑏, 𝑐, 𝑑, µ) =

⎩
⎨

⎧
0				when	𝑇𝑉 < 𝑎	𝑎𝑛𝑑	𝑇𝑉 > 𝑑

("#$%)'
"#( 	"#$%	&'()'*
+	,-./	*'()'0

(23())+
230

	when	𝑐 ≤ 𝑇𝑉 ≤ 𝑑
	     (1) 

Here, 𝑇𝑉 represents the user’s trust value, 𝑎 represents the 
lower bound of the first interval, 𝑏 represents the upper 
bound of the first interval and lower bound of the second 
interval, 𝑐 represents the upper bound of the second interval 
and lower bound of the third interval, 𝑑 represents the upper 
bound of the third interval, and µ represents a constant 
multiplier used within each interval. The inputs are divided 
into valid ranges to construct classes. For example, the 
requirement data can vary from “minimum” to “maximum”. 

Table 1 
Input parameters with range 

Fuzzy Input 
Parameter 

Range 

Requirement 
Data (RD) 

0-0.3 0.2-0.65 0.6-1 
Minimum (min) Average (A) Maximum (max) 

Cost Drivers 
(CD) 

0-0.45 0.35-0.65 0.6-1 
Less (Ls) Average (A) Heavy (Hv) 

Constraints 
(C) 

0-0.5 0.45-0.75 0.65-1 
Low (L) Medium (M) High (H) 

Priorities (P) 0-0.25 0.3-0.85 0.8-1 
Critical (C) Moderate (M) Severe (S) 

Output (O) 0-0.4 0.3-0.7 0.6-1 
Least Cost Plan 

(LCP) 
Nominal Plan 

(NP) 
Shortest 

Schedule Plan 
(SSC) 

The Cost drivers fall between “less” and “heavy,” among 
other ranges. The Constraints can range from “low” to 
“high”.  The Priorities can vary from “critical” to “severe”. 
Three fuzzy categories determine trust: shortest schedule 
plan, nominal plan, and least cost plan. A number between 0 
and 1 represents the extent to which a value falls into a 
particular category (Table 1).  
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Fig. 3 – Output trust value. 

Each fuzzy set has a membership function that establishes 
the level of MF for a specific value in the fuzzy set. Figure 3 
illustrates the output of the trust value, and Fig. 4. depicts the 
selection plan.  

3.2 RULE EVALUATION 
Table 2 

Sample Fuzzy Rules  
1. IF(RD = = min) & (CD = = H) & (C = = L) & (P = = C) → (TV = = LCP) 

2. IF(RD = = A) & (CD = = A) & (C = = M) & (P = = M) → (TV = = NP) 

3.  IF(RD = = min) & (CD = = H) & (C = = L) & (P = = C) → (TV = = LCP) 

4.  IF(RD = = max) & (CD = = Ls) & (C = = H) & (P = = S) → (TV = = SSP) 

5.  IF(RD = = min) & (CD = = H) & (C = = L) & (P = = C) → (TV = = LCP) 

6.  IF(RD = = A) & (CD = = A) & (C = = M) & (P = = M) → (TV = = NP) 

7. IF(RD = = min) & (CD = = H) & (C = = L) & (P = = C) → (TV = = LCP) 

8. IF(RD = = min) & (CD = = H) & (C = = L) & (P = = C) → (TV = = LCP) 

9.   IF(RD = = A) & (CD = = A) & (C = = M) & (P = = M) → (TV = = NP) 

10. IF(RD = = min) & (CD = = H) & (C = = L) & (P = = C) → (TV = = LCP) 

11.  IF(RD = = A) & (CD = = A) & (C = = M) & (P = = M) → (TV = = NP) 

12.  IF(RD = = max) & (CD = = Ls) & (C = = H) & (P = = S) → (TV = = SSP) 

13.  IF(RD = = A) & (CD = = A) & (C = = M) & (P = = M) → (TV = = NP) 

14.  IF(RD = = max) & (CD = = Ls) & (C = = H) & (P = = S) → (TV = = SSP) 

15.  IF(RD = = min) & (CD = = H) & (C = = L) & (P = = C) → (TV = = LCP) 

16.  IF(RD = = A) & (CD = = A) & (C = = M) & (P = = M) → (TV = = NP) 

17.  IF(RD = = min) & (CD = = H) & (C = = L) & (P = = C) → (TV = = LCP) 

18.  IF(RD = = A) & (CD = = A) & (C = = M) & (P = = M) → (TV = = NP) 

19.  IF(RD = = min) & (CD = = H) & (C = = L) & (P = = C) → (TV = = LCP) 

20.  IF(RD = = A) & (CD = = A) & (C = = M) & (P = = M) → (TV = = NP) 

21.  IF(RD = = min) & (CD = = H) & (C = = L) & (P = = C) → (TV = = LCP) 

22.  IF(RD = = A) & (CD = = A) & (C = = M) & (P = = M) → (TV = = NP) 

23.  IF(RD = = max) & (CD = = Ls) & (C = = H) & (P = = S) → (TV = = SSP) 

24.  IF(RD = = min) & (CD = = H) & (C = = L) & (P = = C) → (TV = = LCP) 

25.  IF(RD = = A) & (CD = = A) & (C = = M) & (P = = M) → (TV = = NP) 

26.  IF(RD = = max) & (CD = = Ls) & (C = = H) & (P = = S) → (TV = = SSP) 

27.  IF(RD = = A) & (CD = = A) & (C = = M) & (P = = M) → (TV = = NP) 

 

 
Fig. 4 – Cost estimation graph. 

The proposed method evaluates four inputs and three 
fuzzy sets using the Mamdani system inference engine with 
trapezoidal MF and a knowledge base containing 27 fuzzy 

inference rules. Table 2 illustrates a fuzzy rule for 
determining the degree of trust. 

3.3 DRAGONFLY WHALE LION OPTIMIZATION 
(DWLO) ALGORITHM 

DWLO is used to adjust the weights of the neural 
network's internal parameters to accomplish specific 
optimization and problem-solving objectives. The DWLO 
organizational chart is shown in Figure. 5. In this study, the 
whale optimization method and the dragonfly algorithm are 
integrated with the lion optimization algorithm to update the 
optimal solution. The following section provides a 
mathematical description of the layers of the modified 
dragonfly whale lion optimization method. 
Layers of modified dragonfly whale lion optimization 
Layer 1: In this layer, a random input is generated by 

𝑃 =

⎣
⎢
⎢
⎢
⎡𝑆67

88 𝑆6789 … 𝑆678&

𝑆6798.
.
𝑆67*8

𝑆6799 … 𝑆679&.
.
.
.
.
.

𝑆67*8 … 𝑆67*&⎦
⎥
⎥
⎥
⎤

,                        (2) 

where 𝑆67 do the generators produce the total generation. 
Layer 2: Equation (3) determines each dragonfly’s objective 
function. 

 
Fig. 5 – Dragonfly whale lion optimization 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒:/ = 𝑀𝑖𝑛	𝑓(𝑖, 𝑙).                    (3) 
The objective of the system is denoted by 𝑓(𝑖, 𝑙). The best 

result is attained if the value of the 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒:/ is minimum. 
The following five factors are used to update the fittest 
solution. 

               
      (a)                                             (b)  

Fig. 6 – (a) Separation of dragonfly and (b) alignment of dragonfly. 

Layer 3: Using the formula below, find the 𝑆𝑒𝑝6 distance 
between each i-th dragonfly. 

𝑆𝑒𝑝6 = −∑ 𝑃 − 𝑃;<
6=8  .                           (4) 

The preceding equation states that P is regarded as 𝑃; 's 
neighbor if their previous distance is less than their present 
distance. A neighbor has k neighbors. 
Layer 4: The alignment of 𝐴𝑙𝑖𝑔6 is verified for each i-th 
dragonfly individual by applying the subsequent formula. 

𝐴𝑙𝑖𝑔6 =
∑ ))
*
+,-
<

,                                  (5) 
where, 𝑉; denotes the dragonfly's steady rate of movement. 
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Layer 5: The formula that follows determines the 
association 𝐶𝑜ℎ6 for every ith dragonfly individual. 

𝐶𝑜ℎ6 =
∑ ?)
*
+,-
<

− 𝑝.                           (6) 

  
   (a)                                   (b)  

Fig. 7 – (a) Cohesion of dragonfly and (b) attraction to food. 

Layer 6: The level of attraction of each dragonfly (i) to the 
food source 𝐹𝑆6 is calculated using the following formula: 

δ; = 𝑝@A − 𝑝 ,                              (7) 
σ; = 𝑝.B − 𝑝 ,                              (8) 

where 𝑝.B represents the enemy source and 𝑝@A represents the 
food source. 
Layer 7: In the update process, WOA is encouraged in eq. 
(9) and (10) to enhance DFA performance accuracy through 
search behavior 

𝐻 = X�⃗�𝑃C&/2[[[[[[[[[[⃗ − 𝑃[⃗ X,                                 (9) 
𝑃(𝑡 + 1) = 𝑃C&/2[[[[[[[[[[⃗ − 𝑌[⃗ 𝐻[[⃗ ,                         (10) 

where 𝐻[[⃗ , 𝑌[⃗ , and �⃗� represent the coefficient vectors and 𝑃C&/2[[[[[[[[[[⃗  
indicates the random whales. 

LOA utilizes a metaheuristic technique in which a 
collection of random solutions, known as lions, serves as the 
foundation for initializing the population. Within this 
population of 𝑁 solutions, every solution encompasses a and 
b features earmarked for enhancement. Further clarification 
of this concept can be provided as follows: 

𝑆D	(𝐿/) = [α, β],                                (11) 
In a population of size 𝑁, some lions serve as nomads, 

while the rest assemble into random Pride groups (P). Within 
the nomadic lion subset, 𝑆% are female, with the remainder 
being male. As the hunter progressively improves his 
physical state, the prey (P) attempts to escape and locate a 
new position, as shown by  

𝑃E = 𝑃 + 𝑟𝑎𝑛𝑑(0,1) × 𝑃𝐼 × (𝑃 − 𝐻).            (12) 
In eq. (6), P' represents the present prey location, 𝐻𝑢𝑛𝑡𝑒𝑟 

(H) signifies the fresh location utilized by the hunter for 
targeting, and PI symbolizes the percentage of improvement 
in hunter fitness, as demonstrated in  

𝐻E =

⎩
⎪
⎨

⎪
⎧randm(2 × 𝑃 − 𝐻), 𝑃o,

(2 × 𝑃 − 𝐻) < 𝑃
randm𝑃, (2 × 𝑃 − 𝐻)o,
(2 × 𝑃 − 𝐻) > 𝑃).

                     (13) 

Here, 𝐻E denotes the current hunter location, while 𝐻 
represents the new hunter location. The improved position of 
the central hunter is demonstrated by 

𝐻E = prand(𝐻, 𝑃), 𝐻 < 𝑃,
rand(𝑃,𝐻), 𝐻 > 𝑃,                      (14) 

As each pride has its area, its members preserve the 
algorithm's exceptional performance in representing the 
optimal feedback. Equation (15) elucidates the revised 
position of the female lion (𝐹DE). 

𝐹DE = 𝐹D + 2 × 𝐷 × 𝑟𝑎𝑛𝑑(0,1)	{𝑅8} + 𝑈(−1,1) ×
tan( ) × 𝐷 × {𝑅9},                                         (15) 

{𝑅8}	. {𝑅9} 	= 0,                              (16) 
‖{𝑅9}‖ 	= 1.                                (17) 

In this system, 𝐹𝑒𝑚𝑎𝑙𝑒 Lion (𝐹D) symbolizes the lion's 
current position, whereas 𝐷 represents the lion's position as 
determined in the pride territory selection tournament. The 
value {𝑅8} indicates the lion's initial or former position with 
relation to {𝑅9}. A perpendicular relationship exists between 
these two vectors, {𝑅8} and {𝑅9}. A random number of 
resident males’ mates with each of the specified female lions 
from the participating pride, 𝑐%. Once the genders of 
individuals have been chosen, two offspring will be 
generated using equations (18) and (19). 

𝑂𝑆;1 = 𝛽 × 𝐹D) +∑
83F
∑ G+./
+,-

	× 𝑀D)
6 × 𝑆6 ,           (18) 

𝑂𝑆;2 = (1 − 𝛽) × 𝐹D) + ∑
F

∑ G+./
+,-

×𝑀D)
6 × 𝑆6 .     (19) 

Here, d stands for size, m for the number of men in the 
herd, and c for the males. Furthermore, d is set to 0 without 
a breeding designation and 1 for the i-th male. The standard 
deviation is 0.1, while the mean is 0.5. 𝑀% of genes undergo 
mutation, where they are substituted with random values. 
Through this process, LOA generates a population of new 
cubs inheriting novel features from their parents. Following 
the defeat, lions with lower fitness are expelled from the 
pride and become nomads, while those with higher fitness 
are selected from the population to become resident males. 
Some random females might become nomads and leave their 
pride in the migration phase. The best-adapted nomads are 
reintroduced into the community to replace the killed lion, 
with freshly converted and existing nomads being graded 
based on physical state. The mathematical formulation of 
this concept is  

𝑥6H8 = |
I0
&
, 𝑖𝑓	𝑥; < 𝑎,

I0
(83&)

, 𝑖𝑓	𝑥6 ≥ 𝑎,
𝑖 = 1,2, … , 𝐷.                       (20) 

4. RESULT AND DISCUSSION 
This section depicts the results below while applying the 

proposed CORADMO-based CETA on the NASA 93 
dataset. The dataset determines the corresponding MRE, 
MMRE, and Maximum MRE values.  

4.1 DATASET DESCRIPTION 
To validate the model, the Promise Repository Nasa93 

dataset was chosen. The Nasa93 dataset contains data for 93 
projects and 24 features, respectively. The datasets in the 
Promise Repository have an estimated deviation factor of 
about 6.6, which indicates that they are not regularly 
distributed. As a result, the forecasting software 
development effort is inaccurate. 

4.2 PERFORMANCE EVALUATION 
A range of metrics are utilized to gauge the efficacy of 

estimation models. The following outlines three criteria for 
assessing the performance of the proposed model. 
Magnitude of Relative Error  

The difference between the actual value of the data set and 
the expected effort value for a particular project, as 
established by the proposed framework, is the mean relative 
error, or MRE. This is ascertained using: 

𝑀𝑅𝐸 = �J120(K6)3J"30(K6)
J"30(K6)

�,                        (21) 
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where 𝐸.AL(𝑃𝑖)	is the project's expected work-effort pi and 
𝐸&0L(𝑃𝑖) indicates the actual work effort for project Pi. 
 
Mean of Magnitude of Relative Error  
To calculate MMRE, apply the formula  

𝑀𝑀𝑅𝐸 = 8
I
∑ J120(K6)3J"30(K6)

J"30(K6)
/
6=8 ,                    (22) 

where 𝐸.AL(𝑃𝑖) is the project's expected work effort Pi and 
𝐸&0L(𝑃𝑖) is the actual project effort, Pi, and x is the total 
number of projects considered. 

 
Prediction level  

(Pred(L)) is the percentage of projects with an MRE of 
less than or equal to L. The calculation applies to 

𝑃𝑟𝑒𝑑(𝐿%) = <
I
∗ 100.                       (23) 

The number of projects in this instance with mean relative 
error (MRE) equal to or less than L is denoted by k, while the 
total number of projects is represented by x. L is a threshold 
number often set to 25, providing a baseline against which to 
measure the model's performance for evaluating software 
effort. Generally, the precision of estimation methods is 
associated with Pred (25%) and inversely related to MMRE.  

 
Fig. 8 – Comparison chart for Pred (25 %). 

 
Fig. 9 – Comparison chart for % MMRE. 

Figure 8 compares Pred (25 %) values for each of the three 
models listed in Table 3, while Fig. 9 illustrates the 
comparison of % MMRE values for the exact models listed 
in Table 4. These comparisons are conducted using fuzzy 
logic in COCOMO II % MMRE, further refined by adjusting 
the fuzzy model's Membership Function parameters via 
DWLO.  

Figure 10 illustrates the Maximum MRE values for each 
of the three models under consideration, as outlined in 
Table 5. Optimizing the fuzzy model with DWLO can prove 
that a more significant proportion of projects with % MRE 
less than the allowed limit of prediction (25%) may be 
achieved. 

Table 3 
Prediction value using three different models and three different datasets. 

Pred (25 %) GWDNNSB Fuzzy  
COCOMO II 

CORADMO-based  
CETA 

NASA 55.5 44.16 70.17 
NASA 2 68.22 50.44 77.48 

NASA 93 66.58 58.49 94.52 

Table 4 
%MMRE value using three different models and three different datasets. 

%MMRE GWDNNSB Fuzzy 
COCOMO II 

CORADMO 
based CETA 

NASA 35.79 36.8 80.65 
NASA 2 70.38 64.85 87.72 

NASA 93 64.47 72.22 95.47 

 
Fig. 10 – Comparison chart for maximum MRE. 

Table 5 
Maximum MRE value using three different models and three different 

datasets. 
Maximum 

MRE 
GWDNNSB Fuzzy 

COCOMO II 
CORADMO 
based CETA 

NASA 0.999 0.8664 0.8436 
NASA 2 0.9878 0.8349 0.784 

NASA 93 0.9572 0.7898 0.7742 

The COCOMO II model's forecast accuracy has risen with 
software calculation techniques like fuzzy logic. The 
outcomes are significantly enhanced by implementing 
DWLO to optimize the fuzzy model design. According to the 
data, Pred (25 %) is maximized, but the MMRE, which 
represents the total amount of error, is minimized. 

5. CONCLUSION 
In this paper, the fuzzy logic with the DWLO method is 

used to handle the uncertainty in defining the input 
parameters of the COCOMO II model, which leads to the 
development of a CORADMO-based CETA. To develop the 
CORADMO-based CETA, the COCOMO II model is 
fuzzified, and the associated fuzzification parameters are 
optimized using the DWLO technique. Herein, the software 
requirement data, cost drivers, constraints, and priorities are 
given as input to FIS.  

Then, the processed output from FIS, such as nominal 
plan, shortest schedule plan, and least cost plan, are 
optimized using DWLO, which provides the proper 
estimated effort, time, and cost as an output for software 
development. The performance of the CORADMO-based 
CETA method is measured in terms of Pred (25%), 
Magnitude of Relative Error, and Mean Magnitude of 
Relative Error, attaining the values of 80.72%, 87.94%, and 
98.13%, respectively. As a result, the model had improved 
precision, higher accuracy, and increased sensitivity. 

Table 1 
Notation List 

Notation List Description 
TV Trust Value 
a Lower bound of the first interval 
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b Upper bound of the first interval 
c Upper bound of the second interval 
d Upper bound of the third interval 
µ Constant multiplier 

𝑓(𝑖, 𝑙) Objective of the system 
Sep! Distance between dragonfly 

P Previous distance 
P" Present distance 

Alig! Alignment 
V" Dragonfly's steady rate 

Coh! Cohesion of dragonfly 
k  Neighbor's 

p#$ Enemy source 
p%& Food source 

H::⃗ , Y::⃗ , and X::⃗  Coefficient vectors 
P'()*:::::::::⃗  Random whales 

𝑁 Population size of lion 
P Prey 

𝛼 and 𝛽 Population of solutions 
P' Prey location 
H 𝐻𝑢𝑛𝑡𝑒𝑟 
PI Percentage of hunter fitness 
H+ Current hunter location 
F,+  Revised position of the female lion 

 F, F𝑒𝑚𝑎𝑙𝑒 Lion 
𝐷 Lion's position 
d Size 

m  Number of males in the herd 
c  Males 

E#&-(Pi) Expected work-effort 
E(.-(Pi) Actual work effort 

x  Total number of projects 
L Threshold number 
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