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One of the technical issues arising from deregulation is transmission line congestion. The size and location of FACTS controllers like 
thyristor-controlled series compensators (TCSCs) and static VAR compensator (SVC) devices significantly affect their efficiency in 
congestion management problems. As a nonlinear problem, locating and sizing these devices in a power network is difficult. To solve 
this issue, this paper presents the technique for optimal FACTS placement using the giant trevally optimizer (GTO) algorithm for 
congestion management (CM). Three objective functions are considered to reduce the congestion, including voltage stability and 
eliminating real power loss overall cost. To determine the best location for FACTS devices in the MATLAB R2020b tool, the suggested 
GTO approach is implemented and discussed for the IEEE 14-bus and IEEE 30-bus systems. It is also compared with existing GSA, 
BBO, and ICSA approaches under three loading situations. From the simulation results, GTO minimized total costs and real power 
losses better than existing algorithm algorithms, and GTO provides high net saving costs. 

1. INTRODUCTION 
The deregulation of the electricity market has transformed 

the entire market drastically. A new player is entering the 
market nowadays, contributing to every aspect: generation, 
transmission, distribution, revenues, etc. [1]. All deregulated 
electricity networks will have an independent system 
operator to maintain coordination (ISO). Transmission 
congestion is the term used to describe this transmission line 
problem [2–4]. Congestion must be reduced or avoided to 
guarantee optimal power flow, improve power quality, stop 
equipment failure, and prevent additional blackouts [5,6]. 

Flexible alternating current transmission system (FACTS) 
device installation, generating rescheduling, and optimal 
power flow are some techniques employed for CM [7,8]. The 
power transfer capability of electrical networks is 
significantly increased when FACTS devices, such as shunt-
series devices, like UPFCs, or static series compensators 
(SSSCs), TCSCs, SVCs, and static compensators 
(STATCOMs), are installed [9,10]. Many researchers have 
recently proposed solutions to alleviate transmission line 
congestion. A few studies are described below; 

Using a metaheuristic approach to congestion 
management is more favorable than traditional methods. 
Several methods enable the most effective actual power 
rescheduling of power system power plants, such as the 
improved crow search algorithm (ICSA) [11], the hybrid lion 
algorithm with moth-based mutation algorithm [12], and the 
bat algorithm (BA) [13], which is recommended to lower 
generation/congestion costs and system loss. To reduce 
congestion, [14] suggested using a location-based marginal 
cost approach based on congestion management to develop 
a gravitational search algorithm (GSA) for assigning TCSC 
with OPF and available transfer capability (ATC) [15]. A 
biogeography-based optimization (BBO) technique was 
proposed for the optimal residence of UPFC for congestion 
reduction and voltage profile enhancements of an 
interconnected power system [16]. However, this method has 
low convergence, which is the major drawback. A strategy 
based on a genetic algorithm that generates scaling factors 
(GA-GSF) was proposed in [17] to lower the generators' 
overall cost, market the power price, and remove 

transmission line congestion. For CM, it was discovered that 
the TCSC, SVC, and UPFC are the three FACTS devices that 
can be best located.  

In [18], atom search optimization metaheuristic approach 
(ASO) and machine learning (ML) with cubic spline models. 
In contrast, the hybridization of machine learning and 
metaheuristic exhibits promising potential in achieving real-
time fault localization with improved accuracy. [19] presents 
a permissive dataset-required deep learning-based approach 
to defect identification and classification. Obtaining huge, 
labeled datasets is the most challenging aspect of any deep 
learning system. The model is put through a rigorous battery 
of performance tests. An efficient voltage control device 
based on the FACTS was presented in [20]. It consists of a 
static synchronous compensator (STATCOM) and SC to 
moderate the SSR. The results were verified using the IEEE 
First SSR benchmark system. The outcomes show that 
SSSCs with fuzzy logic controllers (FLC) as their foundation 
outperform STATCOM. 

According to the literature above review, power system 
operation should also ensure minimum congestion costs. 
Implementing efficient optimization techniques plays a 
significant role in achieving better cost-minimization 
solutions [21–23]. Most optimization algorithms used to 
manage transmission congestion suffer from convergence 
issues with large systems, with local optima tricking occurring 
after a few iterations. This research offers the efficient Giant 
Trevally optimization (GTO) technique to enhance 
convergence and achieve values close to global optimal values 
to address this issue. By strategically deploying the TCSC and 
SVC FACTS devices, the GTO algorithm minimizes actual 
loss and lowers the network's overall cost. The IEEE 14-bus 
and 30-bus systems have examined the GTO algorithm to 
reduce congestion. The significant contribution of the 
presented work is described below: 
• Proposed a giant trevally optimization (GTO) algorithm 

for preventing premature local convergence while 
ensuring better search capabilities; 

• GTO was developed to decrease overall power losses, 
maintain voltage stability, and limit real power losses 
during congestion while retaining the system's 
parameters within acceptable ranges; 
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• We are analyzing the performance of GTO and other 

optimization techniques such as ICSA, GSA, and BBO 
with three reactive loading conditions. 

The work is structured as follows: section 3 explains the 
issue formulation and goal function, whereas Section 2 deals 
with modeling FACTS devices. Section 4 gives the 
suggested GTO-based problem-solving procedure and 
associated steps for implementation. Section 5 covers the 
performance of the proposed and current works. Section 6 
presents the work's conclusion in its final state. 

2. ALLOCATION FACTS DEVICES 
By strategically installing FACTS devices in the most 

opportune network segments to optimize network efficiency, 
the endeavor seeks to reduce costs and power losses. Figure 
1 displays the modeling for the SVC and TCSC. 

2.1 MODELLING OF TCSC 
Utilizing a series capacitor bank switched by a thyristor, 

TCSC modifies series capacitance reactions. The circuit only 
allows for the simultaneous switching of either of the two. 
Resonance is avoided by doing this. This may be stated 
mathematically as Equation (1), 

𝑋!" = 𝑋#!$% + 𝑋&'(' ,         (1) 
𝑋&'(' =	

)!∗)"
#!
$ [,(./0)2345(,0)]/)"

,              (2) 

where, 𝑋&'(' - reactance of TCSC, 𝑥# and 𝑥7 Denotes the 
capacitor and reactor offer reactance, respectively, while the 
thyristors' firing angle is indicated by α. 

2.1. MODELLING OF SVC 
A parallel filter circuit, a reactor and capacitor controlled by a 

thyristor, and an SVC are the components of this static 
compensation device. This may be stated mathematically as eq. (2), 

∆𝑄! = 𝑄(8' = −𝑉!,𝐵(8'                (3)  

𝐵(8' =
)"/

#!
$ [,(./0)2345(,0)]
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                 (4) 
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Fig. 1 – Modeling of (a) TCSC (b) SVC. 

3. CONGESTION MANAGEMENT (CM) PROBLEM 

3.1 OBJECTIVE FUNCTION  
The CM challenge has been formulated to reduce 

generation costs and total power loss under various equality 
and inequality constraints.  

(i) Real power loss 
A transmission system's inherent resistance makes real 

power losses inevitable. Eqn. (5) and (6) represent the real 

power loss (MW) that must be minimized:  
𝑃#9:: = ∑ 𝐺;(<$)[𝑉<, + 𝑉$, − 2𝑉<𝑉$ cos(𝛿<$)]$#

;=> .   (5) 
(ii) Total cost 
It is the sum of the generation cost function and FACTS 

device cost function, which is expressed below: 
𝐶&? = <!$

@%&
∑ 𝐶?!(𝑃?!) + 𝐶AB'&(
C%
!=> ,                (6) 

where, 𝐶?!(𝑃?!) - production cost, 𝐶AB'&( - the cost of the 
FACTS device and 𝑁? 	- number of generators. 

The production cost function is expressed in Eqn. (7), 
𝐶?!(𝑃?!) = 𝑎! + 𝑏!𝑃?! + 𝑐!𝑃?!, .                (7) 

Because FACTS devices are expensive, cost-profit studies 
should be used to evaluate the cost-effectiveness of novel 
FACTS devices in different settings. 

𝐶AB'&( = 𝑐. 𝑥AB'&((𝑘). 𝑃DE, . 𝑏𝑎𝑠𝑒	𝑝𝑜𝑤𝑒𝑟.         (8)  
(iii) Voltage Stability 
A major issue in the design and operation of electric power 

systems is voltage stability (VS). The capacity of the power 
system to keep voltage levels within permitted bounds 
during regular operation and also following a disruption is 
known as voltage stability. 

𝑉: = 𝑉𝑆𝑀F + ∆𝑉𝑆𝑀       (9) 
The voltage stability margin (VSM) denotes the voltage 

stability margin in the base case, whereas ∆VSM indicates 
the change in the voltage stable margin after CM. 

∆𝑉𝑆𝑀 = − G8(H
GI'#

()*) ∙ 𝑄)&'(' −
G8(H
GI'+

()*) ∙ 𝑄J&'(' +

∑ G8(H
GI',

()*) ∙ ∆𝑄KLL∈(K .           (10) 

The optimization algorithm minimizes the above-
mentioned multi-objective functions. During the 
optimization process, the inequality and equality constraints 
must be satisfied. 

3.1. CONSTRAINTS 

3.2.1 EQUAL CONSTRAINTS 
The equality constraint is a power balance equation, and it 

is expressed as follows for the base setup (without any 
FACTS devices): 

𝑃?< − 𝑃D< − 
𝑉< ∑ 𝑉$𝑌<$ cos(𝜃<$ + 𝛿< − 𝛿$) = 0. ∀	𝑚 ∈ 𝑁N .

C-
$=> (11) 

𝑄?< − 𝑄D< − 
𝑉< ∑ 𝑉$𝑌<$ sin(𝜃<$ + 𝛿< − 𝛿$) = 0	∀	𝑚 ∈ 𝑁N .

C-
$=>  (12) 

The following changes are made to the power balance 
calculations in the event of FACTS devices: 

𝑃?< + 𝑃:< − 𝑃D< − 
𝑉< ∑ 𝑉$𝑌<$ cos(𝜃<$ + 𝛿< − 𝛿$) = 0	∀	𝑚 ∈ 𝑁N

C-
$=> ,(13) 

QGm+Qsm+QSVCm-QLm- 
-Vm∑ VnYmn sin(θmn+δm-δn)=0	∀	m∈NB

NB
n=1 ,  (14) 

where 𝑄:< and 𝑃:< - reactive and active power, respectively, 
inserted by the TCSC at bus m, 𝑄(8'< - SVC injects reactive 
power at bus m. The SVC does not have a power injection system. 

3.2.2 INEQUALITY CONSTRAINTS 
The generator bus voltage restrictions are in (17), while 

the control limits for the generation of active and reactive 
power are in Equations (15) and (16), respectively. 

𝑃?!<!$ ≤ 𝑃?! ≤ 𝑃?!<[)		∀	𝑖	 ∈ 	𝑁? ,                  (15)  
𝑄?!<!$ ≤ 𝑄?! ≤ 𝑄?!<[)		∀	𝑖	 ∈ 	𝑁? ,                  (16) 
𝑉?!<!$ ≤ 𝑉?! ≤ 𝑉?!<[)		∀	𝑖	 ∈ 	𝑁? .                  (17) 

The security and Transformer tap changing setting range 
limits [24] are expressed in eqn. (16) and (17), respectively, 
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𝑉D@<!$ ≤ 𝑉D@ ≤ 𝑉D@<[)		∀	𝑝	 ∈ 	𝑁D ,                 (18) 
𝑆\# ≤ 𝑆\#<[)		∀	𝑞	 ∈ 	𝑛𝑙,                               (19) 
𝑇]<!$ ≤ 𝑇] ≤ 𝑇]<[)		∀	𝑡	 ∈ 	𝑁& .                 (20) 

FACTS device limits [25]:  
TCSC: 𝜏&'('<<!$ ≤ 𝜏&'('< ≤ 𝜏&'('<<[) 	∀	𝑚	 ∈ 	𝑁&'('     (21) 
SVC: 𝑄(8'"<!$ ≤ 𝑄(8'" ≤ 𝑄(8'"<[) 		∀	𝑖	 ∈ 	𝑁(8'                 (22) 

where, 𝑁(8' 	and	𝑁&'(' are represents the numbers of SVC 
and TCSC devices, respectively, in the network 

4. PROPOSED GTO-BASED OPTIMAL LOCATION 
OF FACTS DEVICE FOR CM  

To increase load capacity, minimize installation costs, and 
meet several other objectives, the optimal location for 
FACTS devices (TCSC and SVC) is determined in this study 
using the giant trevally optimized (GTO) approach. The 
GTO algorithm achieves the best and optimum answer by 
removing the poorest outcomes.  

4.1 GIANT TREVALLY OPTIMIZER (GTO) 
Giant trevallies (GT) mimic the behavior of seabirds when 

hunting with the proposed GTO algorithm. The GTO 
algorithm can handle many optimization problems by 
employing a generalized structure that adapts to different 
problem characteristics. Unlike algorithms tailored to 
specific problem types, GTO is flexible in application across 
combinatorial and continuous optimization problems. GTO 
algorithm provides distinct advantages over BBO, GSA, and 
ICSA optimization techniques, such as faster convergence, 
reduced computational overhead, better scalability, and 
robustness across diverse problem types. Its unique ability to 
dynamically adapt parameters and its flexible structure 
makes it a strong candidate for solving complex optimization 
problems in various domains. 

In the algorithm, the population matrix is made up of 
vectors for each member of the population, as shown in 
equation (23). 

A=

⎣
⎢
⎢
⎢
⎡
𝐴>
⋮
𝐴!
⋮
𝐴C⎦
⎥
⎥
⎥
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⎢
⎢
⎢
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⋮ ⋱ ⋮ ⋱ ⋮

𝑎C,> … 𝑎C," … 𝑎C,_!<⎦
⎥
⎥
⎥
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,(23) 

where A - candidate solution of GTO, 𝐴! – ith candidate 
solution of GTO, Dim - decision variables for a given 
problem, N - GTO member’s number, 𝑎!," - a value of the jth 
variable stated by the ith candidate result. For them to 
function, each trevally must be assigned a random position 
in the problem space 

𝐴!," = 𝑚𝑖𝑛" + l𝑚𝑎𝑥" −𝑚𝑖𝑛"m × 𝐾,        (24) 
where, 𝑚𝑎𝑥"and 𝑚𝑖𝑛" - minimum and maximum value that 
a population member. 
Step 1: Extensive Search 

At this stage, big trevally hunting movement patterns are 
reproduced utilizing (25): 

𝐴	(𝑡 + 1) = 𝐵𝑒𝑠𝑡a × 𝐾 + 
l(𝑚𝑎𝑥 −𝑚𝑖𝑛) × 𝐾 +𝑚𝑖𝑛m × 𝐿𝑒𝑣𝑦(𝑑𝑖𝑚),      (25) 

where, 𝐵𝑒𝑠𝑡a is the huge trevally's current search space, 
which is defined by their last search position; 𝐿𝑒𝑣𝑦(𝑑𝑖𝑚) is 
the Levy flight; and 𝐴	(𝑡 + 1) is the location vector of the 
enormous trevally in the following iteration. 

𝐿𝑒𝑣𝑦(𝑑𝑖𝑚) = 	𝑆b ×
;×c

|e|
/
01
,                    (26) 

σ = v
f(>2g)×345h203 i

fh/403 i×g×,
506/3 7

w,                     (27)  

where, 𝑆b – step size (set to 0.01), β - index of the Levy flight 
ranges from 0 to 2, r and v - random numbers. 
Step 2: Choosing the Area 

Giant trevally select an area with abundant food inside the 
search area, and it can seek prey by identifying and choosing 
the best location.  
𝐴	(𝑡 + 1) = 𝐵𝑒𝑠𝑡a × 𝑋 × 𝐾 +𝑀𝑒𝑎𝑛!$j9 − 𝐴𝑖(𝑡) × 𝐾(28) 

𝑀𝑒𝑎𝑛!$j9 =
>
C
∑ 𝐴𝑖(𝑡)C
!=> .                 (29) 

Using the Sphere function, eq. (28) 's effectiveness in 
selecting the area has been evaluated. All solutions are of 
higher quality.  
Step 3. Attacking 

During the GTO's exploitation period, the trevally seeks 
the bird or prey. Snell's law is followed to do this. In this 
case, the visual distortion V can be calculated with (30). 

𝑉 = sin(θ>° ) × 𝐷,                        (30) 
𝐷 = z𝐵𝑒𝑠𝑡a − 𝐴𝑖(𝑡)z,                     (31) 

where, 𝐷 – the distance between the attacker and prey. A 
mathematical simulation of GT behavior while chasing and 
flying is conducted using (32). 

𝐴	(𝑡 + 1) = 𝐿 + 𝑉 + 𝐻,                   (32) 
where L - to mimic pursuing the bird and increase the launch 
speed, the H - jump slope function allows the algorithm to 
switch from exploration to exploitation in an adaptable 
manner. 

𝐿	 = 𝐴𝑖(𝑡) × sin(θ,° ) × 𝐹9l" l𝐴𝑖(𝑡)m,          (33) 
H = K× }2 − 𝑡 × ,

&
~.                           (34) 

In this case, T and t are the maximum and current number 
of iterationskuky 

In the exploitation stage, the method looks for 
opportunities to exploit the solutions' proximity since, as 
iterations proceed, H drops from 2 to 0. 

5. RESULTS AND DISCUSSIONS  
The recommended work implements a GTO-based 

congestion management strategy using an Intel Pentium 
Gold processor with a clock speed of 4.01 GHz and 4 GB 
RAM. The IEEE 14-bus and 30-bus test systems explained 
below, are used to test it for this purpose. It is done using 
MATLAB R2020b (64-bit) software. The efficiency of the 
proposed GTO algorithm in addressing the congestion 
problem is in contrast to other techniques such as ICSA [11], 
GSA [14], and BBO [16]. Following an increase in demand, 
the specifics of the congested lines are noted, and a power 
flow assessment is conducted. The three case studies are as 
follows: 
Case 1: Adding 100% Reactive Loading  
Case 2: Adding 150% Reactive Loading 
Case 3: Adding 200% Reactive Loading 

5.1. PERFORMANCE ANALYSIS OF IEEE 14-BUS 
TEST SYSTEM 

Nine load buses, twenty transmission lines, four TCSCs, four 
SVCs, and five power-generating units make up the IEEE-14 
bus system. Considering load flows, the total real and reactive 
power losses before FACTS devices are 54.54 MVAr and 
13.393 MW, respectively. There is an actual power demand of 
259 MW and a real power generation capacity of 772.4 MW. 
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Although there is a 73.5 MVAr demand for reactive power, 
there is an 82.4 MVAr output. Various FACTS are displayed 
beside the IEEE 14 bus line architecture in Fig. 2.  

 
Fig. 2 – Single line schematic of IEEE 14-bus system with the installation 

of FACTS devices. 

 
Fig. 3 – Comparison analysis of FACTS devices for IEEE 14-bus system. 

Allocating FACTS devices maximizes the network loading 
capacity while minimizing actual power loss in Fig. 3. In case 
1, the allocation of FACTS devices reduces the loss from 
0.139 pu without FACTS devices to 0.133 pu, 0.123 pu, 
0.1237 pu, and 0.1201 pu using GSA, BBO, ICSA, and GTO 
techniques, respectively. Table 1 shows the difference in cost 
between the IEEE-14 system with and without FACTS using 
various methods. Without FACTS devices, the entire cost 
comprises the cost arising from active power loss alone. 

 

 
Fig. 4 – Comparison analysis of optimal power dispatch. 

Figure 4 illustrates the best power dispatch using several 
methods, both with and without FACTS. The graph 
compares the optimal power dispatch (in MW) for three 
different cases using various methods: without FACTS, GSA 
(gravitational search algorithm), BBOA (biogeography-
based optimization algorithm), ICSA (improved cuckoo 

search algorithm), and the proposed GTO (giant trevally 
optimizer). In Case 1, the proposed GTO method achieves 
the highest power dispatch, surpassing the other techniques. 
Case 2 shows a similar pattern, with GTO yielding slightly 
higher values than other methods. 

In Case 3, the difference is more pronounced, with GTO 
showing significantly better performance, dispatching close 
to 300 MW, indicating its superior efficiency in optimizing 
power transmission compared to the others. Table 1, Cases 
1, 2, and 3 show that the generation cost is less using the 
proposed GTO algorithm.  

Table 1  
Comparative analysis of objective function in IEEE-14 bus system. 
Case 

studies 
Total power 

loss cost 
system ($) 

Algo-
rithms 

Cost of 
FACTS 

devices ($) 

Generation 
cost with 
FACTS 

devices ($) 
 
Case 1 

 
1.1195 × 10! 

GSA 3.651 × 10" 1.0714 × 10! 
BBO 3.159 × 10" 1.012 × 10! 
ICSA 2.314 × 10" 0.6995 × 10! 
GTO 2.015× 10" 0.2647 × 10! 

 
Case 2 

 
1.1361 × 10! 

GSA 3.021 × 10" 1.1289 × 10! 
BBO 2.580 × 10" 1.0118 × 10! 
ICSA 2.412 × 10" 1.021 × 10! 
GTO 2.179 × 10" 0.854 × 10! 

 
Case 3 

 
1.1805 × 10! 

 

GSA 3.388 × 10" 1.162 × 10! 
BBO 2.751 × 10" 1.069 × 10! 
ICSA 2.569 × 10" 1.089 × 10! 
GTO 2.369 × 10" 0.895 × 10! 

 
Fig. 5 – Total cost with GTO-based FACTS in different cases for IEEE 14-

bus system. 

Figure 5 graph represents the convergence of cost ($) over 
iterations for three cases in an optimization process. Initially, 
all three cases start with a cost of around $1.14 × 10m. As the 
iterations progress, the costs decrease, with Case 1 (orange) 
showing the steepest reduction, reaching a final cost below 
$1 × 10m after about 20 iterations. Case 2 (blue) also reduces 
significantly but levels off around $1.02 × 10mafter 30 
iterations. Case 3 (red), however, shows the slowest 
improvement, stabilizing around $1.1×10mwithout a 
significant drop. This indicates that Case 1 provides the most 
cost-efficient solution, while Case 3 has the slightest 
reduction in price. 

5.2. PERFORMANCE ANALYSIS OF IEEE 30-
BUS TEST SYSTEM 

Fourteen transmission lines, three TCSCs, three SVCs, 
and six generators comprise the IEEE-30 bus system. A total 
of 900.2 MW of real power is generated, 283.4 MW of 
connected load is consumed, and 126.2 MW of reactive load 
is consumed. Suggested locations for the TCSCs in the IEEE 
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30 bus system are branches 7, 15, and 20, based on the Lmn 
sensitivity index. Buses 26, 29, and 30 serve SVC stations. 
Figure 6 displays the positions of the IEEE-30 bus system's 
one-line schematic and the FACTS device placements. 

 
Fig. 6 – Line diagram of IEEE 30-bus system with the installation of 

FACTS devices. 

Figure 7 shows the total real power losses in each 
scenario before and after installing FACTS devices. It shows 
that installing TCSC devices with the suggested GTO 
algorithm also reduces the real power loss, which is 
0.1752 pm to 0.1402 for case 1, 0.1789 pu to 0.1454 pu for 
case 2, and 0.1841 to 0.1589 for case 3.  

 
Fig. 7 – Comparison analysis of FACTS devices for IEEE 30-bus system. 

Table 2 compares the prices of different approaches and 
indicates that the total cost of active power loss equals the 
entire cost of the IEEE-30 bus system without FACTS. 
When FACTS is implemented, the whole cost consists of 
real power loss fines and FACTS installation fees. Table 2 
illustrates how applying the suggested GTO method reduces 
the generation cost in Cases 1, 2, and 3. With FACTS 
controllers, the congestion cost is lower than in their absence.  

Figure 8 shows the GTO convergence curve for a total cost 
with FACTS added in various case situations. Compared to 
the other current algorithm, the total cost achieved for cases 
1, 2, and 3 is significantly reduced at 1.175×10m, 1.201×10m, 
and 1.319×10m. In the base case for IEEE 30-bus systems, 
GTO saved more than GSA, BBO, and ICSA by $805,000, 
$65,000, and $59,000, respectively. 

Table 2 
 Comparative analysis of objective function in IEEE-30 bus system 
Case 

studies 
Total power 

loss cost 
system ($) 

Algo-
rithms 

Costof 
FACTS 

devices ($) 

Generation 
cost with 
FACTS 

devices ($) 
 
Case 1 

 
1.4089 × 10! 
 

GSA 3.021 × 10" 1.266 × 10! 
BBO 2.864 × 10" 1.177 × 10! 
ICSA 2.702 × 10" 1.166 × 10! 
GTO 2.514× 10" 1.066× 10! 

 
Case 2 

 
1.4361 × 10! 

GSA 3.476 × 10" 1.351 × 10! 
BBO 3.075 × 10" 1.215 × 10! 
ICSA 3.028 × 10" 1.205× 10! 
GTO 3.011× 10" 1.151× 10! 

 
Case 3 

 
1.4899 × 10! 
 

GSA 3.774 × 10" 1.392 × 10! 
BBO 3.517 × 10" 1.327 × 10! 
ICSA 3.527 × 10" 1.318 × 10! 
GTO 3.368× 10" 1.303× 10! 

 

 
Fig. 8 – Total cost with GTO-based FACTS at different cases for IEEE 30-

bus system. 

6. CONCLUSION 
This research presents an optimal allocation strategy for 

FACTS devices (TCSC, SVC) using the GTO algorithm to 
reduce power loss and total costs in a deregulated power 
system. To find the optimal location for FACTS devices, the 
proposed GTO method was evaluated in IEEE 14-bus and 
IEEE 30-bus systems, utilizing three instances and the 
MATLAB R2020b tool. FACTS devices are placed 
optimally in the network, and fitness function variables are 
set using the GTO algorithm. Simulated results show that 
GTO produces minimum objectives for FACTS location. 
Therefore, GTO minimized total costs and real power losses 
better than ICSA, GSA, and BBO algorithms. For all loading 
conditions, net savings were higher with GTO than with 
ICSA, GSA, and BBO approaches. GTO saved $172,000, 
$129,620, and $126,300 more at 100% reactive loading in 
the IEEE 14-bus system than the GSA, BBO, and ICSA 
algorithms did in that order. GTO made similar savings in 
the primary case for IEEE 30 bus systems over GSA, BBO, 
and ICSA, which were $805,000, $65,000, and $59,000, 
respectively. The limitation of the proposed work is that it 
involves more complex dynamics in larger systems. This 
computational demand could increase, potentially slowing 
down the optimization process. Future limitations can be 
addressed by hybridizing the GTO algorithm with deep 
learning techniques to improve real-time fault detection and 
system optimization. Machine learning models could assist 
in identifying optimal locations for FACTS devices in 
dynamic grid environments.  
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