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In this article, we present a novel approach: a fractional-order fuzzy observer, an extension of the Thau-Luenberger observer, 
specifically designed for nonlinear systems characterized by commensurate non-integer order Takagi-Sugeno models. This work 
makes significant contributions in two key areas. Firstly, both the activation functions of the model and the Lipschitz fractional-
order fuzzy observer are dependent on unmeasurable variables, particularly the system's state. Secondly, our proposed fuzzy 
observer explicitly incorporates the system's initial conditions. The stability conditions of the fractional-order fuzzy observer are 
expressed through Bilinear Matrix Inequalities, which are then converted into linear matrix inequalities (LMIs). Subsequently, 
numerical simulations are conducted to demonstrate the efficacy of our proposed estimator.

1. INTRODUCTION

State estimation methodologies for systems characterized 
by fractional-order linear models have attained a notable 
level of maturity [1–4]. Nevertheless, the intrinsic linearity 
inherent in the models delineating the monitored system 
introduces a pivotal assumption, thereby constraining the 
applicability and significance of the acquired findings. 

The direct extrapolation of methodologies devised for 
fractional-order linear models to their nonlinear counterparts 
presents a nuanced challenge [5,6]. Nonetheless, auspicious 
outcomes have been realized through the adoption of a modeling 
paradigm predicated on a series of elementary structured models. 
Each model delineates the system's dynamics within a designated 
"operational zone." In this context, the Takagi-Sugeno model, 
renowned for its comprehensive portrayal of system behavior via 
the interpolation of local linear models, has yielded substantial 
achievements [7,8]. 

Within the domain of fractional-order linear models, the 
regulation and identification of anomalies can be conducted 
utilizing methodologies grounded in state observers [9–13]. 

In systems delineated by Takagi-Sugeno models, the 
application of observer bank schemes for fault diagnosis 
encounters challenges due to the introduced couplings within 
the structure. Consequently, limited research endeavors have 
addressed the development of observers grounded in 
fractional-order fuzzy Takagi-Sugeno models [14–16]. 

The state estimation of a continuous nonlinear system can be 
attained through diverse categories of estimators or observers 
[16–18]. Herein, we provide a synthesis that rationalizes the 
selection of the estimator advocated in this study. 

The Extended Kalman Filter (EKF) serves as a valuable 
instrument for handling noisy systems characterized by 
statistical properties. However, despite its utility, the EKF is 
subject to several limitations. These encompass the lack of 
definitive evidence regarding its convergence, the absence of 
assured reconstruction velocity, its localized applicability 
primarily around nominal trajectories, and the computational 
overhead associated with frequent online updates of state 
estimates and covariance matrices [18,19]. 

Observers rooted in Lyapunov stability principles offer 
the advantage of facile implementation, contingent upon the 

availability of an apt gain matrix to ensure the stability of 
estimation error dynamics. However, these observers 
encounter difficulties with the intricate structure of nonlinear 
systems. The selection of an appropriate gain matrix, 
meeting the stability criterion for estimation error dynamics, 
frequently necessitates a trial-and-error approach. This 
endeavor can pose challenges and, in certain instances, may 
be unachievable, particularly for high-order systems [19,20]. 

Observers formulated in canonical form offer a significant 
advantage: the simplification of observer synthesis into a 
linear framework after the transformation process. However, 
these methods encounter challenges in delineating systems 
possessing the requisite canonical observability form. 
Moreover, identifying a transformation that fulfills these 
criteria can be elusive at times, owing to the restricted class 
of systems amenable to such transformations [19,21]. 

High-gain observers provide the advantage of achieving 
rapid convergence of state estimation errors towards zero by 
modulating the convergence speed through the parameter θ. 
Nevertheless, excessively large gains may amplify 
sensitivity to measurement noise, thereby posing a 
drawback. Additionally, while a coordinate transformation 
theoretically facilitates the attainment of a triangular 
structure, practical hurdles persist in its execution, thereby 
complicating the process [19,22]. 

Adaptive observers provide concurrent estimation of 
states and parameters, thereby augmenting robustness 
against parametric variations in contrast to state observers 
employing fixed parameter values. However, analogous to 
canonical observers, they exhibit analogous limitations, as 
previously delineated [19,23]. 

Observers grounded in extended linearization endeavor to 
identify the function h to uphold the invariance of error 
dynamics' eigenvalues concerning ε. Nonetheless, this 
approach entails significant drawbacks. Primarily, analytical 
computation proves burdensome, notably due to 
integrations, exacerbated further in scenarios with multiple 
inputs. Secondly, the pursuit of equilibrium points presents a 
considerable challenge [19,24]. 

Sliding mode observers are devised to mitigate modeling 
uncertainties by integrating a complementary term 
contingent on the output error. 
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Several methodologies have been proposed to alleviate 
chattering, albeit at the cost of permitting non-zero estimation 
errors. However, adopting this strategy entails a structural 
assumption concerning the nonlinear function, imposing a 
significant constraint in numerous scenarios [19,25]. 

Observers founded on estimation error optimization 
address an optimization dilemma, usually employing 
gradient methods, which, unfortunately, require substantial 
computational resources, primarily due to the need for 
solving it at each sampling instance. Nonetheless, this 
approach presents a noteworthy advantage in its applicability 
to a diverse range of nonlinear systems [19,26]. 

The state-of-the-art review of existing observer synthesis 
methodologies has offered insights into the merits and 
demerits of each approach. 

In summary, certain methodologies are intricately linked 
to specific attributes of nonlinear systems, exemplified by 
high-gain observers and those reliant on Lyapunov 
techniques. Conversely, other approaches overlook 
uncertainties and modeling inaccuracies, as evidenced by the 
extended Kalman filter, observers based on extended 
linearization, high-gain observers, or those formulated in 
canonical form. Moreover, methodologies such as 
optimization-based, sliding mode, or adaptive observers 
necessitate substantial computational resources. 

The study proposes Fractional Order Fuzzy Observers 
customized for Takagi-Sugeno (T-S) models, amalgamating 
principles derived from fractional calculus, fuzzy logic, and 
multiple-model methodologies. By incorporating fractional 
order dynamics, these observers effectively capture nuanced 
system behaviors, encompassing memory effects and long-
range dependencies. Harnessing a multiple-model 
framework, they inherently adapt to fluctuating operating 
conditions and uncertainties within the model structure, thus 
augmenting the robustness and adaptability of state 
estimation in T-S fuzzy systems [27].  

Broadly, the formulation of a non-integer order observer 
for a system delineated by a non-integer order Takagi-
Sugeno fuzzy model entails the design of fractional-order 
local observers, followed by their interpolation according to 
predefined weight functions. This design methodology 
extends the scope of analysis and synthesis techniques, 
originally formulated for linear non-inter order systems, to 
encompass the nonlinear non-integer order domain [27]. 

Notably, in [5,28], observers devised for linear systems 
have been adjusted for application to Takagi-Sugeno models. 
However, it's crucial to note that these investigations 
primarily focus on Takagi-Sugeno fuzzy models utilizing 
activation functions contingent on measurable decision 
variables (system input or output), a characteristic also 
shared by the fractional-order fuzzy observer.  

In the literature, sparse efforts have been made regarding 
the development of fractional-order fuzzy state observers 
with activation functions reliant on non-measurable 
variables (such as system state) [27]. 

Our contribution in this article resides in the state 
estimation of a nonlinear system delineated by a fractional-
order Takagi-Sugeno fuzzy model, incorporating activation 
functions dependent on unmeasurable decision variables 
(system states). 

The stability conditions of the non-integer order fuzzy 
observer are determined using a quadratic Lyapunov 
function, which is represented by a set of linear matrix 
Inequalities (LMIs). 

2. FRACTIONAL ORDER SYSTEMS

The state-space model presented below [29] represents the 
non-integer order linear system: 

{
D𝑡

𝛼𝑥(𝑡)𝑎 = 𝐴𝑖𝑥𝑖(𝑡) + 𝐵𝑖𝑢(𝑡),

𝑦(𝑡) = 𝐶𝑖𝑥𝑖(𝑡),       
 (1) 

where 𝑥𝑖(𝑡)𝑅𝑛 is the state, 𝑢(𝑡)𝑅𝑚 is the input, and
𝑦(𝑡)𝑅𝑝 is the output vectors of the system and 𝐴𝑖𝑅𝑛×𝑛,
𝐵𝑖𝑅𝑛×𝑚, 𝐶𝑖𝑅𝑝×𝑛, and 𝛼[𝛼1, 𝛼2, … , 𝛼𝑛]𝑇 are the
fractional orders. 

D𝑡
𝛼𝑓(𝑡)𝑎 denotes the fractional differ-integral operators, 

where 𝑎 and 𝑡 are the bounds of the operation and 𝛼𝑅  is a 
generalization of the standard integration and differentiation 
to an arbitrary order, which can be rational, irrational, or 
even complex. The basic continuous differ-integral operator 
is given as follows [27]: 

D𝑡
α

𝑎 = {

dα

d𝑡α  for    α > 0,

1  for      α = 0,

∫ (d)α  for  α < 0.
𝑡

α

  (2) 

In the literature, we can find different definitions related 
to fractional order systems. The most commonly used 
definitions of fractional order derivatives are: 

The Riemann-Liouville (RL) definition [27]: 

D𝑡
α

𝑎 𝑓(𝑡) =
1

(𝑚−α)
(

d

d𝑡
)

𝑚

∫
𝑓()

(𝑡−)1−(𝑚−α) d.
𝑡

𝑎
   (3) 

The Grunwald-Letnikov (GL) definition [24]: 

D𝑡
α

𝑎 𝑓(𝑡) = lim
ℎ→0

1

ℎα
∑ (−1)𝑘 (

α
𝑘
) 𝑓(𝑡 − 𝑘ℎ).

(𝑡−𝑎)/ℎ
𝑘=0   (4) 

The fractional differo-integral operator for the function 
𝑓(𝑡) following Caputo definition is adopted in this paper 
because it allows utilization of the initial values of classical 
integer-order derivatives with clear physical interpretation as 
follows [30,31]: 

D𝑡
α

𝑎 𝑓(𝑡) =
1

(𝑚−𝛼)
∫

𝑓𝑚()

(𝑡−)1−(𝑚−α) d.
𝑡

𝑎
             (5) 

In these expressions, 𝑚 − 1 < α < 𝑚  , and (. ) is the 
Euler's gamma function [32]: 

(𝑥) = ∫ 𝑒−𝑡𝑡(𝑥−1)d𝑡,   𝑥 > 0.
∞

0
 (6) 

In this work, we will examine the commensurate non-
integer order nonlinear system, which is given by [33]: 

{
D𝑡

α
𝑎 𝑥𝑖(𝑡) = 𝑓𝑖(𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡), 𝑡),

𝑥𝑖(0) = 𝑐𝑖 ,    𝑖 = 1,2, … , 𝑛, 
(7) 

where 𝑐𝑖 represents the initial conditions. The vector form of
eq (7) is: 

D𝑡
α

𝑎 𝑥(𝑡) = 𝑓(𝑥),            (8) 
where, 𝑓(𝑥) is the nonlinear function that determines the 
behavior of 𝑥(𝑡), 𝑥(𝑡)𝑅𝑛, and 𝛼𝑅 represents a broad
extension surpassing conventional integration and 
differentiation, accommodating orders that are not limited to 
rational or irrational numbers but can also include complex 
numbers.  

The equilibrium points of system (8) can be ascertained by 
resolving the subsequent equation: 

𝑓(𝑡) = 0.  (9) 
We posit that a designated equilibrium point of the system 

is established as: 
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𝐸∗ = (𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗).   (10) 

where 𝐸∗ defines the equilibrium point of the system as a 
vector wherein each component signifies the equilibrium 
value of the respective variable within the system, 𝑛 is the 
dimensionality of the system, 𝑥1

∗, 𝑥2
∗, … , 𝑥𝑛

∗  are the individual 
components of the equilibrium point vector. Each 
component 𝑥𝑖

∗ represents the value of the thi  variable of the 
system at equilibrium. 

For ease of writing, in the subsequent equations, we use 𝑓 
instead of 𝑓(𝑡) right after this relation. 

3. FRACTIONAL ORDER TAKAGI-SUGENO 

MODEL APPROACH 

The ability of Takagi-Sugeno fuzzy models to represent or 
approximate the dynamic behavior of a real system has been 
widely recognized. Indeed, on one hand, they offer the 
possibility to describe highly complex nonlinear behaviors 
with a simple structure inspired by linear models.  

On the other hand, their particular structure allows for the 
extension of certain results obtained within the framework of 
linear systems [34]. 

T-S models are the most studied in the literature; they are 
described by a set of sub-models sharing a unique state 
vector. 

Two categories can be delineated based on the nature of 
the variables incorporated in the weight functions. These 
variables, denoted as decision variables or premise variables, 
can either be known (system input or output, etc.) or 
unknown (system state, etc.). 

The category of Takagi-Sugeno (T-S) fuzzy models with 
measurable decision variables (MDV) has undergone 
extensive advancements across diverse domains, notably in 
control, stabilization, and state estimation [35], and 
diagnostics. However, the second category is very little 
explored, especially in the field of fuzzy observer design and 
their use for diagnostics. Consider a non-integer order Takagi-
Sugeno fuzzy model where the activation functions ℎ𝑖  depend on 
the state of the system: 

{
D𝑡

α
𝑎 𝑥 = ∑ ℎ𝑖(𝑥)(𝐴𝑖𝑥 + 𝐵𝑖𝑢)𝑁

𝑖=1 ,
𝑦 = 𝐶𝑥,                                

  (11) 

where 𝑥𝑅𝑛 is the state vector, 𝑢𝑅𝑚 is the input vector, 
𝑦𝑅𝑝 is the output vector. 𝐴𝑖𝑅𝑛×𝑛 is a state matrix,  
𝐵𝑖𝑅𝑛×𝑚 is an input influence matrix and 𝐶𝑖𝑅𝑝×𝑛 is the 
output or observation matrix. 𝑁 is the number of sub-linear 
models. 𝛼𝑅𝑛 is the fractional order satisfying. Finally, the 
activation functions ℎ𝑖 depend on a non-measurable variable 
(system state), and verify: 

{
∑ ℎ𝑖(𝑥)𝑁

𝑖=1 = 1,                                 

0 ≤ ℎ𝑖(𝑥) ≤ 1   ∀ 𝑖 ∈ {1,2, … , 𝑛}.
           (12) 

4. FRACTIONAL ORDER FUZZY OBSERVER 

SYNTHESIS 

The subsequent form of fuzzy observer is proposed: 

{
D𝑡

α
𝑎 �̂� = ∑ ℎ𝑖(�̂�)(𝐴𝑖�̂� + 𝐵𝑖𝑢 + 𝐿𝑖(𝑦 − �̂�))𝑁

𝑖=1 ,

�̂� = 𝐶�̂�,                                                                      
    (13) 

where D𝑡
α

𝑎 �̂� is the fractional order derivative of the 
estimated state vector �̂� with respect to time. �̂� is the 
estimated of the measured output vector.  

𝐿𝑖 is the gain matrix associated with each rule 𝑖. 

This work introduces a novel method enabling the state 
estimation of the system (11).  

For this, we pose 𝐴𝑖 = 𝐴0 + 𝐴𝑖, where 𝐴0 is given as 
follows: 

𝐴0 =
1

𝑁
∑ 𝐴𝑖 .

𝑁
𝑖=1               (14) 

By replacing the structure of 𝐴𝑖 in the model eq. (11), we 
obtain: 

{
D𝑡

𝛼
𝑎 𝑥 = 𝐴0𝑥 + ∑ ℎ𝑖(𝑥)𝑁

𝑖=1 (𝐴𝑖𝑥 + 𝐵𝑖𝑢),

𝑦 = 𝐶𝑥.                                                           
         (15) 

From this model, we propose the following fractional 
order fuzzy observer by replacing 𝐴𝑖 in (13): 

{
D𝑡

α
𝑎 �̂� = 𝐴0�̂� + ∑ ℎ𝑖(�̂�)(𝐴𝑖�̂� + 𝐵𝑖𝑢+𝐿𝑖(𝑦 − �̂�)),𝑁

𝑖=1

�̂� = 𝐶�̂�.
 (16) 

The advantage of this representation compared to (11) is 
to obtain fewer conservative conditions of existence. 

The state estimation error and the output estimation error 
can be delineated as follows: 

        {𝑒 = 𝑥 − �̂�,
�̃� = 𝑦 − �̂�.

                    (17) 

The dynamics of the state estimation error are given by: 
D𝑡

α
𝑎 𝑒 = ∑ (ℎ𝑖(𝑥)(𝐴𝑖𝑥 + 𝐵𝑖𝑢)𝑁

𝑖=1

           −ℎ𝑖(�̂�)(𝐴𝑖�̂� + 𝐵𝑖𝑢 + 𝐿𝑖𝐶𝑒)).
    (18) 

D𝑡
α

𝑎 𝑒 = ∑ ℎ𝑖(�̂�)(𝐴𝑖 − 𝐿𝑖𝐶)𝑒 + 𝜀(𝑥, �̂�, 𝑢)𝑁
𝑖=1 ,  (19) 

where: 
ε(𝑥, �̂�, 𝑢) = ∑ (ℎ𝑖(𝑥)−ℎ𝑖(�̂�))(𝐴𝑖𝑥 + 𝐵𝑖𝑢)𝑁

𝑖=1 ,  (18) 
where the gains 𝐿𝑖  are determined by solving a set of LMI 
involving ℎ the Lipschitz constant of term (20). 
Unfortunately, for a high value of the Lipschitz constant ℎ, 
the LMI system to be solved may not have a solution.  

The dynamics of the estimation error is obtained with eqs. 
(15) and (16): 

D𝑡
𝛼

𝑎 𝑒 = ∑ ℎ𝑖(�̂�)𝑁𝑖𝑒 + ∑ 𝐴𝑖𝑖 + ∑ 𝐵𝑖ε𝑖
𝑁
𝑖=1 ,𝑁

𝑖=1
𝑁
𝑖=1    (21) 

where 

{

𝑁𝑖 = 𝐴0 − 𝐿𝑖𝐶,            

𝑖 = ℎ𝑖(𝑥)𝑥−ℎ𝑖(�̂�)�̂�,

𝜀𝑖 = (ℎ𝑖(𝑥)−ℎ𝑖(�̂�))𝑢.
   (22) 

Theorem 1. The state estimation error between the non-

integer order Takagi-Sugeno system (15) and the non-

integer order fuzzy observer (16) asymptotically tends to 

zero if there exist two positive definite symmetric matrices 𝑃 

and 𝑄, matrices 𝐺𝑖, and positive scalars  1,  2, and  such 

that the following matrix inequalities are satisfied: 
𝐴0

𝑇𝑃 + PA0 − 𝐺𝑖
𝑇𝑃 − 𝑃G𝑖 < −𝑄.  (23) 

[
 
 
 
 −𝑄 +  1𝑇𝑖

2𝐼 𝑃𝐴𝑖 𝑃𝐵𝑖 𝐹𝑖𝐼

𝐴𝑖

𝑇
𝑃  − 1𝐼 0 0

𝐵𝑖
𝑇𝑃 0  − 2𝐼 0

𝐹𝑖𝐼 0 0  − 2𝐼]
 
 
 
 

< 0.  (24) 

 − 
1
2 > 0.                 (25) 

Proof. For the study of observer convergence, let us make 
the following assumptions: 

Assumption 1. The activation functions are Lipschitz: 
|ℎ𝑖(𝑥)−ℎ𝑖(�̂�)| ≤ 𝐹𝑖|𝑥 − �̂�|,  (26) 

     |ℎ𝑖(𝑥)𝑥 − ℎ𝑖(�̂�)�̂�| ≤ 𝑇𝑖|𝑥 − �̂�|, (27) 
where 𝐹𝑖  and 𝑇𝑖 , positive scalars, are the Lipschitz constants. 

Assumption 2. The input 𝑢 of the system is bounded: 
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‖𝑢‖ ≤ 
1
,    

1
> 0.        (28) 

To illustrate the stability of the state estimation error, 
we investigate it using the Lyapunov quadratic function 
𝑉(𝑒) = 𝑒𝑇𝑃𝑒, 𝑃 > 0, , whose derivative with respect to time is: 

D𝑡
α

𝑎 𝑉(𝑒) ≤ D𝑡
α

𝑎 𝑒T𝑃𝑒 + 𝑒T𝑃 D𝑡
α

𝑎 𝑒.         (29) 
Then, by using (21): 

𝐷𝑡
α

𝑎 𝑉 ≤ ∑ (𝑖
T𝐴𝑖

T
𝑃𝑒 + 𝑒T𝑃𝐴𝑖𝑖 + 𝑖

T𝐵𝑖
T𝑃𝑒 +𝑁

𝑖=1

          +𝑒T𝑃𝐵𝑖𝑖 + ℎ𝑖(�̂�)(𝑒T𝑁𝑖
T𝑃𝑒 + 𝑒T𝑃𝑁𝑖𝑒)) .

    (30) 

Considering (22) and assumptions 1 and 2, we then have: 

{
|𝑖| ≤ 𝑇𝑖|𝑒|,   
|𝑖| ≤ 𝐹𝑖1

|𝑒|.
  (31) 

Lemma 1. For all 𝑋 and 𝑌 matrices of appropriate 

dimensions,  being a positive constant, the following 

property holds: 
𝑋T𝑌 + 𝑌T𝑋 ≤ 𝑋T𝑋 + 

−1𝑌T𝑌,    > 0.     (32) 
By applying this lemma as well as (31), we have the 

following increases: 
𝑖

T𝐴𝑖

T
𝑃𝑒 + 𝑒T𝑃𝐴𝑖𝑖 ≤ 𝑖

T𝑖 + 
−1𝑒T𝑃𝐴𝑖𝐴𝑖

T
𝑃𝑒,

    ≤ 1𝑇𝑖
2𝑒T𝑒 + 1

−1𝑒T𝑃𝐴𝑖𝐴𝑖

T
𝑃𝑒,

      (33) 

𝑖
T𝐵𝑖

T𝑃𝑒 + 𝑒T𝑃𝐵𝑖𝑖 ≤ 2𝑖
T𝑖 + 2

−1𝑒𝑇𝑃𝐵𝑖𝐵𝑖
T𝑃𝑒,

             ≤ 2𝐹𝑖
2β1

2𝑒T𝑒 + 2
−1𝑒T𝑃𝐵𝑖𝐵𝑖

T𝑃𝑒.
       (34) 

The derivative of the Lyapunov function (30) can then be 
augmented as follows: 

D𝑡
α

𝑎 𝑉(𝑒) ≤ ∑ 𝑒T(ℎ𝑖(�̂�))(𝑁𝑖
T𝑃 + 𝑃𝑁𝑖)

𝑁
𝑖=1                   

+(1𝑇𝑖
2 + 2𝐹𝑖

2
1
2)𝐼 + 1

−1𝑃𝐴𝑖𝐴𝑖

T
𝑃 + 2

−1𝑃𝐵𝑖𝐵𝑖
T𝑃) 𝑒.

 (35) 

The negativity of the derivative of the considered 
Lyapunov function is guaranteed if for 𝑖 = 1,2, , 𝑛: 

ℎ𝑖(�̂�)(𝑁𝑖
𝑇𝑃 + 𝑃𝑁𝑖) + (1𝑇𝑖

2 + 2𝐹𝑖
2

1
2)𝐼           

        +1
−1𝑃𝐴𝑖𝐴𝑖

T
𝑃 + 2

−1𝑃𝐵𝑖𝐵𝑖
T𝑃) < 0,

   (36) 

which leads to the following conditions: 
(𝐴0 − 𝐿𝑖𝐶)T𝑃 + 𝑃(𝐴0 − 𝐿𝑖𝐶) < −𝑄,       (37) 
−𝑄 + (1𝑇𝑖

2 + 2𝐹𝑖
2

1
2)𝐼 + 1

−1𝑃𝐴𝑖𝐴𝑖

T
𝑃

    +2
−1𝑃𝐵𝑖𝐵𝑖

T𝑃 < 0.
        (38) 

By changing the variables 𝐺𝑖 = 𝑃𝐿𝑖 , and by applying 
Schur's complement, we obtain the linear matrix inequalities: 

𝐴0
𝑇𝑃 + 𝑃𝐴0 − 𝐶𝑇𝐺𝑖

𝑇 − 𝐺𝑖𝐶 < −𝑄,  (39) 

[

−𝑄 + (1𝑇𝑖
2 + 2𝐹𝑖

2
1
2)𝐼 𝑃𝐴𝑖 𝑃𝐵𝑖

𝐴𝑖

T
𝑃  − 1𝐼 0

𝐵𝑖
T𝑃 0  − 2𝐼

] < 0.

1 > 0,    2 > 0                                      

 (40) 

Rather than imposing a priori the bound on the input, we 
can add a degree of freedom by considering this bound as a 
variable to be determined that we will call . Using Schur's 
complement, the inequality (40) is written: 

[
 
 
 
 −𝑄 +  1𝑇𝑖

2𝐼 𝑃𝐴𝑖 𝑃𝐵𝑖 𝐹𝑖 2𝐼

𝐴𝑖

T
𝑃  − 1𝐼 0 0

𝐵𝑖
T𝑃 0  − 2𝐼 0

𝐹𝑖 2𝐼 0 0  − 2𝐼 ]
 
 
 
 

< 0.

1 > 0,    2 > 0                                                 

    (41) 

This inequality is no longer linear in the unknowns (presence 
of product  2). To write it in LMI form, we put:   = 

2
. 

𝐴0
T𝑃 + 𝑃𝐴0 − 𝐶T𝐺𝑖

T − 𝐺𝑖𝐶 < −𝑄.   (42) 

     

[
 
 
 
 −𝑄 +  1𝑇𝑖

2𝐼 𝑃𝐴𝑖 𝑃𝐵𝑖 𝐹𝑖𝐼

𝐴𝑖

T
𝑃  − 1𝐼 0 0

𝐵𝑖
T𝑃 0  − 2𝐼 0

𝐹𝑖𝐼 0 0  − 2𝐼]
 
 
 
 

< 0.      (43) 

Knowing  and  2, we can deduce the value : 
 =



 2 
 .        (44) 

To ensure that the values of  and  2 satisfy hypothesis 2 
( must be greater than or equal to 

1
), we propose to add a 

constraint on  and  2 to guarantee 

 2
≥ 

1
: 

 − 
1
2 ≥ 0.   (45) 

Using constraint (45) with conditions (42) and (43), the 
value found  is greater than or equal to the bound of input 

1
. 

So far, the conditions found only guarantee asymptotic 
convergence. To ensure certain temporal properties, we 
propose to ensure the placement of the poles of the matrices 
(𝐴0 − 𝐿𝑖𝐶) in specific regions. 

5. EXAMPLE 

Consider the non-integer Takagi-Sugeno fuzzy system 
given by: 

𝐴1 = [
−2 1 1
1 −3 0
2 1 −6

], 𝐴2 = [
−3 2 −2
5 −3 0

0.5 0.5 −4
],           

𝐵1 = [
1

0.5
0.5

],   𝐵2 = [
0.5
1

0.25
],    𝐶 = [

1 1 1
1 0 1

]. 

The activation functions are selected in the following 
format: 

{
ℎ1(𝑥) =

1−tanh(𝑥2)

2
,                            

ℎ2(𝑥) = 1 − ℎ1(𝑥) =
1+tanh(𝑥2)

2
.
      (46) 

The activation functions are and depend only on the first 
component of the state. Initial condition of the system 𝑥0 =
(0,0,1)  and for the observer �̂�0 = (0,0,0). 

 

 
Fig.1 – States estimation and their error of estimation. 

Figures 1 and 2 depict the comparison between the state 
of the non-integer order Takagi-Sugeno fuzzy system and its 
estimation from the non-integer order fuzzy observer.  

Figure 1 shows the three states of the non-integer  order 
system and their respective estimates. Figure 2 illustrates the 
two outputs of the non-integer order system along with their 
corresponding estimates. 

It is observed that all the plots depicted in Figs. 1 and 2 
overlap except in the proximity of the origin. This deviation 
is attributed to the selection of initial conditions for the non-
integer order fuzzy observer. 
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Fig. 2 – Outputs estimation and their error of estimation. 

The evaluation of the state estimation error demonstrates 
that the observer converges towards the system state, with 
the rapid decrease in error indicating faster convergence. 
Analyzing the time required for the observer to reach an 
acceptable proximity to the actual system state substantiates 
the performance of the developed observer. The observer 
converges stably, exhibiting minimal oscillations or 
undesired behavior, which confirms the results of the 
convergence assessment based on Lyapunov functions. The 
state estimation curves offer a clear visualization of the 
developed observer's performance. 

6. CONCLUSION 

Utilizing a non-integer order Takagi-Sugeno model 
framework, we propose the design of a non-integer order 
fuzzy observer through the interpolation principle applied to 
local fractional-order observers. Additionally, we address 
scenarios involving non-measurable decision variables. The 
determination of gains for the fractional-order fuzzy observer 
is thereby formulated as a simultaneous computation of gains 
for the local non-integer order observers.  

Ensuring the stability of the overall fractional-order fuzzy 
observer necessitates accounting for coupling constraints 
among these individual local fractional-order observers. These 
constraints necessitate resolving a Linear Matrix Inequality 
(LMI) problem subject to structural constraints. Assuming the 
availability of appropriate matrices, we demonstrate the 
feasibility of reconstructing the state and unknown input 
vectors of the non-integer order Takagi-Sugeno model.  

The simulation results demonstrate highly satisfactory 
state and output estimation performance. 

It is important to emphasize that the synthesis of the 
proposed fractional-order fuzzy observer in this study relies 
on the validation of two assumptions: (1) and (2). Therefore, 
as a perspective, we recommend the synthesis of other types 
of fractional-order fuzzy observers addressing the case of 
non-satisfaction with one or both assumptions. 
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