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This work describes a new model of frequency locked loop (FLL) with three outputs, which is based on the time measurement 
and non-recursive processing of the input periods only. FLL is a linear discrete system of the third order. All mathematical 
analyzes were performed using the Z transform approach. The general form of difference equation, describing FLL of any 
order, is developed and compared with the corresponding difference equation of digital filters. Analysis of FLL was performed 
in the time and frequency domain. It was shown that the Matlab tools, dedicated to FIR (Finite Impulse Response) digital filters, 
can be used for the analysis of FLL in the frequency domain. FLL is very fast. Depending on the choice of the system 
parameters, FLL can be used for the tracking and predicting applications, digital filtering of pulse periods, as well as in the 
applications of FLL which require short transient time. Computer simulation of FLL in the time domain is made to enable 
precise insight into the FLL properties.  

1. INTRODUCTION 
In this article, just like in ref. [1], we use term "non-

recursive" in the expression time non-recursive processing 
(TNP), which originates from the FIR (finite impulse 
response) digital filter theory. The term "non-recursive" 
indicates that the calculation of the output periods is based 
solely on the measured periods of the input signal. Unlike 
[1], time recursive processing (TRP) phase locked loop 
(PLL) and frequency locked loop (FLL), described in refs. 
[2–9], are also defined in form of the linear difference 
equations, but these systems calculate the next output period 
using the input periods, the previous output periods, and the 
time differences between them. It was emphasized through 
[1–9], that TRP PLL, TRP FLL and TNP FLL appeared as 
completely new theory and design to PLL and FLL, which 
provide new PLL and FLL properties and enlarged the field 
of their applications in comparison to the classical PLLs and 
FLLs. TRP PLLs and FLLs are described in the applications 
of phase shifting, time shifting, phase control, frequency 
synthesizers, tracking, predicting, noise rejections, frequency 
multipliers, frequency measurement, and the others, what 
was highlighted in [1–9]. The articles and books in [10–22] 
are used as theoretical base, for electronics implementations 
and for the development necessities. 

2. THE GENERAL FORM OF DIFFERENCE 
EQUATION OF TNP FLL OF HIGHER ORDER 

Besides the description and analyzes of one model of 
TNP FLL, this article discovered that TNP FLL is, in many 
ways, very similar to FIR digital filters. The understanding 
of the similarities and differences between TNP FLL and 
FIR digital filters will enable the usage of the digital FIR 
filter Matlab tools, for the analyzes and design of TNP 
FLLs. Let us remember that non-recursive processing of 
FIR digital filter is described by eq. (1), where the output of 
a digital filter y(k) is the sum of products of (M+1) filter 
coefficients b0, b1, b2...bM and the corresponding samples of 
the input signal x(k–i). Note that the variable "k", represents 
the discrete time tk when an amplitude of the input signal is 
sampled, measured, and taken in calculation. According to 
eq. (1), there are (M+1) calculations of the outputs with 
(M+1) filter coefficients. 
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Before we try to define a general difference equation of 
TNP FLL of any order, analogue to eq. (1), let us consider 
Fig. 1, which represents a general case of an input signal 
Sin and an output signal Sop of TNP FLL. In comparison to 
the classical PLL and FLL, the input and output frequencies 
are changed by the input and output periods in Fig. 1, and 
the phase differences are changed by the time differences. 
The periods TIk and TOk, as well as the time difference τk, 
occur at discrete times tk, tk+1, tk+2,…,tk+M, tk+M+1, which are 
defined by the falling edges of the pulses of Sop in Fig. 1.  

 
Fig. 1 – The time relations between the input and output variables of TNP 

FLL. 

The first important difference between the processing 
described by eq. (1) and the processing of TNP FLL is the 
fact that instead of the amplitudes, TNP FLL uses the input 
periods in the processing. Secondly, unlike the amplitudes 
in eq. (1), which are defined at the proper discrete time tk, 
the input and output periods TIk and TOk as well as time 
differences τk, are distributed in time in Fig 1, so that every 
input period overlaps with the output period of the same 
order. Due to this distribution in time and overlapping, it is 
not possible to calculate, for instance, the output period 
TOk+1 as a function of TIk+1, because the calculation of 
TOk+1 must be finished up to discrete time tk+1, i.e., before 
the input period TIk+1 is expired (Fig. 1). At discrete time 
tk+1 the realization of TOk+1 should start. In other word, in 
the real time applications, any output period can be 
calculated only using the previous input periods of the 
lower order. Taking this fact in account, the general 
difference equation which describes TNP FLL, intended for 
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the real time applications, are presented in eq. (2). In 
comparison to eq. (1), y(k) is changed with TO(k), x(k−i) is 
changed with TI(k−i) and finally, "i" starts from i = 1, 
instead of i = 0, in accordance with the previous conclusion 
that in the calculations of the outputs of TNP FLL, the 
inputs of the same order can not be used. The extended 
form of eq. (2) is shown in eq. (3). It comes out from eq. 
(3), that there are M system parameters of TNP FLL. These 
are b1, b2... bM. M input periods are needed to complete the 
calculation of TO(k) with all system parameters. To 
facilitate the analyzes, let us choose that the beginning of M 
calculations starts at discrete time t = tk, just like in Fig. 1. 
To do this let us change k = k+M into eq. (3), which will 
transform into eq. 4. Because of simplicity, all discrete 
times in brackets are changed with the corresponding index 
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marks in eq. 4. At last, eq. 4 can be written in shorted form, 
shown in eq. (5). Extended eq. (4) or its shorted form, shown 
in eq. (5), are adapted to correspond to Fig. 1. This adapting 
is useful for better understanding and monitoring of the 
future time analyzes and usage of the initial conditions. 

Note that the filter coefficients of FIR digital filter, in 
eq. (1), are b0, b1, b2...bM, and the system parameters of TRP 
FLL, according to eq. (4), are b1, b2...bM. Therefore, in 
usage of the tools of FIR filter for the frequency analyzes of 
TNP FLL, it is necessary to place b0 = 0 in Matlab 
commands. However, in those applications where FLL does 
not necessarily need to work in real time, it is possible to 
modify eq. (5) to correspond exactly to eq. (1), i.e., in this 
case the variable i would take values from i = 0 to M, 
instead of i = 1 to M, as it is in eq. (5). In such applications, 
the output pulse signal would be generated with the 
corresponding delay. 

2. ANALYSES OF TNP FLL OF THE THIRD ORDER 
IN TIME DOMAIN 

Choosing M in eq. (4), it is possible to define a difference 
equation for a NTP FLL of any order. If we choose M = 3 
eq. (4) will be transformed into eq. (6), which represents the 
difference equation for TNP FLL of the third order. Since 
the precise recognition of the transient state of TNP FLL is 
very important for its applications, one additional 
difference equation, describing the time difference, is 
presented in eq. (7). It comes out as natural relation 
between the variables in Fig. 1. At last, the third variable Tk, 
presented in eq. (8), also represents the natural relation 
between the variables. So, the behavior of TNP FLL is 
precisely described by three outputs TOk,τk and Tk. 

To determine the transfer functions of TNP FLL, the Z 
transform of eqs. (6), (7) and (8) are presented in eqs. (9), 

(10) and (11), respectively, where TO0, TO1, TO2 and TI0 in 
eq. (9) and τ0 in eq. (10) represent the initial conditions of 
variables TOk, TIk and τk. Since the process start at t = tk, all 
values of variables, before t = tk, are equal zeros. Therefore, 
according to eq. (6), TO1 = b1·TI0 and TO2 = b1·TI1+b2·TI0. 
Entering TO1 and TO2 into eq. (9), TO(z) is calculated and 
presented in eq. (12). 
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It is now of interest to investigate under which conditions 
this TNP FLL possesses the properties of a FLL. To do that, 
let us suppose that the step input is TI(k) = TI = constant. 
Substituting the Z transform of TI(k), i.e., TI(z) = TI·z/(z–1) 
into eq. (12) and using the final value theorem, it is possible 
to find the final value of the output period TO, which TNP 
FLL reaches in the stable state. We can calculate TO∞ = 
lim TO(k) for k → ∞, using TO(z). This is shown in eq. (13). 

It comes out from eq. (13), that TO∞ = TI if eq. (14) is 
satisfied. TNP FLL possesses the properties either of a FLL 
or of a PLL, if eq. (14) is satisfied. To make decision, it is 
necessary to determine the behaviour of time difference τ. 
Entering TO(z) from eq. (12), into eq. (10) and taking in 
account eq. (14), τ(z) is calculated and presented in eq. (15). 
Substituting now TI(z) = TI·z/(z–1) into eq. (15) and using 
the final value theorem, it is possible to find the final value 
of the time difference τ∞ = lim τ(k) for k → ∞, using τ(z). 
This is shown in eq. (16). Equation (16) also confirms that 
TNP FLL possesses the properties of a FLL, since τ∞ 
depends on the initial conditions. It comes out that the 
system does not possess the properties of a PLL. At last, let 
us substitute eq. (15) and TI(z) = TI·z/(z–1) into eq. (8) and 
find out T(z), shown in eq. (17). 
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There are three transfer functions, which describe TNP 
FLL. These are HTO(z), H(z) and HT(z) shown in eqs. (18), 
(19) and (20). They originate from eqs. (12), (15) and (17).  
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The simulations using Matlab tools can confirm all 
reached results. The simulations are to enable better insight 
into the procedures and physical meaning of the variables 
described. All discrete values in simulations were merged 
to form continuous curves. Note that all variables in the 
following diagrams were presented in time units. The time 
unit can be, μsec, msec or any other, but assuming the same 
time units for all time variables TI, TO, τ and T, it was 
more suitable to use just “time unit” or abbreviated “t.u.” in 
the text. It was more convenient to omit the indication “t.u.” 
in diagrams.  

The simulations of TO(k) and τ(k) for the step input TIk = 
= 10 t.u, are shown in Fig. 2a. All values for three cases of 
different parameters b1, b2 and b3, initial conditions and 
final values are shown in Fig. 2,a. The system parameters 
satisfy eq. (14) in all cases and therefore, the output periods 
reached the input periods. According to eq. (16), using the 
values of parameters and the initial conditions presented in 
Fig. 2a, it can be calculated that τ1∞ = TI(b1–b3–2)+TO0+τ0 = 
=10∙(0.6–0.1–2)+11+0 = –4 t.u.  

 
Fig. 2 – a) transition states of FLL for the step input; b) time relation 

between Sin, Sop and τk for the simulated case No 1. 

This result agrees with the simulated τ1∞, shown in Fig. 2a. 
In the same way, it can be calculated that τ2∞ = –11 t.u, and 
τ3∞ = –20 t.u. The calculated values τ2∞, and τ3∞ also agree 
with the simulated τ2∞, and τ3∞ presented in Fig. 2a. These 
simulation results prove the correctness of the mathematical 
description and step analyses. The real time relation between 
Sin, Sop and τk, for the simulated case No. 1, is shown in 
Fig. 2b. For the stable TNP FLL, period TO∞ = TI = 10 t.u 
and τ∞ = – 4 t.u. Note that FLL is very fast. It takes only three 

steps to reach the stable state. FLL takes only one step to 
reach the stable state, looking from the discrete time when all 
parameters b1, b2 and b3 are taken in calculation, no matter of 
the values of parameters, providing that they satisfy eq. (14). 
To estimate if TNP FLL can track the ramp input, it is 
necessary to determine well-known velocity error KV. If the 
input period is a ramp function TI(k) = TIV(k) = p·k, where p 
is a time constant, TI(z) = TIV(z) = Z(p·k) = pz/(z–1)2. 
Generally, velocity error KV = lim[TOV(k)–TIV(k)] for k→∞. 
One more suitable expression for velocity error is KV = 
lim TIV(k)[HTO(k)–1] for k→∞. Using the condition 
b1+b2+b3=1 and the final value theorem, KV is calculated 
using eq. (18), and shown in eq. (21). According to eq. (21), 
TNP FLL can track the velocity input with the constant error. 
However, if 2b1+b2 = 3, KV = 0, i.e., TNP FLL can track a 
velocity input without any error. 
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Let us now determine the behaviour of τV(k) for the 
velocity input, if k→∞, taking in account the previous 
condition 2b1+b2=3. Using the final value theorem, τV∞=lim 
τV(k)k→∞ is calculated using τV(z) and shown in eq. (22). 
The expression τV(z) in eq. (22) is found out by the 
substitution of TI(z) = TIV(z) = p∙z/(z–1)2 into eq. (15). 
According to eq. (22), τV∞ is the time constant. Besides the 
initial conditions TO0 and τ0, τV∞ depends on the time 
constant p, which is the slope of the ramp input function, as 
well as on the system parameters. But if b1 = 3, τV∞ depends 
only on the initial conditions TO0 and τ0. The simulations of 
TO(k), KV and τ(k) for the velocity input TIk = (10+4·k) t.u., 
are shown in Fig. 3. All values for two cases of different 
parameters b1, b2 and b3, initial conditions 

 ( ) 1 0 01
lim 1 ( ) ( 3) TOV V z

z z p bτ τ τ∞ →
⎡ ⎤= − = − + +⎣ ⎦ , (22) 

and final values are shown in Fig. 3. The case No. 1 match 
both conditions b1+b2+b3 = 1 and 2b1+b2+3 = 0. According to 
eq. (21), KV1 = p∙(2b1+b2–3) = 4∙(2∙1+1–3) = 0 t.u. This 
calculated result agrees with KV1 in Fig. 3. The case No. 2 
matches b1+b2+b3 = 1, but it does not match 2b1+b2+3 = 0. 
According to eq. (21), KV2 = p∙(2b1+b2–3) = 4∙[2∙1.2+(–0.8)–
–3] = –5.6 t.u. This result also agrees with KV2 simulated in 
Fig. 3. At last, according to eq. (22), τ1∞ = p(b1–3)+TO0+τ0 = 
= 4(1–3)+5+2 = –1 t.u.  

 
Fig. 3 – Simulation of the input and output variables in the 

tracking of the ramp function TIk = 10+4∙k t.u. 



264 Frequency locked loops of the third and higher order 4 
 

This result agrees with τ1∞ simulated in Fig. 3. Simulated 
τ2∞ → –∞ in Fig. 3, what agrees with the fact that KV2 is not 
equal to zero, i.e., KV2 < 0. Note that, even for the ramp 
input, demonstrated in Fig. 3, all the outputs of TNP FLL 
take only three steps to reach the stable state, just like for 
the step inputs in Fig. 2. All simulated values KV1, KV2, and 
τ1∞ agree with the calculated ones by eqs. (21) and (22), 
proving so the correctness of the previous analyzes. The 
identity of the analytical and simulation results, in every 
step, proves the correctness of the entire theoretical 
approach, as well as the validity of all results obtained. 

Let us now estimate if TNP FLL can track an accelerated 
input TI(k) = TIA(k) = p∙k2, where p is the time constant. The 
accelerated error KA is defined as KA = lim[TOA(k) – TIA(k)] 
for k→∞. One more suitable expression is KA = 
= lim TIA(k)[HTO(k)–1] for k→∞. Z transform of TIA(k) is 
TIA(z) = p∙z(z+1)/(z−1)3. Using the conditions b1+b2+b3 = 1, 
2b1+b2 = 3, then eq. (18) and the final value theorem, KA is 
calculated and shown in eq. (23). According to eq. (23), TNP 
FLL can track the accelerated input 
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with the constant error. However, if b1 = 3, KA = 0, i.e., 
TNP FLL can track an accelerated input without an error. If 
b1 = 3, b2 and b3 can be calculated from the previous 
conditions as b2 = –3 and b3 = 1. The simulations of TO(k) 
and KA(k) for the accelerated input TIk = (10+4·k2) t.u., are 
shown in Fig. 4. All values for three cases of different 
parameters b1, b2 and b3, initial conditions and final values 
are shown in Fig. 4. The case No. 1 satisfies all of three 
conditions b1+b2+b3 = 1, 2b1+b2 = 3 and b1 = 3. The case 
No. 2 satisfies two conditions b1+b2+b3 = 1 and 2b1+b2 = 3 
and the case No. 3 satisfies only the condition for the 
system stability b1+b2+b3 = 1. 

 
Fig. 4 – Simulation of the input and output variables in the tracking 

of the accelerated function TIk=10+4∙k2 t.u. 

We can see in Fig. 4, that in case No. 1, TNP FLL tracks 
the accelerated input without an error. In case No. 2, TNP 
FLL tracks the input with the constant error KA2. For the case 
No. 3, TNP FLL is not able to track the input, since KA3→-∞. 
According to eq. (23), KA1 = 2p∙(b1−3) = 2∙4(3−3) = 0 t.u. and 
KA2 = 2p∙(b1−3) = 2∙4∙(1−3) = –16 t.u. These calculated 
results agree with the simulated KA1 and KA2 in Fig. 4, 
proving the correctness and validity of all results obtained. 

Note that, even for the accelerated input, shown in Fig. 4, all 
the outputs of TNP FLL take only three steps to reach the 
stable state, just like for the step and velocity inputs. 

3. ANALYZES OF TNP FLL OF THE THIRD ORDER 
IN FREQUENCY DOMAIN 

The structural similarity between eq. (1) for FIR digital 
filters and eq. (5) for TNP FLLs gives us right to use Matlab 
tools, designed for FIR filters, in the development and 
frequency analyzes of TNP FLLs. One example of this 
usage is in detail carried out in ref. [1], for TNP FLL of the 
second order. Let us remind that all FIR filter tools are 
developed for the processing of the amplitudes of the input 
signals and that TNP FLL processes the periods of the input 
signals. However, if the system transfer function of TNP 
FLL is exactly determined and its parameters properly 
entered Matlab tools, then, regardless of the type of input 
and output variables, Matlab tools are equally usable. 
However, it is necessary to understand the physical meaning 
of the variables and properly interpret the results obtained. 
One important additional difference between FIR digital 
filters and TNP FLL is the fact that TNP FLL is described 
by three transfer functions HTO(z), Hτ(z) and HT(z). The 
usage of additional transfer functions Hτ(z) and HT(z) comes 
out from the need for the knowledge about the time relation 
between the input and output signal of TNP FLL, taking in 
account the initial conditions. The additional benefit in 
usage of three outputs comes out from the fact that different 
transfer functions possess different filter characteristics. 

Let us first present the magnitude and the frequency 
responses for three transfer functions HTO(z), Hτ(z) and 
HT(z), shown in eqs. (18) to (20). For this purpose, Matlab 
command “freqz”, in the interval (0, π) rad, is used. The 
vectors a and b which are to be entered in the command 
“freqz”, corresponding to HTO(z), Hτ(z) and HT(z), are aTO = 
[1 0 0 0], bTO = [0 b1 b2 b3], aτ = aTO, bτ = [0 −1 (b1−1) −b3], 
aT = aTO and bT = [1 1 − (b1−1) b3]. The chosen parameters 
for TNP FLL are b1 = –1, b2 = 3 and b3 = –1. The sampling 
frequency fs = 1200 Hz corresponds to the whole interval 
(0, π) rad, so that fs/2 = 600 Hz, covers the interval (0, π) rad.  

 
Fig. 5 – a) Magnitudes of the frequency responses of HTO(z), HT(z) 

and Hτ(z); b) phase of the frequency response of Hτ(z). 
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The frequency responses are shown in Figs. 5a, and 5b. 
Number of time steps is chosen to be k = 1 200 = fs. The 
angular sampling step is ws = 2π/1 200 rad. To establish a 
visible connection between time and frequency domains of 
TNP FLL, time presentations of TI and τ is shown in Fig. 6 
for TO0 = 0, TI0 = 10 and τ0 = 0. The input signal is the 
input period TI, as TI(k) = 10+S12, where S12 = 
= ATI∙sin[(2π/fs)∙fm∙k)]. The input period TI(k) can be 
considered as the constant period of 10 t.u., which is 
modulated by the samples of sinusoidal signal S12. It was 
chosen ATI = 8 t.u., fm = 12 Hz and k = 300 in Fig. 6. Every 
of 12 periods of S12 will be sampled by 
1 200 samples/12 periods = 100 samples/period. This 
provides sufficiently good resolution of TI and τ in Fig. 6. 

 
Fig. 6 – Presentation of TI and τ in time domain for b1 = –1,  

b2 = 3, b3 = −1, TO0 = 0 and τ0 = 0. 

To be compared with the frequency presentation of TI 
and τ, only 300 first steps of k are presented in Fig. 6, 
covering three of twelve periods of TI. At last, Matlab 
commands "fft" and "stem" are used for the generation of 
the spectrums of TI, TO, T and τ in Fig. 7. These spectrums 
present the absolute values of amplitudes, covering the 
whole interval (0, π) rad. They appear as positive values in 
the symmetric second half (π, 2π) rad. 

We can see in Fig. 5a, that for the same system 
parameters, TNP FLL offers three different magnitudes of 
frequency responses, corresponding to three transfer 
functions. Transfer function HTO(z) functions as a high-pass 
filter, Hτ(z) functions as a band-pass filter and HT(z) behaves 
as an inverted band-pass filter. In other word, only one TNP 
FLL, covers the functioning of three different digital filters.  

 
Fig. 7 – Spectra of TI, TO, T and τ in frequency domain for b1 = −1, 

For the same system parameters, they offer the different 
filter characteristics. Note that in the frequency domain, 
shown in Fig. 7, every one of three digital filter outputs 
contain both, the component at 0 Hz, corresponding to period 
TI = 10 t.u. and the component at 12 Hz, corresponding to 
signal S12. Due to this property, TNP FLL offers wide 
abilities for digital filtering of the pulse periods. The filter 
edges in Fig. 5a are not too sharp. Using TRP FLL of a 
higher order and choosing the corresponding system 
parameters, it would be possible to generate sharper band 
edges, just like with the digital FIR filters. 

Let us now make a closed loop of time-frequency checks to 
verify that the frequency responses in Fig. 5, spectrums shown 
in Fig. 7 and the time presentation in Fig. 6, correspond each 
to other. Comparisons will be made independently for the 
constant of 10 t.u. and sinusoidal signal. The constant of 10 
t.u. of TI(k), appears as very strong amplitude with the 
frequency of 0 Hz in all spectrums of TI, TO, T and τ. Their 
values are found in simulation listing and shown in Fig. 7. 
The amplitude of TI spectrum at frequency of 0 Hz is TIf0 = 
= 12 055 t.u. and the amplitude of TO spectrum at frequency 
of 0 Hz is TOf0 = 12 051 t.u. in Fig. 7. The attenuation of zero 
component of TI, at the output TO is 20 log (TOf0/TIf0) = 
20 log (12 051/12 055) ~ 0 dB. The magnitude of HTO(z) at 0 
Hz, in Fig. 5a, shows the same result. In the same way, the 
amplifications of zero component of TI at the output 
spectrums of T and τ can be calculated respectively as 20 log 
(Tf0/TIf0) = 20 log (36 141/12 055) = 9.53 dB and 
= 20 log (τf0/TIf0) = 20 log (24 086/12 055) = 6.03 dB. Very 
close to these results, show the magnitudes of HT(z) and Hτ(z) 
at 0 Hz, in Fig. 5a. The sinusoidal signal S12 at 12 Hz also 
appears in all spectrums in Fig. 7. Their values, taken from 
simulation listing, are shown in Fig. 7. All amplifications of 
time amplitude of TI spectrum at frequency of 12 Hz in the 
output spectrums of TO, T and τ are respectively calculated as 
20 log (TOf12/TIf12) = 20 log (4 799/4 791) ~ 0 dB, 
20 log (Tf12/ TIf12) = 20 log (14 382/4 791) = 9.54 dB and 
20 log(τf12/TIf12) = 20 log(9 598/4 791) = 6.03 dB. Very close 
to this result, show the magnitudes of HT(z), HT(z) and Hτ(z) at 
12 Hz, in Fig. 5a. 

At last, let us find out the amplification and phase delay 
of the input sinusoidal signal at the output τ, using time 
presentation in Fig. 6. Using proportionality on the 
magnified Fig. 6, we can find, that since ATI = 2∙8 =16 t.u., 
then Aτ = 32 t.u. The amplification is 20 log (Aτ/ATI) = 
= 6.02 dB. This result is very close to the results we have 
already got from Figs. 5a and 7. Using proportionality on 
the magnified Fig. 6, we can also find, that the ratio 
between time delay td of τ and the period TTI is |td|/TTI = 
42/85. The phase delay of τ is 360°∙(42/85) ~ 178°. This 
result is very close to the phase of frequency response of 
Hτ(z) at 12 Hz, shown in Fig. 5b. 

4. CONCLUSIONS 
The description and illustrations of the described TNP 

FLL of the third order represent the additional contributions 
to the design of TNP FLL of the second order, described in 
ref. [1]. This work also represents the contribution to the 
recently described TRP PLL and TRP FLL, which are 
based on the processing of the input and output periods.  

The described TNP FLL is very fast. It takes only 3 steps 
to reach the stable state, no matter what kind of input is 
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entered. It reaches the stable state through the step when the 
algorithm starts using all system parameters. It was shown 
that this FLL can be very efficiently used for the tracking of 
a step, a ramp, and an accelerated input function, unlike of 
TNP FLL of the second order, described in ref. [1], which 
is not able to track an accelerated input function. This TNP 
FLL is very scalable to the very wide and strict 
requirements in the fields of tracking and predicting. 

One of contributions of the article is the described 
methodology procedure for the analyzes of TNP FLL of the 
third order in the frequency domain as well as the 
demonstrated closed loop of the time-frequency checks, 
which confirmed that all time and frequency analyzes are 
correct. These results and the results in ref. [1], for the TNP 
FLL of the second order, are a guide which presents how to 
develop and test TNP FLLs of higher order. 

Very important contribution of the article is the presented 
general form of the difference equation of TNP FLL of any 
order, intended for the real time applications. It was proved 
that this general equation of TNP FLL and the difference 
equation of the digital FIR filters possess very similar 
structural form, due to which, it was possible to use the 
theory of digital FIR filters in frequency analyzes and 
design of TNP FLL. It was proved that TNP FLL represents 
a kind of digital filter, which is suitable for the filtering of 
pulse periods. It was shown, for the first time in literature, 
that TNP FLL described provides even three outputs and 
that all of them represent digital filters with the different 
filter properties, even for the same system parameters. 
Thanks to the ability to use three outputs instead of one and 
the ability to change widely system parameters, TNP FLL 
has great options for adapting filter features to the different 
application requirements.  

This article provides a comprehensive basis for the 
development of a new kind of digital filters, intended for 
the filtration of the pulse periods. 
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