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This work describes the generalization of a new kind of infinite impulse response (IIR) digital filter to filter the pulse signal periods. 
This kind of digital filter was designed using the previously designed frequency-locked loops (FLL), which are based on the time 
measurement and processing of both the input and output periods. FLL is a linear discrete system. Starting from the general form 
of difference equation of the IIR FLL digital filter of the third and fourth orders, the transfer functions and Z transform of the 
outputs are developed for the IIR FLL digital filter of any order. To demonstrate the capabilities and utility of the general 
equations, they were applied to design a suitable IIR digital filter using a fourth-order FLL. The filtering abilities and the analyses 
in the frequency domain of the designed low pass IIR digital filter are demonstrated using the theory of IIR digital filter and the 
corresponding MATLAB tools. Analyses of the fourth-order IIR FLL digital filter were also performed in the time domain using 
computer simulation in MATLAB.

1. INTRODUCTION 

In the title of this paper, the term “Time Infinite Impulse 
Response digital filter” with the prefix “Time” was used for 
the first time. The term “Time digital filter” should include 
IIR FLL digital filters, described in [1], as well as FIR FLL 
digital filters, described in [2,3]. The author has long 
evaluated whether using the prefix “Period” instead of 
“Time” is more correct, considering that pulse signal periods 
are processed in these systems. However, in addition to 
periods, time differences between the input and output 
periods can also be processed in these systems. Therefore, 
these “Time digital filters” always process time as a physical 
quantity. Because of that, the prefix “Time” best represents 
the essence of the physical process, including periods and 
time differences between periods. Unlike time digital filters, 
classical digital filters process only the signal's amplitude. 
Using the same principle, we can call them “Amplitude 
digital filters”. This approach fits well with the need to make 
one of the essential differences between “Time digital 
filters” and the classic digital filters. 

These time digital filters are derived from the frequency-
locked loops (FLLs), which are based on measuring and 
processing the input and output periods of the pulse signals. 
In [1], it was shown how a third-order FLL can function as a 
time IIR digital filter. The procedure described for finding 
the transfer function of the third-order FLL and other 
necessary mathematical procedures was very long. Of 
course, these procedures will be very complicated for the 
higher-order FLLs. To reduce and simplify the process of 
designing the IIR FLL digital filter, it is necessary to develop 
all the necessary equations for the IIR FLL of the M-th order, 
that is, of any order. In addition, this article will demonstrate 
the application of these general mathematical solutions to the 
development of a fourth-order IIR FLL digital filter. 

What [2] represents FIR FLL digital filters, and this article 
represents IIR FLL digital filters. However, unlike FIR FLL 
digital filters, which process only the input periods, IIR FLL 
digital filters process both the input and output periods. 
Because of that, IIR FLL digital filters are the systems with 
the feedback. They possess better filter characteristics than 
FIR FLL digital filters, which are open-loop systems. It was 
previously stated that the classic IIR digital filters process the 
amplitude, unlike IIR FLL and FIR FLL digital filters, which 
process the periods, i.e., time instead of amplitude. Regardless, 

the theory of the classical IIR digital filters and its application 
software were used to develop IIR FLL digital filters. To 
achieve this, it was necessary to overcome the differences in 
the basic equations between classical digital filters and IIR 
FLL digital filters, which are theoretically and practically 
demonstrated in the article. 

Numerous applications of FLLs are described in [4–11]. 
These references are also important for this article because 
they describe the functioning and realization of IIR FLL 
digital filters, their computer simulation in the time domain, 
and their analysis using the Z transformation and the theory 
of linear discrete systems. The articles and books in [12–26] 
provide a theoretical base for electronics implementations 
and development necessities. 

2. GENERAL EQUATIONS OF THE IIR FLLM  

Figure 1 represents a general case of an input signal Sin 
and an output signal Sop of IIR FLL and shows the 
physical relations between the input and output variables. 
This article 

 

 
Fig. 1 – The time relations between the input and output variables of the 

M-th order IIR FLL digital filter. 

will rely on some results from [1]. Let us borrow the 
difference equation for IIR FLLM of the M-th order from 
eq. (4) of [1]. Suppose we replace “M=M–1” in eq. (4) of 
[1], we will get eq. (1) in this article, all variables can be 
seen in Fig. 1. By this replacement, we reduced the number 
of calculation steps for one and obtained the simpler form, 
which is more suitable for the upcoming analysis without 
changing its mathematical meaning. As shown in [1], eq. 
(1) of this article represents an adapted form of IIR FLLM 
that can function as a digital filter when its parameters are 
replaced with the coefficients of the corresponding 
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classical digital filter. Equation (2) is the natural relation 
between the variables in Fig. 1. The periods’ TIk and TOk, 

as well as the time difference k and time interval Tk occur 
at discrete times tk, tk+1, tk+2,…,tk+M-1, tk+M, defined by the 
falling edges of the pulses of Sop in Fig. 1. Note that the 
variable "k", represents the discrete time tk when an input 
period is measured and taken in the calculation, according 
to eq. (1), there are M calculations of any output period. 
These calculations are performed with M system 
parameters b1, b2... bM, M system parameters a0, a1, a2... 
aM-1, and the corresponding input and output periods TIk 
and TOk. Note that it is adopted a0 = 1 in eq. (1). The 
number M represents the order of an IIR FLLM. The 
calculation of M starts at discrete time t = tk, just like in 
Fig. 1, where "k" is usually zero, but it can be any natural 

number. The variable k will identify the phase and time 
relation between the input and output periods during both 
the locking procedure and the stable state of IIR FLL. 
Because of simplicity, discrete times in brackets, e.g., 
TO(tk+M) and TI(tk+M-i) were changed with the 
corresponding index marks like TOk+M and TIk+M-i in eq. 
(1). The same changes are made in Fig. 1 and the other 

equations. According to Fig. 1, if we know k, Tk can be 
calculated using eq. (3). 

𝑇𝑂𝑘+𝑀= ∑ 𝑏𝑖 ∙ 𝑇𝐼𝑘+𝑀−𝑖

M

i=1

  + ∑ 𝑎𝑖 ∙ 𝑇𝑂𝑘+𝑀−𝑖 ,

M-1

i=1

       (1) 

τ𝑘+1=τ𝑘 + 𝑇𝑂𝑘 − 𝑇𝐼𝑘 ,                        (2) 

𝑇𝑘 = 𝑇𝐼𝑘 − τ𝑘,                              (3) 

To perform the analyses of an IIR FLLM it is necessary to 

determine the Z transforms of TOk+M, k+1 and Tk as well as 

their transfer functions. The Z transforms of eq. (1) to (3) 

could be derived in two ways. The first way is to develop it 

directly from eq. (1) to (3). The Z transform of the M-th order 

IIR FLLM can also be performed from the Z transforms of 

multiple lower-order IIR FLLs. We will apply the second 

approach, which is simpler. Let us first derive the Z-

transforms of TOk+M and k+1. For the IIR FLL3 of the third 

order, TO3(z) and 3(z) is derived in [3]. They are shown in 

eq. (4) and (5), where TO0 and 0 are the initial conditions of 

TO3 and 3. Similarly, TO3(z) and 3(z) were developed in ref. 

[3] for the third-order IIR FLL3, the Z transforms TO4(z) and 

4(z) was developed for the fourth-order IIR FLL4 and shown 

in eq. (6) and (7). Note that Sab=a1+b1+a2+b2 in eq. (7). Based 

on eq. (4) and (6), we can derive the Z-transform TOM(z) for 

M-th order IIR FLLM, given in eq. (8), where the transfer 

function 𝐻𝑇𝑂𝑀
(z)=TO(z)/TI(z) is shown in eq. (9). Based on 

eq. (5) and (7), we can derive the Z-transform M(z) for M-th 

order IIR FLLM, given in eq. (10), where the transfer function 

𝐻𝑀
(z)=M(z)/TI(z) is presented in eq. (11). According to eq. 

(3), TM(z)=TI(z)–M(z). TM(z) can be calculated after we have 

derived M(z). Since M(z)= 𝐻𝑀
(z)·TI(z), it follows that 

TM(z)=TI(z)[1–𝐻𝑀
(z)]. Based on the last equation, the 

transfer function 𝐻𝑇𝑀
(z)=TM(z)/TI(z) can be calculated using 

eq. (12). 

𝑇𝑂3(𝑧) = 𝑇𝐼(𝑧)
𝑧2𝑏1 + 𝑧𝑏2 + 𝑏3

𝑧3 − 𝑧2𝑎1 − 𝑧𝑎2

 

                                                                                       (4) 

+
𝑧3𝑇𝑂0

𝑧3 − 𝑧2𝑎1 − 𝑧𝑎2

, 

τ3(𝑧) = 𝑇𝐼(𝑧)
−𝑧2 − 𝑧(1 − 𝑎1 − 𝑏1) − 𝑏3

𝑧3 − 𝑧2𝑎1 − 𝑧𝑎2

 

                                                                        (5) 

+
𝑧3𝑇𝑂0

(𝑧 − 1)(𝑧3 − 𝑧2𝑎1 − 𝑧𝑎2)
+

𝑧τ0

𝑧 − 1
, 

            

               𝑇𝑂4(z) = 𝑇𝐼(z)
𝑧3𝑏1+𝑧2𝑏2+𝑧𝑏3+𝑏4

𝑧4−𝑧3𝑎1−𝑧2𝑎2−𝑧𝑎3
                                                                                 

                                                                               (6) 

                        +
𝑧4𝑇𝑂0

𝑧4−𝑧3𝑎1−𝑧2𝑎2−𝑧𝑎3
,              

 

τ4(𝑧) = 𝑇𝐼(𝑧)
−𝑧3 − 𝑧2(1 − 𝑏1 − 𝑎1) − 𝑧(1 − 𝑆𝑎𝑏) − 𝑏4

𝑧4 − 𝑧3𝑎1 − 𝑧2𝑎2 − 𝑧𝑎3
 

                                                                                           (7) 

+
𝑧4𝑇𝑂0

(𝑧 − 1)(𝑧4 − 𝑧3𝑎1 − 𝑧2𝑎2 − 𝑧𝑎3)
+

𝑧τ0

𝑧 − 1
, 

 

𝑇𝑂𝑀(𝑧) = 𝑇𝐼(𝑧) ∙ 𝐻𝑇𝑂𝑀
(𝑧) 

                                                                                                (8) 

 +
𝑧𝑀 ∙ 𝑇𝑂0

𝑧𝑀 − ∑ 𝑧𝑀−𝑖 ∙ 𝑎𝑖
𝑀−1
𝑖=1

,  

 𝐻𝑇𝑂𝑀
(z)=

∑ 𝑧𝑀−𝑖·𝑏𝑖
𝑀
𝑖=1

𝑧𝑀−∑ 𝑧𝑀−𝑖∙𝑎𝑖
𝑀−1
𝑖=1

, (9) 

                  τ𝑀(𝑧) = 𝑇𝐼(𝑧)𝐻τ𝑀
(𝑧) +  

                                                                                         (10) 

+
𝑧𝑀 ∙ 𝑇𝑂0

(𝑧 − 1)(𝑧𝑀 − ∑ 𝑧𝑀−𝑖 ∙ 𝑎𝑖)𝑀−1
𝑖=1

+
𝑧τ0

𝑧 − 1
, 

 

𝐻τ𝑀
(z) =

−𝑧𝑀−1 − ∑ 𝑧𝑀−1−𝑖[1 − ∑ (𝑏𝑗 + 𝑎𝑗)]𝑖
𝑗=1

𝑀−2
𝑖=1

𝑧𝑀 − ∑ 𝑧𝑀−𝑖 ∙ 𝑎𝑖
𝑀−1
𝑖=1

  

                                                                                         (11)     

−
𝑏𝑀

𝑧𝑀 − ∑ 𝑧𝑀−𝑖 ∙ 𝑎𝑖
𝑀−1
𝑖=1

, 

 

      𝐻𝑇𝑀
(𝑧) =

𝑇𝑀(𝑧)

𝑇𝐼(𝑧)
= 1 − 𝐻τ𝑀

(𝑧),                      (12) 

 

All general eq. (8) to (12) are very useful because, using 

them, we can easily derive Z transforms of the outputs and 

transfer functions of any order IIR FLLM, escaping long 

mathematical operations and significantly reducing the 

possibility of making errors. Let's check the correctness of 

the previous equations if we adopt M=3 from eq. (8) and 

(10), we will get eq. (4) and (5). Suppose we adopt M=4, 

from eq. (8) and (10), we will get eq. (6) and (7), proving the 

correctness of the generalized eq. (8), (9), (10) and (11). 

Except for the general eq. (1), (2), (3), and (8 to 12), it is 

necessary to derive some additional general equations for the 

IIR FLLM of the M-th order. Using eq. (8) and (10) we can 

find the final values TOM and M in the stable state of IIR 

FLLM, i.e., for the case when k→∞. Suppose the step input 

is TI(k)=TI=const. By substituting the Z-transform of TI(k), 

i.e., TI(z)=TI·z/(z–1) into eq. (8), and using the final value 

theorem, it is possible to find the final value of the output 

period as TOM=lim [(z–1)TOM(z)] when z→1. The result is 

shown in eq. (13).  It comes out from eq. (13), that TOM=TI 

if eq. (14) is satisfied. Equation (14) represents the general 

condition that the parameters of IIR FLLM must satisfy. It is 

substituting now TI(z) into eq. (10), and using the final value 
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theorem, it is possible to find the final value of the time 

difference M=lim 3(k) if k→∞, using M(z). This is shown 

in eq. (15).  

Let us now demonstrate the application of the general eq. 

(13), (14), and (15) to develop the corresponding equations 

for IIR FLL4. If we enter M=4 into eq. (13), we get eq. (16). 

If we enter M=4 into eq. (14), we get the general condition 

that the parameters of IIR FLL4 must satisfy, eq. (17). At last, 

If we enter M=4 into eq. (15), the final value of the time 

difference 4, which IIR FLL4 reaches in the stable state, is 

derived and shown in eq. (18). 
 

𝑇𝑂𝑀∞ = lim [(𝑧 − 1)𝑇𝑂𝑀(𝑧)]𝑧→1 

                                                                                          (13)                                      

= TI
∑ 𝑏𝑖

𝑀
𝑖=1

1 − ∑ 𝑎𝑖
𝑀−1
𝑖=1

, 

 

                          ∑ 𝑏𝑖
𝑀
𝑖=1 + ∑ 𝑎𝑖 = 1,𝑀−1

𝑖=1                                  (14) 
 
 

     τ𝑀∞ = 𝑇𝐼
−1−∑ [1−∑ (𝑏𝑗+𝑎𝑗)𝑖

𝑗=1 ]𝑀−2
𝑖=1 −𝑏𝑀

1−∑ 𝑎𝑖
𝑀−1
𝑖=1

+ 

                                                                                          (15)                                                              

+
𝑇𝑂0

1−∑ 𝑎𝑖
𝑀−1
𝑖=1

+ τ0,  

 

                          𝑇𝑂4∞ = 𝑇𝐼
𝑏1+𝑏2+𝑏3+𝑏4

1−𝑎1−𝑎2−𝑎3
,                                     (16) 

 

             𝑏1 + 𝑏2 + 𝑏3 + 𝑏4 + 𝑎1 + 𝑎2 + 𝑎3 = 1,                 (17) 
 

              τ4∞ = 𝑇𝐼
−3+2(𝑏1+𝑎1)+(𝑏2+𝑎2)−𝑏4

1−𝑎1−𝑎2−𝑎3
  

                                                                                                    (18)                                                                                                                                                                                                       

                               +
𝑇𝑂0

1−𝑎1−𝑎2−𝑎3
+ τ0. 

3. DEVELOPMENT OF THE TIME IIR FLL4 

DIGITAL FILTER USING GENERAL EQUATIONS  

With the developed general equations, we can approach 

the analysis or development of a wide range of IIR FLLM 

applications due to three types of outputs TOk, k and Tk.  

In the following text, we will emphasize the design and 

analysis of the filter characteristics of IIR FLL4 using output 

TO4 and compare it with the corresponding digital filter. 

Let's demonstrate the entire process of developing the fourth-

order IIR FLL4 digital filter using the general equations. If 

we enter M=4 in eq. (9), we will get the Z transform of the 

transfer function 𝐻𝑇𝑂4
(z) for IIR FLL4, shown in eq. (19). 

The next step is to define vectors 𝑏𝑇𝑂4
 and 𝑎𝑇𝑂4

 according to 

the Mat-lab rules for definitions of vectors “b” and “a”. The 

vectors 𝑏𝑇𝑂4
 and 𝑎𝑇𝑂4

 are determined based on the transfer 

function 𝐻𝑇𝑂4
(z) and shown in eq. (20). 

 

       𝐻𝑇𝑂4(z) =
𝑇𝑂4(𝑧)

𝑇𝐼(𝑧)
=

𝑧3𝑏1  +𝑧2𝑏2+𝑧𝑏3+𝑏4

𝑧4−𝑧3𝑎1  −𝑧2𝑎2−𝑧𝑎3
,               (19) 

              

             𝑏𝑇𝑂4
= [0     𝑏1     𝑏2     𝑏3     𝑏4]         

                                                                                                   (20) 

            𝑎𝑇𝑂4
= [1      −𝑎1    − 𝑎2    −𝑎3].      

 

As described in [1], we will use the theory of the IIR digital 

filter and its corresponding MATLAB application software to 

develop a time IIR FLL4 digital filter. The procedure consists 

of simply replacing the system parameters of IIR FLL4 with 

the digital filter coefficients; according to [1], the order of the 

classic digital filter, whose coefficients are to be used instead 

of the parameters of the IIR FLL4, must be for one order lower 

than the order of the IIR FLL4. That is the digital filter of the 

third order IIR DF3, whose transfer function is shown in eq. 

(21). The corresponding vector subscript base and 𝑎𝐷𝐹3
 are 

shown in eq. (22). Note that it is adopted a0d = 1. Let us now 

design the Butterworth low pass digital filter of the third order 

IIR DF3, defined by the cutoff frequency fg = 2 000 Hz and 

sampling frequency fs=10 000 Hz. Using MATLAB 

command [𝑏𝐷𝐹3
, 𝑎𝐷𝐹3

] = butter (N, fn), where N=3 is the order 

of the filter and fn=fg/(fs/2), we can get vectors  𝑏𝐷𝐹3
= [0.0985  

0.2956  0.2956  0.0985] and 𝑎𝐷𝐹3
= [1  –0.5772  0.4218  –0.0563]. 

Comparing eq. (19) and (21) to replace the parameters with 

the coefficients, we can see that b1= b0d = 0.0985, b2 = b1d = 

0.2956, b3 = b2d = 0.2956, b4= b3d= 0.0985, a1= –a1d = 0.5772, 

a2 = –a2d = –0.4218 and a3= –a3d = 0.0563. The obtained values 

of the coefficients satisfy eq. (17). It follows that, according to 

eq. (16), TO4=TI for these values of coefficients. Replacing 

the parameters with the coefficients in eq. (19), the transfer 

function HTO4(z) will turn into eq. (23). According to eq. (21) 

and (23), the relation between the transfer functions 𝐻𝑇𝑂4
(𝑧) 

and 𝐻𝐷𝐹3
 is shown in eq. (24). Replacing the parameters with 

the coefficients in eq. (20), bTO4 and aTO4 will turn into eq. (25). 

Based on the results obtained, we can define the relation 

between any order transfer function of time IIR FLLM and the 

transfer function of t classic digital filter, whose coefficients 

are used as parameters of IIR FLLM. If the digital filter is of 

(M–1) order, IIR FLL must be of M-th order. The relation of 

their transfer functions is presented in eq. (26). The second 

important conclusion relates to the vectors of the transfer 

functions respectively 𝐻𝑇𝑂𝑀
 of M-th order and 𝐻𝐷𝐹𝑀−1

 of  

(M–1)-th order. Their vectors are used in commands devoted 

to the design of digital filters. Their relations are shown in eq. (27). 
 

      𝐻𝐷𝐹3
(z) =

𝑧3𝑏0𝑑+𝑧2𝑏1𝑑+𝑧𝑏2𝑑+𝑏3𝑑

𝑧3+𝑧2𝑎1𝑑+𝑧𝑎2𝑑+𝑎3𝑑
,                          (21) 

 

          𝑏𝐷𝐹3
= [ 𝑏0𝑑      𝑏1𝑑      𝑏2𝑑      𝑏3𝑑]      

                                                                                    (22) 

           𝑎𝐷𝐹3
= [1      𝑎1𝑑       𝑎2𝑑       𝑎3𝑑], 

 

  𝐻𝑇𝑂4
(z) =

𝑧3𝑏0𝑑+𝑧2𝑏1𝑑+𝑧𝑏2𝑑+𝑏3𝑑

𝑧3+𝑧2𝑎1𝑑+𝑧𝑎2𝑑+𝑎3𝑑
𝑧−1,                (23) 

 

                    𝐻𝑇𝑂4
(𝑧) = 𝐻𝐷𝐹3

(𝑧) ∙ 𝑧−1,                                (24) 
 

𝑏𝑇𝑂4
= [0     𝑏0𝑑      𝑏1𝑑      𝑏2𝑑      𝑏3𝑑] = [0     𝑏𝐷𝐹3

]    

                                                                                         (25) 

𝑎𝑇𝑂4
= [1      𝑎1𝑑       𝑎2𝑑       𝑎3𝑑] = 𝑎𝐷𝐹3,  

 

                     𝐻𝑇𝑂𝑀
(𝑧) = 𝐻𝐷𝐹𝑀−1

(𝑧) ∙ 𝑧−1,                            (26) 
 

             𝑏𝑇𝑂𝑀
= [0    𝑏𝐷𝐹𝑀−1

], 𝑎𝑇𝑂𝑀  
= 𝑎𝐷𝐹𝑀−1

.               (27) 

4. PRESENTATION OF THE FUNCTIONING OF IIR 

FLL4 IN THE TIME AND FREQUENCY DOMAIN  

The simulations in the time domain can confirm all reached 

math results, realized by MATLAB tools. Using simulation, 

let us check the correctness and compliance between some 

general equations and general equations and simulation based 

on the described algorithm for the designed IIR FLL4 filter. 

All discrete values in simulations were merged to form 

continuous curves. All variables in the following diagram 

were presented in time units. The time unit can be sec, msec 
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or any other, but assuming the same time units for all time 

variables TI, TO and , using just “time unit” or abbreviated 

“t.u.” in the text was more suitable. It was more convenient to 

omit the indication “t.u.”, in the diagrams. Entering M=4 in eq. 

(1) we will get TOk+4, eq. (28). Using eq. (28) and (2), TOk+4 

and k+4 are simulated for TI=6 t.u., TO0=5 t.u., and 0=5 t.u. 

and shown in Fig. 2. The system parameters used are  

b1= 0.0985, b2= 0.2956, b3= 0.2956, b4= 0.0985, a1 = 0.5772, 

a2 = –0.4218 and a3 = 0.0563. It can be seen in Fig. 2 that 

TO4=TI. This agrees with eq. (16), since the system 

parameters of IIR FLL4 satisfy eq. (17). If we calculate 4 by 

entering the system parameters, TI, TO0, and 0 into eq. (18), 

we get 4= –2.915 t.u. The same value is obtained from the 

computer listing of the simulated 4= –2.915 t.u., shown in 

Fig. 2. Since 4 is the last in the sequence of math derivations, 

matching the simulated 4 with the calculated 4, confirms 

that both the previous math and the simulation are correct. 

 

    𝑇𝑂𝑘+4 = 𝑏1𝑇𝐼𝑘+3 + 𝑏2𝑇𝐼𝑘+2 + 𝑏3𝑇𝐼𝑘+1 + 𝑏4𝑇𝐼𝑘 
                                                                                                    (28) 

                   +𝑎1𝑇𝑂𝑘+3 + 𝑎2𝑇𝑂𝑘+2 + 𝑎3𝑇𝑂𝑘+1, 
 

   

Fig. 2 –Transition and stable states of IIR FLL4 for the designed system 

parameters, TI, and the initial conditions TO0 and 0. 

To determine the frequency responses of 𝐻𝑇𝑂4
 and 𝐻𝐷𝐹3

, 

we need vectors 𝑏𝑇𝑂4
, 𝑎𝑇𝑂4

, 𝑏𝐷𝐹3
 and 𝑎𝐷𝐹3

, which are 

defined in eq. (22) and (25). Based on these vectors and using 

MATLAB commands freqz (𝑏𝑇𝑂4
, 𝑎𝑇𝑂4

, 1024, fs) and freqz 

(𝑏𝐷𝐹3
, 𝑎𝐷𝐹3

, 1024, fs), IIR FLL4 and IRR DF3 frequency 

responses are determined and presented in Fig. 3 for half of 

the sample rate. The magnitudes of the IIR DF3 and IIR FLL4 

are identical. Since IIR FLL4 and IIR DF3 are the IIR digital 

filters, none of their phases is linear. According to eq. (24), 

the ratio 𝐻𝑇𝑂4
(z)= 𝐻𝐷𝐹3

(z)∙z–1 means that IIR FLL4 will 

introduce an additional output signal delay of –2π rad 

compared with the phase the digital filter makes on its output 

signal. Note that if we consider only half of the sample rate, 

this delay will be –π rad. It can be seen in Fig. 3 that the 

phases, which two systems introduced into the output 

signals, differ for expected –180°, for half of the sample rate. 

This result proves that the adaptation of the fourth-order 

FLL4 to function as a third-order IIR digital filter has been 

successfully realized. 

To demonstrate the filtering characteristics of the 

Butterworth low pass IIR FLL4 digital filter, let us suppose 

that the input period TIk is defined as TIk=6+S1(k) +S2(k) t.u., 

where S1(k)=5∙sin(2π/fs∙f1∙k) and S2(k)= 5∙sin(2π/fs∙f2∙k). The 

input periods are modulated by two sinusoidal signals S1 and 

S2. Suppose that the values of frequencies are f1=500 Hz and 

f2=4 000 Hz. Note that f1 is less than the cutoff frequency 

fg=2 000 Hz, and f2 is more significant than fg. The first step 

in this presentation is to form a vector TI of 10 000 values of 

TIk, 

   

Fig. 3 – Magnitudes and phases of the frequency responses of HTO4(z)  
and HDF3(z). 

using the above equation for TIk. The output period vector 

TO = filter (bTO, aTO, TI) is determined based on the 

vector TI. This vector was also formed in simulation based 

on eq. (28). After that, using the "fft" command, the input 

and output vectors of IIR FLL4 are formed as X = fft (TI) and 

Y = fft (TO). Finally, using the command "stem", stem (abs 

(X)) and stem (abs (Y)), the spectrums of the input and 

output periods are presented in Fig. 4. These spectrums 

present the absolute values of the amplitudes, covering the 

whole sample rate. They appear as positive values in the 

symmetric second half of the sample rate. It is visible in Fig. 4 

that signal S1 at 500 Hz is not attenuated since f1 is less than 

the cutoff frequency fg = 2 000 Hz. This agrees with the 

magnitude of the IIR FLL4 frequency response shown in 

Fig. 3, since at f1=500 Hz, the attenuation is zero. At the same 

time, signal S2 at 4 000 Hz is suppressed for about –36.8 dB 

in Fig. 3 because f2 = 4 000 Hz is greater than the cutoff 

frequency fg. It can be seen in Fig. 4 that the zero component 

at the frequency close to zero is not attenuated, which is also 

in agreement with the magnitude of IIR FLL4, shown in 

Fig. 3. A complete description regarding the zero component 

is presented in [2,3]. 

      

Fig. 4 – The input spectrum of TI and the output spectrum of TO. 

To gain further insight into the physical process of IIR 

FLL4, we will now present the inputs and outputs of IIR FLL4 

in the time domain, which are shown in Fig. 5. All signals in 

Fig. 5 are generated by the simulation of the supposed input 

TIk and the output TOk+4, given by eq. (28). All signals are 
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presented in 60 steps. The initial conditions in Fig. 5 are 

TO0=0 t.u., 0=0 t.u. and TI0=TI=6 t.u. Signal S1k is presented 

in Fig. 5a. Since the frequency of S1k is f1=500 Hz and the 

sampling frequency fs = 10 000 Hz, signal S1k is sampled 

10000/500 = 20 times per period. Figure 5a shows almost no 

deformation of the sinusoidal signal due to the large number 

of samples per period. However, if this image is enlarged, 

the deformation can be observed, but only in the part of the 

signal where its change in discrete time is minimal, i.e., in its 

maximum and minimum values. Signal S2k is presented in 

Fig. 5b. Since the frequency of S2k is f2 = 4 000 Hz, signal S2k 

is sampled 10 000/4 000 = 2.5 times per period. Both S1k and 

S2k in Figs. 5a and 5b are deformed sinusoidal signals. 

However, the number of samples per period of S2k is 

significantly smaller, so the S2k signal is highly deformed 

 

 

Fig. 5 – The simulation of the input and output signals of IIR FLL4, using 
supposed TIk and TOk+4 given by eq. (28). 

into needle-like shapes, which create a wider range of higher-

frequency components in the frequency domain. The sum of 

S1k and S2k is shown in Fig. 5c. The input TIk, as the sum of  

6 t.u, S1k, and S2k, is presented together with TOk in Fig. 5d. 

Figure 5d shows that the IIR FLL4 generates TOk, which is 

almost identical with S1k, while S2k signal is eliminated. This 

agrees with Fig. 4, where we can see that, in the output 

spectrum of TOk+4, the component of 4 000 Hz belonging to 

S2k has completely disappeared. The identical results of the 

simulations in the time domain, shown in Fig. 5, with the 

analysis results in the frequency domain, prove that the entire 

Z transform mathematical analysis of IIR FLL4 and analyses 

in the frequency domain are correct. 

5. CONCLUSIONS 

This article, which continues [1], describes the basic 

theory and development approach to new time IIR digital 

filters to filter pulse signal periods.  

This is the first article in the literature describing the 

general development approach to time IIR FLLM digital filter 

of any order, using its general equations. The article 

describes the methodology, procedures, math, simulation 

support, analysis in time and frequency domains, and all 

necessary general equations that develop any order IIR FLLM 

digital filter. Due to these general equations for IIR FLLM of 

any order, the procedure for their development is enormously 

shorted and practically reduced to the development of the 

classical digital filters. If we did not use the general 

equations, developing the necessary equations for a higher-

order IIR FLLM digital filter would be impossible without 

making an error due to the extensive mathematical 

operations. 

This article, like [2] in the domain of time FIR FLL digital 

filters, opened wide possibilities for using IIR FLL digital 

filters in electronics, telecommunications, control, and 

measurements, which use different forms of periodic and 

non-periodic pulse signals. There is an obvious need to filter 

them in some applications.  

Due to the complexity of the presented material, some 

additional efforts have been made to connect all segments of 

different presentations and analyses into a logical whole, 

such as mathematics, simulation, time presentations of 

signals, frequency responses of the transfer functions, and 

frequency presentations of signals for IIR FLL of the fourth 

order. This helps not only to prove the correctness of all the 

material presented but also to enable the understanding of the 

described physical process and to facilitate the revision 

simultaneously.  

Compared with FIR FLLM digital filters, IIR FLLM digital 

filters of the same order require more calculations. Because 

of that, the realization of any IIR FLLM digital filter would 

not be possible without a microprocessor, which is necessary 

to perform numerous calculations.  

The results of this article represent the basis for further 

possible development of time IIR FLLM digital filters. These 

results simultaneously enable the frequency analysis of all 

types of IIR FLLs and thus enable their more comprehensive 

application. However, the most likely and useful next step is 

to deepen the theory of time IIR FLLM digital filters or 

discover further methods to facilitate and shorten their 

development and analysis. All the novelties reached in the 

next steps will also apply to the classical digital filters and 

all discrete linear systems.  
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