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Tricuspid regurgitation (TR) is a condition in which the valve between the right atrium and right ventricle does not close properly. 
Therefore, blood leaks backward into the upper right chamber. Most commonly, tricuspid regurgitation is caused by an enlarged right 
ventricle. In this paper, a novel deep learning technique called Tricuspid regurgitation identification in the fetal heart (TRI-FH) approach 
has been proposed, for identifying TR in the early stages. The gathered 3D-echo images are pre-processed to improve the quality of the 
images. The feature extraction techniques namely color-level co-occurrence matrix (CLCM) and grey-level co-occurrence matrix 
(GLCM) are applied on both RGB and grey images. The extracted features are extracted using the wrapper method and the unsupervised 
dimension reduction technique namely independent component analysis (ICA) is used to reduce the dimension of extracted features. 
Afterward, the deep learning-based Ghost network is used for classifying normal, Mild TR, and severe TR cases. The classified TR cases 
are fed to the segmentation phase for segmenting the affected valve of the fetus. The experimental TRI-FH approach achieves a total 
accuracy of 98.07 %. As compared to existing techniques, the proposed TRI-FH method shows higher performance in terms of accuracy, 
precision, recall, specificity, and F1 score. The proposed TRI-FH model enhances the total accuracy by 95.64 %, 97.82 %, 93.21 %, and 
95.67 % better than ResNet, DenseNet, LinkNet, and U-Net respectively. 

1. INTRODUCTION 

TR is a common valve heart condition that develops with 
age, regardless of gender. Significant TR is expected to affect 
up to 2.7 % of patients, with the elderly being the most sensitive 
[1]. The tricuspid valve controls blood flow between the right 
atrium and the right ventricle. TV limits retrograde blood flow 
during systole but permits deoxygenated blood to move from 
RA to RV during diastole. For the television to function 
properly overall, these sub-valvular parts must function at their 
optimum. TR is a disease in which the function or architecture 
of the TV alters, reducing the overall efficiency of the RV 
function [2]. Numerous trials have demonstrated that delaying 
TR treatment during left-sided valve surgery causes TR to 
worsen and increases the risk of death [3]. Patients having 
surgery on their left-side valves for high-grade TR have been 
shown to live much longer after undergoing tricuspid valve 
intervention during that operation [4]. One of the most 
important clinical procedures [5] in contemporary clinical 
settings is gaining valve morphology based on CT images, 
which have outstanding information and spatial resolution on 
the interaction with surrounding structures, for the planning of 
treatment for aortic valve illness. To extract information about 
valve shape from CT images [6], however, radiologists and 
doctors must put in a lot of effort and spend considerable time. 
Because it provides 3D data with a high spatial resolution, CT 
imaging is the most effective tool for assessing TV and TR 
patients' remodeling of the right chambers. The fundamental 
mechanism of TR can be clarified by CT imaging [7], which 
can also be used to plan TV interventions and assess the 
anatomical compatibility of current transcatheter devices. A 
little TR will increase the inferior pressure to a point where the 
flow can be reversed when the RA is low, or the systemic 
venous pressure is high [8]. The connection between TA 
dilatation and TR is widely known. TR is detected early and 
sensitively by TA dilation and right and left atrial hypertrophy. 
Before RV dilatation, which eventually happens and is 
connected to more severe TR, the right atrial enlargement 
develops [9]. The clinical entity known as atrial functional 
tricuspid regurgitation in the situation of atrial fibrillation is 

more frequently considered to have distinctive 
echocardiographic evidence of annular dilatation associated 
with right atrial enlargement [10]. The overall severe TR 
population would almost definitely include a sizable fraction of 
the probable CAVI population. As a result, CAVI should be 
considered as a potentially viable alternative as more data 
become available for a variety of severe TR patients who face 
a high or prohibitive surgical risk [11]. The degree of 
regurgitation of the tricuspid valve was measured using the 
suggestions. The systolic pulmonary arterial pressure was 
estimated using the maximal TR jet velocity and the inferior 
vena cava respiratory variation. [12-16]. In this paper, a novel 
deep learning technique called Tricuspid Regurgitation 
Identification in Fetal Heart (TRI-FH) approach has been 
proposed, for identifying TR in the early stages. The main 
contribution of the research is as follows,  
• The 3D-echo images are pre-processed to increase their 

quality. Both RGB and grey images can be processed 
using the feature extraction methods CLCM and GLCM. 

• The extracted features are extracted using the wrapper 
method and the unsupervised dimension reduction 
technique namely Independent Component Analysis 
(ICA) used to reduce the dimension of extracted features. 
Then, the deep learning-based Ghost network is used for 
classifying normal, Mild TR, and severe TR cases. 

• The classified TR cases are fed to the segmentation 
phase for segmenting the affected valve of the fetus.  

The remaining sections of this work were split up into the 
five categories listed below. Section 2 presents the literature 
review; section 3 suggests the TRI-FH approach; section 4 
presents the results and discussion, and section 5 presents the 
conclusion and suggestions for further work. 

2. LITERATURE SURVEY 

Tricuspid regurgitation is mostly caused by an enlarged 
right ventricle. The ventricles expand as a result of heart 
conditions, such as heart failure, pulmonary hypertension, 
and cardiomyopathy. A summary of a few of those study 
papers is provided in this section. 



110 Fetal 3D-ECHO classification and segmentation 2 

 

Reference [17] suggested a CNN detect structural 
abnormalities and cardiac substructures in fetal ultrasound 
films, cross-sections around four-chamber views, and 
images of the trachea with three vessels. SONO accuracy 
curve in the heart and vessels was 78.7 % and 89.1 %, 
respectively. 

Reference [18] has created two of these strategies in an 
improved algorithm that can more accurately classify 
regurgitation forms and distinguish between classes with 
abnormalities and those without. Used deep learning 
approaches to classify regurgitation better than a well-known 
SVM method. It will reduce money while also assisting with 
early detection and diagnosis. 

Reference [19] an ARV-based V-Net architecture can take 
a fetal cardiac rhabdomyoma segmentation. The main 
objective of developing an algorithm to automatically 
identify FCRD from ultrasound images has been achieved. 
fetal rhabdomyomas adjacent to the tricuspid valve, left 
ventricle, right ventricle, left atrium, and right atrium were 
treated with this technique. 

Reference [20] developed an automated machine learning-
based system for detecting and diagnosing echo regurgitation 
from video files. The extraction of video frames from a video 
file, results in a considerable reduction in the total number of 
frames. The method gives an overall accuracy of 95.33 %. 

Reference [21] suggested an AI PIV based on DL and CNN 
that provides a high-resolution image of velocity fields. The 
right heart was captured using agitated saline bubble 
echocardiography in this innovative approach. These 
difficulties were overcome when higher-resolution data showed 
significant patterns and vortices throughout the cardiac cycle. 

Reference [22] proposed to identify TVD cases and collect 
data, utilizing a single prenatal ultrasound clinic's 
trustworthy sonographic computerized database. The four-
chamber view and valve color mapping of sonography were 
used to diagnose TVD. To rule out any other heart anomalies, 
a full fetal echocardiogram was performed. 

Reference [23] had generated A-FTR is a clinical entity 
with distinct clinical care demands and TV intervention 
opportunities, as well as results that are anticipated to differ 
from V-FTR. For in-patient treatment and TTVI selection, it 
is essential to understand the etiology of FTR and be able to 
differentiate between A-FTR and V-FTR. 

Reference [24] suggested Right atrial enlargement atrial 
functional TR is still not fully grasped. The existence of lone 
atrial fibrillation is the situation in which AF-TR is most 
frequently discovered, however it can also be. It is advised 
that physicians become more aware of this emerging clinical 
entity using this suggestion technique. 

Reference [25] developed a deep learning-based technique 
for detecting and evaluating echo Doppler flows. This 
approach was trained using labeled images of real-world 
clinical variance. The proposed overall accuracy was 91.6 % 
and 88.9 %, respectively.  

Reference [26] presented a meta-analysis that demonstrates 
the effectiveness of TAVI in BAS patients who are not 
candidates for surgery. Individuals with BAS experience 
stroke, conversion to surgery, second valve implantation, and 
paravalvular leak more frequently than patients with TAS and 
these risks must be communicated with the patient at every 
stage of the decision-making process. 

The existing techniques do not handle any kind of fetal 
presentation. There is no way to exclude it from the pooled 

estimates, and the evidence is very ambiguous in the 
preceding sample, no studies with surgically low-risk 
patients were included in the meta-analysis.  To overcome 
the above problem, we use fetal 3D-echo images to identify 
the TR cases immediately. 

3. PROPOSED METHOD 

In this section, the gathered 3D-echo images are pre-processed 
to improve the quality of the images. The feature extraction 
techniques namely CLCM and GLCM are applied on both RGB 
and grey images. The extracted features are extracted using the 
wrapper method and the unsupervised dimension reduction 
technique namely independent component analysis (ICA) used 
to reduce the dimension of extracted features. Afterward, the 
deep learning-based ghost network is used for classifying 
normal, Mild TR, and severe TR cases. The classified TR cases 
are fed to the segmentation phase for segmenting the affected 
valve of the fetus (Fig. 1). The overall workflow of the proposed 
TRI-FH model. Image reaping techniques are used to consider 
the area of vision for some further investigation. Using this 
method, the zone outside the area of attention is removed. To 
perform the picture-reaping procedure, a cover that defines the 
field of vision is constructed. The four extreme coordinates are 
obtained using this mask. Using these coordinates, the image is 
dynamically resized to the suitable width and height. Figure 2 
shows input into the reaping image. 

 
Fig 1 – The overall workflow of the Proposed model. 

3.1. IMAGE REAPING 

 
Fig. 2 – Reaping image. 

The phase discards approximately 40,000 pixels from drive 
fundus images with dimensions of 584×565 pixels. The value 
changes based on the size of the images field of vision. As a 
result, the image size is reduced and fewer pixels are probed in 
subsequent computations, lowering computational complexity. 
The color modification is done after the image has been cropped. 

3.2. BILATERAL FILTER 
The 3D-echo images are pre-processed by enhancing the 
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contrast using a bilateral filter. It can be used to reduce noise 
while maintaining edge detail by more carefully choosing 
which pixels go into the weighted total. According to pixels, 
the bilateral weights are computed. The advantage is 
preserved through this technique. This can be written as 
follows mathematically: 

𝐽′(𝑦, 𝑧) = 𝑁𝑏𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙(𝑦, 𝑧) · 
*∑ ∑ 𝐾𝑏𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙

3𝜎1
𝑚=−3𝜎1

3𝜎1
𝑛=−3𝜎1

(𝑦, 𝑧, 𝑛, 𝑚)𝐼(𝑦 + 𝑛, 𝑧 + 𝑚), (1) 
where 𝑁𝑏𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙  is the normalization factor and 𝐾𝑏𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙  are 
the weights of each pixel in the filter region. It employs 
𝐾𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(n, m) is a collection of Gaussian weights function and 
a photometric exclusion function are multiplied to create the 
weighted total selective inclusion of image pixels 
𝑓𝑒𝑑𝑔𝑒(𝑦, 𝑧, 𝑛, 𝑚) to obtain the bilateral weight calculation 
function, 

𝐾𝑏𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙(𝑦, 𝑧, 𝑛, 𝑚) = 
= 𝐾𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑛, 𝑚)𝑓𝑒𝑑𝑔𝑒(𝑦, 𝑧, 𝑛, 𝑚).             (2) 

Differences in intensity are inversely related to the 
photoelectric exclusion function. A value close to zero is 
therefore returned by the photometric exclusion function if 
there is a significant intensity difference between the focused 
pixel at coordinates (y, z) and a pixel within the filter region 
at coordinates (y+n, z+m), 

𝑓𝑒𝑑𝑔𝑒(𝑦, 𝑧, 𝑛, 𝑚) = e
−

(𝐽(𝑦+𝑛,𝑧+𝑚)−𝐽(𝑦,𝑧))
2

2σ2
2 ,             (3) 

where σ2 is a scaling factor J (y, z) is a contributing pixel. 
J (y+n, z+m) are the opposite sides of an edge. The scaling 
factor σ2 indicates an intensity difference between the 
contributing and focused pixels that identifies them as being 
on the same side of an edge. 𝑁𝑏𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙  is a normalizing 
factor. In this process, bilaterally weighted intensities are 
averaged. 𝑁𝑏𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙  is given by 

𝑁𝑏𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙(𝑦, 𝑧) =
1

∑ ∑ 𝐾𝑏𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 (𝑦,𝑧,𝑛,𝑚)
3σ1
𝑚=−3σ1

3σ1
𝑛=−3σ1

.   (4) 

Smoothing is done in an area with edges by only 
employing pixels that are adjacent to the focal pixel. 

3.3. GLCM 
GLCM for extracting the textural features in the images. 

Each item (m, n) in the GLCM represents the number of 
examples of the pair of grey levels m and n that are separated 
by d in the original image: 

𝑄(𝑚, 𝑛, 𝑑, θ) =  #{[(𝑦, 𝑧), (𝑦 + 𝑑, 𝑧 + 𝑑)|𝑓(𝑦, 𝑧) = 
= 𝑚, 𝑓(𝑦 + 𝑑, 𝑧 + 𝑑) = 𝑛]},                (5) 

where θ represents the pixel's direction in space. Normalize 
the GLCM matrix before obtaining the features. The method 
is as follows: 

𝑄(𝑚, 𝑛, 𝑑, θ) = 𝑄(𝑚, 𝑛, 𝑑, θ)/𝑆,               (6) 
where S is standardized constant that represents the sum of 
(m, n). The six features mentioned below were utilized by 
their functions. 

1. Energy, is also known as angular second moment, is a 
measure of an image's textural consistency. 

𝑊1 =  ∑ ∑ 𝑄2𝑖−1
𝑛=0

𝑖−1
𝑚=0 (𝑚, 𝑛, 𝑑, θ).              (7) 

2. Entropy, a measurement of image disorder, reaches its 
maximum when all components of a matrix are equal 

𝑊2 =  − ∑ ∑ 𝑄(𝑚, 𝑛, 𝑑, θ)

𝑖−1 

𝑛=0

𝑖−1

𝑚=0

· 

· log10 𝑄(𝑚, 𝑛, 𝑑, θ).                        (8) 
3. Contrast  

𝑊3 =  ∑ ∑ [(𝑚 − 𝑛)2𝑖−1
𝑛=0

𝑖−1
𝑚=0 ·  𝑄2(𝑚, 𝑛, 𝑑, θ).    (9) 

The number of local deviations in an image is measured 
by contrast, which is the difference moment of the matrix. 

4. Dissimilarly 
𝑊4 =  ∑ ∑ (𝑚 − 𝑛)𝑖−1

𝑛=0
𝑖−1
𝑚=0 ·  𝑄(𝑚, 𝑛, 𝑑, θ).    (10) 

5. Inverse difference moment 

𝑊5 =
∑ ∑ 𝑄 (𝑚,𝑛,𝑑,θ)𝑖−1

𝑛=0
𝑖−1
𝑚=0

[1+(𝑚−𝑛)2]
.                   (11) 

The inverse difference moment quantifies an image's 
homogeneity. When the majority of GLCM occurrences are 
located along the main diagonal, this parameter has the 
maximum value. 

6. Variance 
𝑊6 =  ∑ ∑ (𝑚 − 𝑎)2𝑖−1

𝑛=0
𝑖−1
𝑚=0  𝑄(𝑚, 𝑛, 𝑑, θ).       (12) 

The variance represents the texture cycle, while an is the 
average value of 𝑄(𝑚, 𝑛, 𝑑, θ). 

3.4. CLCM 
GLCM is used to extract color characteristics from 

images. CLCM operates by altering four fundamental 
GLCM equations to extract the color texture description 
directly from a color image. CLCM probability matrices 
were defined using the equations below. 

𝑃𝑐𝑎 , 𝑐𝑏 , 𝑑, θ (diff) = #{((𝑖, 𝑗, 𝑐𝑎), (𝑢, 𝑣, 𝑐𝑏))(𝐿𝑦 ∗ 𝐿𝑥) · 
· (𝐿𝑦 · 𝐿𝑥)|(𝑖 − 𝑢 = 0, |𝑗 − 𝑣| = 𝑑)},            (13) 

𝑃𝑐𝑎, 𝑐𝑏 , 𝑑, θ(diff) =  #{((𝑖, 𝑗, 𝑐𝑎), (𝑢, 𝑣, 𝑐𝑏)) ∈ (𝐿𝑦 · 𝐿𝑧)· 
· (𝐿𝑦 · 𝐿𝑧)|(𝑖 − 𝑢 = 𝑑, 𝑗 − 𝑣 = −𝑑) or  

(𝑖 − 𝑢 = −𝑑, 𝑗 − 𝑣 = 𝑑)},                    (14) 
𝑃𝑐𝑎 , 𝑐𝑏 , 𝑑, θ(diff) =  #{((𝑖, 𝑗, 𝑐𝑎), (𝑢, 𝑣, 𝑐𝑏))(𝐿𝑦 · 𝐿𝑧) · 

(𝐿𝑦 · 𝐿𝑧)(|𝑖 − 𝑢| = 𝑑, 𝑗 − 𝑣 = 0)},              (15) 
𝑃𝑐𝑎 , 𝑐𝑏 , 𝑑, θ(diff) = #{((𝑖, 𝑗, 𝑐𝑎), (𝑢, 𝑣, 𝑐𝑏)) ∈ (𝐿𝑦 · 𝐿𝑧) · 

(𝐿𝑦 · 𝐿𝑧)|(𝑖 − 𝑢 = 𝑑, 𝑗 − 𝑣 = 𝑑) or  
(𝑖 − 𝑢 = −𝑑, 𝑗 − 𝑣 = −𝑑)},                  (16) 

𝑃𝑐𝑎 , 𝑐𝑏 , 𝑑, θ(diff) =  #{((𝑖, 𝑗, 𝑐𝑎), (𝑢, 𝑣, 𝑐𝑏))(𝐿𝑦 · 𝐿𝑧) · 
(𝐿𝑦 · 𝐿𝑧)|(𝑖 − 𝑢 = 0, 𝑗 − 𝑣 = 0)},           (17) 

diff =  𝑅(𝑖, 𝑗, 𝑐𝑎) − 𝑅(𝑢, 𝑣, 𝑐𝑏).             (18) 
The 𝑃𝑐𝑎 , 𝑐𝑏 , 𝑑, θ(diff) are the probability vectors, diff is the 

intensity value difference between two pixels in various colour 
channels. The symbol # represents the number of items in the 
set, and the characters d and denote the distance and angle 
between two pixels in an image, respectively. The sets of 
resolution cells of the color image components, organized by 
row-column identifiers, are expressed by 𝐿𝑦 · 𝐿𝑧. Then, 
𝑅(𝑖, 𝑗, 𝑐𝑎) and 𝑅(𝑢, 𝑣, 𝑐𝑏) are intensities on position i, j, or u, v, 
of image R and 𝑐𝑎, 𝑐𝑏 are color components of the image.  

3.5. WRAPPER METHOD 
The wrapper method is used to fuse the extracted features 

(color and texture). The wrapper fusion technique is 
frequently employed to maintain accuracy while minimizing 
computer complexity. To evaluate the caliber of the selected 
attributes, the wrapper-based models employ learning 
techniques. Most of the time, a search strategy in the space 
of potential feature subsets is predefined, and several feature 
subsets are generated and assessed.  

3.6. INDEPENDENT COMPONENT ANALYSIS (ICA) 
It is a generally used technique to extract features and reduce 

the dimensions. When the ICA method is used to extract image 
features, it separates images and produces a collection of 
independent source images. It then uses the above collection of 
independent source images as a set of base images for the 
image set, allowing the image set to be constructed from these 
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independent base images. The image's linear superposition 
under different combination coefficients reduces the 
redundancy of the pixel's grey value and isolates the important 
image elements. Figure 3 shows the ICA diagram.  

 
Fig 3 – ICA diagram. 

Let 𝐬 = [𝑠1, 𝑠2, . . . . 𝑠𝑛]T be 𝑛 is an independent source 
signals with zero-mean value, and 𝐘 =  [𝑦1, 𝑦2, . . . . 𝑦𝑚]T are 
𝑚 is a random observation signal.  

𝐘 = 𝐁𝐒,                              (19) 
𝑦𝑗 =  ∑ 𝑏𝑗𝑘𝑠𝑗

𝑛
𝑘=1 .                       (20) 

Among them, j = 1,2,… n, k = 1,2,… m, B = 
[𝑏1, 𝑏2, . . . . . , 𝑏𝑛] is a full-rank matrix of n×m. Let 𝐙 =
[𝑧1, 𝑧2, . . . . , 𝑧𝑚] be the estimated signal, then  

Z = WS = 𝐖𝐁𝐒.                         (21) 
The estimated signal is an independent source signal, 

while W and WB are the unmixing matrix and identity 
matrix, respectively. 

3.7. DEEP GHOST NETWORK 
The deep learning-based ghost network is used for 

classifying the cases. The ghost net model is used for fine-
grained cervical cells. The discriminative power of light-weight 
convolutional neural networks utilized in cervical cell 
categorization was improved by applying a hybrid loss function 
with label smoothing. The primary ghost module divides the 
initial convolutional layer into two halves and uses fewer filters 
to provide a lot of intrinsic feature mappings. The successful 
generation of ghost feature maps can thus be accomplished 
using a small number of accessible transformation techniques. 
Figure 4 shows the architecture of ghost network. 

 
Fig. 4 – Architecture of ghost network. 

Assume 𝑦" = 𝑦1
" + 𝑦2

" (𝑦1
" < 𝑦2

" ), 𝑦1
"  and 𝑦2

" , where 
represent the basic feature information and redundant basic 
feature information, respectively. 𝑋1 is generated using n 
intrinsic feature maps using 𝑦1

". For each intrinsic feature map, 
linear operation ϕ𝑖 is used to generate 𝑘 ghost feature maps. So, 
𝑛 intrinsic feature maps are generated 𝑚 = 𝑛 · 𝑘 ghost feature 
maps 𝑋2. The n+m output convolution operation is displayed 
after the ghost convolution procedure, as follows: 

𝑋1 = 𝑦1
" ·  𝑔′ 

𝑋2 = 𝑦𝑖𝑗 = 𝜑𝑖(𝑥𝑖), ∀ 𝑗 = 1, … . , 𝑛, 𝑖 = 1, … . , 𝑘 (22) 

𝑋 = 𝑋1 · 𝑋2, 
where 𝑔′ ∈ 𝑇e∗𝑘∗𝑘∗𝑛 is the filter, k×k is the convolutional 
kernel size, n is the number of intrinsic feature maps 
𝑋1 ∈ 𝑇ℎ′𝑤′𝑚, 𝑤′and ℎ′are the output feature maps breadth 
and height, and m is the number of ghost feature maps. 

3.8. OTSU METHOD 
The Otsu method and it’s used in image segmentation, as 

well as the development of an improved threshold image 
segmentation algorithm, are discussed. The proper threshold 
should be chosen by maximising the weighted total of 
foreground and background pixel between-class variances, 
according to this procedure. The images into two classes are 
𝑍1and 𝑍2 can be computed as,  

μ𝑧1
= ∑

𝑗∗𝑆𝑖

𝑆𝑧𝑖

𝑀
𝑗=0 ,                              (23) 

μ𝑧1
= ∑

𝑗∗𝑆𝑖

𝑆𝑧𝑖

𝑁−1
𝑗=𝑀+1 .                         (24) 

So can get the equivalent formula: 
σ2(𝑀) = 𝑆𝑧1

𝑆𝑧2
(μ𝑧1

− μ𝑧2
)2.            (25) 

The optimal threshold 𝑀∗can be produced by increasing 
the difference in variance between classes. 

𝑀∗ = Arg max
0<𝑀<𝑁−1

σ2 (𝑇).              (26) 
Since it is simple and has a reliable attachment, the Otsu 

approach has been extensively used in the segmentation of 
genuine images.  

Both background noise and target size are very sensitive to it. 
After testing it out on a variety of photo types, it was found that 
it works best on images having a single peak variance. When 
there is a large difference between the two intra-class variances, 
the Otsu method's threshold tends to be closer to the class with 
the greater intra-class variation, indicating that more pixels from 
this class will be recognized as belonging to another class. As a 
result, the segmentation result must be improved. 

4. RESULTS AND DISCUSSIONS 

In this section, the proposed TRI-FH approach used for 
identifying TR in the early stages. Recall, accuracy, specificity, 
and precision are the metrics used to evaluate it. Various aspects 
are considered in evaluating the effectiveness of the model 
provided. Figure 5 shows the identifying of the TR cases. The 
proposed TRI-FH approach used for classifying normal, Mild TR 
and Severe TR cases. The input 3d echo images are gathered in 
column 1. The image reaping results are in column 2. Then, the 
pre-processed using Bilateral filter by improve the quality of the 
images are column 3. The extracted features are extracted images 
are column 4. Afterwards, the classifying results are normal, Mild 
TR and Severe TR cases are column 5. The experimental result 
of the proposed TRI-FH approach images is in column 6. 

4.1. PERFORMANCE ANALYSIS 
In this paper, the performance analysis was calculated based 

on specificity, accuracy, recall, precision, and F1 score, 
Acuracy =

TP+TN

TP+TN+FP+FN
                  (27) 

Precision =
TP

TP+FP
,                         (28) 

Recall =
TP

TP+TN
,                           (29) 

Specificity =
TN

TN+FP
,                      (30) 

F1 score = 2 (
Precision∗Recall

Precision+Recall
),            (31) 

where TN, FN represents the true and false negatives and TP, 
FP denotes the true and false of the sample fabrics. 
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Table 1 

Performance analysis of the proposed TRI-FH model 
Class Accuracy Specificity Precision Recall F1 

Score 
Normal 

TR 
97.53 96.63 95.32 93.54 91.47 

Mild TR 96.26 94.28 93.46 92.63 90.38 
Severe 

TR 
95.42 93.58 94.61 93.82 93.17 

Table 1 displays the classification of various TR classes 
according to specific parameters. The TRI-FH approach's 
average accuracy, F1 score, precision, recall, and specificity 
when used with the given parameters. The proposed TRI-FH 
approach has an average accuracy of 97.53 %, 96.26 %, and 
95.42 %, respectively. The Proposed TRI-FH approach has 
acquired high accuracy in both training and testing accuracy, 
as shown in Fig. 6. The performance is based on the 
specificity, recall, accuracy, precision, and F1 score, as well 
as the accuracy obtained by the proposed model. According 
to the results, the classification accuracy of the Proposed 
TRI-FH approach was 98.07 %, respectively. 

 
Fig 5 – Experimental result of the proposed TRI-FH model 

 
Fig. 6 – Performance metrics for three classes. 

 
Fig. 7 – Training and testing accuracy curve of the proposed TRI-FH model. 

The accuracy of the method increases as the number of 
epochs is raised, Fig. 7 shows the accuracy curve, which has 
accuracy and epochs on opposite axes. The loss of the model 
decreases as the number of epochs increases, as illustrated by 

the epoch versus loss curve in Fig. 8. Thus, the TRI-FH 
approach is expected to have an accuracy of 98.07 %. 

4.2. COMPARATIVE ANALYSIS 
A comparative analysis between the proposed model and 

the existing machine models is done in this section.  

 

Fig. 8 – Training and testing loss curve of proposed TRI-FH model. 

The performance of the current methods was compared 
using precision, specificity, recall, accuracy, and F1 score to 
show that the suggested strategy's outcome is more effective. 
The overall performance of machine learning models is 
compared with the recommended method in Table 2. A 
comparison of the suggested model with machine learning 
networks, such as ResNet, DenseNet, LinkNet, and U-Net, is 
shown in Table 2. 

Table 2 
 Comparative analysis of existing deep learning networks with the 

proposed TRI-FH model 
Networks Accuracy Specificity Precision Recall F1 

Score 

ResNet 95.64 93.47 92.82 89.76 90.64 

DenseNet 97.82 96.24 94.45 90.28 89.24 

LinkNet 93.21 90.47 86.34 85.86 88.89 

Unet 95.67 93.64 87.47 83.78 92.87 

TRI-FH 
approach 

98.07 96.46 94.62 91.69 90.53 

 

 
Fig. 9 – Comparison of existing deep learning networks with the proposed 

TRI-FH model. 

Table 3 

Comparison of existing versus proposed TRI-FH model 
Authors Methods Accuracy 

Masaaki [16] CNN 89.1% 
Imayanmosha [19] Machine Learning 95.33% 

Zamzmi [24] Deep learning 91.6% 
Proposed TRI-FH approach 98.07% 

The proposed TRI-FH approach improves the overall accuracy 
of the ResNet, DenseNet, LinkNet and U-Net is 95.64 %, 97.82 
%, 93.21 %, and 95.6 7% respectively. This approach improves 
the overall recall of the ResNet, DenseNet, LinkNet, and U-Net is 
89.76 %, 90.28 %, 85.86 %, and 83.78 % respectively. The 
proposed TRI-FH improves the overall F1 score of the ResNet, 
DenseNet, LinkNet and U-Net is 90.64 %,89.24 %, 88.89 %, and 
90.53 % respectively. Based on the network parameters (Fig. 9), 
the suggested network's efficiency is evaluated. Table 3 shows 
that, in comparison to CNN, machine learning, and deep learning, 
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respectively, the proposed TRI-FH approach improves overall 
accuracy by 89.1 %, 95.33 %, and 91.6 %. It presents a comparison 
between the various methods' algorithms. The average accuracy 
value is 98.07 %, as can be seen in the table, indicating that the 
TRI-FH yields higher accuracy values. 

4. CONCLUSION 

In this paper, the gathered 3D echo images are pre-
processed to improve the quality of the images. The classified 
TR cases are fed to the segmentation phase for segmenting the 
affected valve of the fetus. The experimental TRI-FH 
approach achieves a total accuracy of 98.07 %. The proposed 
TRI-FH method performs better in terms of accuracy, 
precision, recall, specificity, and F1 score when compared to 
current methods. The proposed TRI-FH method performs 
better in terms of accuracy, precision, recall, specificity, and 
F1 score when compared to current methods. The proposed 
TRI-FH model improves the overall accuracy by 95.64 %, 
97.82 %, 93.21 %, and 95.67 % better than ResNet, DenseNet, 
LinkNet, and U-Net respectively. To enhance the model's 
performance, we employ transfer learning by fine-tuning a 
pre-trained neural network architecture on our specific dataset. 
The integration of attention mechanisms further improves the 
model's ability to focus on relevant regions within the 3D echo 
images, increasing sensitivity and reducing false positives. In 
the future, 3D echo images can be visualized using several 
techniques to highlight human-recognizable clinical features.  
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