
Rev. Roum. Sci. Techn.– Électrotechn. et Énerg. 

Vol. 69, 1, pp. 91–96, Bucarest, 2024 

1 Electrical Engineering Department, University of Setif 1, Algeria. E-mail:Abdeslem.khelloufi@univ-setif.dz, Bilal.sari@univ-setif.dz 
2 DAC Laboratory, University of Setif 1, Algeria. E-mail: Seif.chouaba@univ-setif.dz 

  DOI: 10.59277/RRST-EE.2024.69.1.16 

STRUCTURED H∞ CONTROL-BASED ROBUST POWER SYSTEM 
STABILIZER FOR STABILITY OF MULTI-MACHINE SYSTEM 

ABDESLEM KHELLOUFI1, BILAL SARI1, SEIF EDDINE CHOUABA2 

Keywords: Multi-machine system; Power system stabilizer; Structured H∞ synthesis; Robust control. 

A robust design of power system stabilizers (PSSs) using H∞ output feedback control has been introduced in this work. To 
facilitate the implementation of the designed PSSs, the proposed technique employs the H∞ to tune the fixed-structure 
conventional lead-lag PSS parameters of the multi-machine system. These PSSs are used to improve the damping of the local 
and inter-area low-frequency oscillations in power systems under different operating conditions. The proposed control is tested 
on a multi-machine system, which is a three-machine nine-bus system. A comparative simulation study shows a significant 
enhancement and good performance of the proposed design compared to an IEEE conventional power system stabilizer.

1. INTRODUCTION

The stability of power systems is one of the biggest 
challenges, the instability can lead to blackouts.  

The low-frequency electromechanical oscillations are a 
serious problem in power system stability. The power 
system stabilizer (PSS) is an effective way to improve the 
damping of these oscillations, which is used to produce a 
supplementary signal through the excitation system [1–3]. 

The lead-lag phase compensator is the base of the 
conventional power system stabilizers. 

The current IEEE standard [4] has classified the type of 
power system stabilizers according to the number of inputs 
in two categories: single-input like (PSS1A, PSS5C) and 
dual-input like (PSS2C, PSS3C, PSS4C, PSS6C, PSS7C). 
Also, the standard has classified according to the bands of 
the working frequency into two types: single frequency 
bands like (PSS1A, PSS2C...), and multiple frequency 
bands like (PSS4C, and PSS5C) which are used to damp 
separate frequency bands (very low, low, intermediate, and 
high-frequency modes) [4]. 

In the literature, different techniques have been designed 
to damp low-frequency oscillations.  

The sliding mode control (SMC) is presented in paper 
[5], a farmland fertility algorithm (FFA) in [6] but the FFA 
is highly reliant on accurate and extensive data which can 
be challenging to acquire, a genetic algorithm in [7] which 
requires many iterations and evaluations, making it slow for 
complex problems like multi-machine system, a particle 
swarm optimization (PSO) in [8] but this algorithm 
performance critically depends on fine-tuning parameters, 
making it complex and less robust, a chaotic sunflower 
optimization algorithm in [9] which requiring careful tuning 
of chaotic parameters, struggles with local optima, 
prioritizing exploitation (refining good solutions) over 
exploration (finding new, potentially better regions) leading 
to missed global optima, a moth search algorithm in [10] 
but it lacks the rigorous mathematical backing of some 
established optimization methods, raising concerns about 
stability and global convergence guarantees, bio-inspired 
algorithms in [11] which is highly dependent on fine-tuning 
specific parameters, impacting effectiveness and requiring 
more expertise, a sliding mode control in [12]. Moreover, 
artificial intelligence-based training and tuning techniques 
have been used to develop a PSS as a Deep reinforcement 
learning-based method in [13], a neuro-adaptive predictive 
control in [14], a fuzzy-based controller in [15–17], damped 
Nyquist plot for the phase and gain optimization in [18] but 

all these algorithms may require intensive computations 
compared to simpler algorithms, especially for complex 
problems. Furthermore, robust control theories have been 
employed in the design of H∞-based robust power system 
stabilizers [19] in the case of one machine connected to the 
electrical grid. It is noted that H∞ control is inherently 
robust, providing stability and performance guarantees even 
in the presence of uncertainties and disturbances. Unlike 
some optimization methods which may rely on specific 
models, the H∞ method utilizes a systematic approach that 
considers worst-case scenarios, making it suitable for a 
wide range of complex systems. Moreover, the H∞ approach 
excels in addressing uncertainties and variations in system 
dynamics, ensuring stability and performance under diverse 
operating conditions. Besides, it is effective in dealing with 
time-varying systems, offering a reliable solution for 
dynamic processes that evolve. 

At the nominal operating conditions, the conventional 
power system stabilizer (CPSS) works efficiently, but its 
performance decreases if the operating point has changed 
[20]. In this case, the CPSS does not guarantee the power 
system robustness for different ranges of operating points. 

To solve the robustness problem, the robust control 
design guarantees stability under external disturbance or 
parametric uncertainties. In [21], the authors have designed 
their PSS using the concept of Glover-McFarlane’s loop 
shaping design, but it is applied only in the case of one 
machine connected to the infinite bus. A linear matrix 
inequalities (LMI) technique is used to synthesize a state 
feedback robust PSS using pole-placement [22] but it 
assumes all the system states are measurable which is not 
the case in an industrial context.  

Robust control methods based on H2 and H∞ Norm 
designed in [19,20] have been only applied on an SMIB. 

In this work, a structured H∞ control approach has been 
developed to tune control block parameters of conventional 
CPSS on the Multi-Machine system with two weighting 
functions. This is the main contribution of this paper. 
Besides to the authors’ knowledge, this work is not in the 
literature. Compared to other optimization methods like 
genetic algorithms (GA), particle swarm optimization 
(PSO), and others used for control system design, the H-
infinity method offers several advantages. These include 
robustness to uncertainties, stability guarantees, and 
computational efficiency. These features make H∞ control a 
powerful tool for controlling complex systems in the 
presence of uncertainties and disturbances.  
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This paper is organized as follows. Section 2 presents the 
description and mathematical model of the multi-machine 
system. Section 3 gives the structured H∞ control design. 
Section 4 explains the proposed resolution and the chosen 
weighting functions in the proposed design. Section 5 
shows the simulation results, in which a comparative study 
is performed between the proposed control strategy and the 
conventional CPSS. Finally, Section 6 ends this paper and 
gives some concluding observations. 

2. PLANT MODEL

The dynamic stability of Multi-Machine power systems 
can be described by a set of nonlinear differential 
equations. A multi-machine system of this study consists of 
three machines and nine buses, as shown in Fig.1. The 
system data are given in [23]. 

Fig. 1 – Diagram of nine-bus system. 

Fig. 2 – A linear model of a multi-machine power system. 

The nonlinear mathematical model of the system is 
described by the equations given below:  

�̇�𝑖=(ω𝑖 − ω𝑠),  (1) 
ω̇𝑖=

𝜔𝑠

2𝐻𝑖
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1

𝑇𝐴𝑖

[−𝐸𝑓𝑑𝑖 + 𝐾𝐴𝑖(𝑉𝑟𝑒𝑓𝑖 − 𝑉𝑡𝑖)],                          (4)

𝑇𝑒𝑖=𝐸𝑞𝑖
′ 𝐼𝑞𝑖 − (𝑋𝑞𝑖 − 𝑋𝑑𝑖

′ )𝐼𝑑𝑖𝐼𝑞𝑖,  (5) 
where all the model parameters are given in the 
nomenclature. 

The scheme of the linear model [24] of the multi-
machine system is shown in Fig. 2. 

The linearized state-space model can be written as: 
∆�̇�(𝑡)=A∆x(𝑡) + 𝐵1∆𝑤(𝑡) + 𝐵2∆𝑢(𝑡), 

∆𝑦(𝑡)=C∆𝑥(𝑡),  (6) 

where Δx(t) is the state vector, Δw(t) is a vector of the 
external inputs (Reference voltages and mechanical 
torques), the control signal of the power system stabilizer 
Δu(t), and the system output signal is Δy. The main 
matrices A, B1, B2, C can be found in [24]. 

As the conventional PSS (CPSS) is widely used in 
industrial power plants with fixed structures and to 
facilitate the implementation of the proposed advanced 
PSSs, this paper focuses on the tuning blocks of CPSS by 
using a fixed-structure H∞ control design approach. The 
fixed structure of CPSSs is written under the following 
form [4]: 

 𝐾2(𝑠)=𝐾𝑠2

𝑇𝑤2𝑠

(1 + 𝑇𝑤2𝑠)

(1 + 𝑇12𝑠)(1 + 𝑇32𝑠)

(1 + 𝑇22𝑠)(1 + 𝑇42𝑠)
,  (7) 

 𝐾3(𝑠)=𝐾𝑠3

𝑇𝑤3𝑠

(1 + 𝑇𝑤3𝑠)

(1 + 𝑇13𝑠)(1 + 𝑇33𝑠)

(1 + 𝑇23𝑠)(1 + 𝑇43𝑠)
,  (8) 

where Ks2 and Ks3 are the PSS gains, Tw2 and Tw3 are wash-
out time constants, T1i, T2i, T3i, and T4i are time constants of 
the ith generator. 

3. STRUCTURED H∞ CONTROL DESIGN

The structured H∞ control technique is used to tune control 
block parameters, it is a special case of H∞ synthesis [25,26]. 
In this paper, the tuning control block parameters of 
conventional CPSS is performed by using structured H∞ 
synthesis. The representation of the problem is illustrated in 
Fig. 3, where the augmented plant transfer matrix is P(s) 
which combines fixed parameters.  

Fig. 3 – Standard representation for structured H∞ synthesis. 

The robust structured HPSS controller is K(s) which 
combines tunable parameters (Ksi, T1i, T2i, T3i, T4i) of 
conventional CPSS. The external inputs w are the reference 
voltage variations (ΔVref1, ΔVref2, and ΔVref3) and the 
mechanical torque variations (ΔTm1, ΔTm2, and ΔTm3) of the 
generators G1, G2, and G3 respectively. The measurement 
outputs y are the speed deviations (Δω2 and Δω3) of the 
generators G2 and G3 respectively. The control signals u are 
the outputs of proposed H∞ power system stabilizers (HPSS2 
and HPSS3) and the external outputs z are chosen to be the 
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variation of speed deviations Δω12 of the generators G1, G2 
and Δω13 of the generators G1, G3. These external signals z 
will be filtered by some weighting functions before their use 
in the H∞ optimization problem. More details about the used 
weighting functions will be given in the next section. 

The structured H∞ synthesis is based on minimization of 
the H∞ norm as follows: 

 

‖𝐻(𝑠)‖∞= maxωσ̅(𝐻(jω)) ≤ γ,             (9) 

where σ̅ is the maximum singular value, and γ is the H∞ norm 
to be minimized. 

The linear fractional transformation (LFT) representation 
for H∞ is given as follows: 

 

𝐻(𝑠)=𝐹𝑙(𝑃(𝑠), Diag(𝐾1(𝑠),…,𝐾1(𝑠)),           (10) 

where Fl represents the lower LFT representation and Diag 
represents a diagonal block of Ki(s). 

The open-loop transfer matrix from [
𝑧
𝑦] to [𝑤

𝑢
] is given as 

follows: 
 

[
𝑧
𝑦] = [

𝑃11(𝑠) 𝑃12(𝑠)

𝑃21(𝑠) 𝑃22(𝑠)
] [

𝑤
𝑢

] ,                   (11) 
 

The linear fractional transformation (LFT) representation 
of the system in closed loop is given as follows: 

 

𝑇𝑧𝑤(𝑠)=𝑃11 + 𝑃12𝐾[(𝐼 − 𝑃22)𝐾]−1.      (12) 

4. H∞ CONTROLLER RESOLVING 

It is necessary to include some weighting functions W1(s) 
and W2(s) in the Plant to get some dynamical performances 
in an H∞ problem. Figure 4 illustrates the augmented plant 
with the weighting functions W1(s) and W2(s). The new 
considered external outputs are: z1 and z2, where z1 is the 
variation of speed deviations Δω1 and Δω2 connected to 
weighting function W1(z1=W1(s)Δω12) and z2 is the variation 
of speed deviations Δω1 and Δω3 connected to weighting 
function W2(z2=W2(s) Δω13). 

 
Fig. 4 – Weighting functions augmentation of the system. 

The choice of these weighting functions is an essential 
step. The structures of weighting functions W1(s) and W2(s) 
are given by the following equations: 

 

𝑊1(𝑠)=
𝑀1𝑠 + 𝑤𝑏1

𝑠 + 𝑤𝑏1𝜀1

,                          (13) 

𝑊2(𝑠)=
𝑀2𝑠 + 𝑤𝑏2

𝑠 + 𝑤𝑏2ε2

,                          (14) 

where Mi, wbi and εi are the tuning parameters. The 
following values satisfy the performance requirements for 
the considered nominal operating point: 

The first weighting function parameters are: M1=110, 
wb1=50 and ε1=10–4 and the second weighting function 
parameters are: M2=100, wb2 = 110 and ε2=10–4.  

The obtained numerical values of tuned parameters' 
HPSSs are given in the Table 1. 

5. SIMULATION RESULTS 

To verify the effectiveness and the robustness of the 
proposed HPSS2 and HPSS3, several studies have been 
performed on the multi-machine system at different 
operating points where the data of the system and loading 
conditions are given in the Table 2 and Table 3. It is noted 
that “Light load” refers to operating the generator at a 
fraction of its rated capacity, typically less than 25 %. 
“Normal load” is the typical operating range for the 
generator, around 50-75 % of its rated capacity. “Heavy 
load” refers to running the generator at or near its full 
capacity, typically 75-100 % of its rated capacity. 

Table 1 

The HPSS2 and HPSS3 data 
HPSS2 HPSS3 

Parameter Value Parameter Value 
Ks2 43.2826 Ks3 0.3280 
Tw2 10.00 Tw3 10.00 
T12 0.18984 T13 1.9980 
T22 0.00408 T23 0.0340 

T32 0.19534 T33 2.1973 
T42 0.00434 T43 0.0390 

Table 2 

System operating conditions (in p.u.) 
Generator Light Normal Heavy 

P Q P Q P Q 

G1 0.362 0.162 0.716 0.271 2.207 1.088 
G2 0.800 -0.109 1.630 0.067 1.920 0.564 
G3 0.450 -0.204 0.850 -0.107 1.280 0.359 

Table 3 

Loading conditions (in p.u.) 
Load Light Normal Heavy 

P Q P Q P Q 

A 0.65 0.55 1.25 0.50 2.00 0.80 
B 0.45 0.35 0.90 0.30 1.80 0.60 
C 0.50 0.25 1.00 0.35 1.50 0.60 

 
Furthermore, a comparative study is carried out with 

CPSSs [23], where a scenario of severe disturbance rejection 
test is considered. It consists of a standard three phases short 
circuit near the node 4 at t = 1s (see Fig. 1). After 50 ms, the 
line (4–5) is opened at t= 1.1s this line is closed. 

Figures 5 to 7 present a system response using the 
conventional PSSs (CPSSs) and the proposed stabilizers 
(HPSSs) to a transient disturbance during nominal 
operating conditions. 

Comparing the simulation results obtained with the 
HPSSs and with conventional CPSSs shows that the 
proposed stabilizers achieve good robustness and 
performances. As can be observed in Figs. 5–13. The 
Tables 4 and 5 show a quantitative comparison of the 
proposed HPSS with a conventional CPSS and without 



94 Structured H∞ control for stability of multi-machine system 4 
 

PSSs. The Table 4 represents the first oscillation 
amplitude of the system response. It is noted that the 
proposed HPSSs gives smaller oscillation in all 
generators overall operating conditions. The Table 5 
shows the settling time for |∆𝜔𝑖| < 1.5 ∙ 10−4. The 
proposed HPSSs gives a better settling time in all 
generators in a heavy load. 

In nominal load, it gives a better settling time in two 
generators (G2 and G3). And in the light load, it gives a 
better settling time in the generator G2. Besides, the 
proposed HPSSs gives the best settling time in six out of the 
tested nine cases. The conventional CPSS gives a better 
settling time only in the three cases compared to the proposed 
HPSSs. Furthermore, the proposed HPSSs have the best 
dynamical performance in terms of oscillations damping. 

 
Fig. 5 – Speed deviation of generator 1 for nominal load. 

 
Fig. 6 – Speed deviation of generator 2 for nominal load. 

 
Fig. 7 – Speed deviation of generator 3 for nominal Load. 

 
Fig. 8 – Speed deviation of generator 1 for light load. 

 
Fig. 9 – Speed deviation of generator 2 for light load. 

 
Fig. 10 – Speed deviation of generator 3 for light load. 

 
Fig. 11 – Speed deviation of generator 1 for heavy load. 

 
Fig. 12 – Speed deviation of generator 2 for heavy load. 

 
Fig. 13 – Speed deviation of generator 3 for heavy load. 
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Table 4 

Comparison of 1st oscillation amplitude between the conventional PSSs 
(CPSSs) and the proposed PSS (HPSSs) 

Case PSS Type G1 G2 G3 

Nominal Without-PSS 2.918 4.994 5.740 
Load CPSSs 2.689 4.976 5.467 

in 10–3 p.u. HPSSs 2.427 4.951 5.438 

Light Without-PSS 0.974 1.920 2.053 
Load CPSSs 0.972 1.896 2.031 

in 10–3 p.u. HPSSs 0.923 1.885 2.029 

Heavy Without-PSS 3.931 5.422 7.681 
Load CPSSs 3.719 5.410 7.670 

in 10–3 p.u. HPSSs 3.606 5.274 7.456 

Table 5 

Comparison of the settling time between the conventional PSSs (CPSSs) 
and the proposed PSS (HPSSs) 

Case PSS Type G1 G2 G3 

Nominal Without-PSS 8.976 >10s >10s 
Load CPSSs 2.328 2.845 2.706 

in 10–3 p.u. HPSSs 2.416 1.877 2.641 

Light Without-PSS 3.954 8.176 7.272 
Load CPSSs 1.920 2.902 2.813 

in 10–3 p.u. HPSSs 2.565 2.264 2.872 
Heavy Without-PSS >10s >10s >10s 

Load CPSSs 9.085 9.102 9.053 
in 10–3 p.u. HPSSs 3.601 1.996 3.629 

6. CONCULSION 

In this paper, a robust power system stabilizer design 
using structured H∞ synthesis is presented to enhance the 
stability and robustness of the multi-machine system. Three 
different operating points have been considered. 

The proposed HPSS2 and HPSS3 controllers have a 
simple architecture, good performance and good robustness 
compared to the conventional CPSS. 

The simulation results confirm the great benefit of the 
proposed HPSSs compared to the conventional CPSS 
regarding the stability, the disturbance rejection, and the 
speed deviation dynamical performances in several loading 
conditions. 

APPENDIX 

A. THE MULTI-MACHINE DATA 
The parameters of the generators are given in Table A.1: 

Table A.1 

Loading conditions (in p.u.) 
Generator Xd X’d T’do Xq H D 

G1 0.1460 0.0608 8.9600 0.0969 23.64 9.6 
G2 0.8958 0.1198 6.0000 0.8645 6.40 2.5 
G3 1.3125 0.1813 5.8900 1.2578 3.01 1.0 

B. THE SMIB DATA 
The numerical values of parameters’ CPSSs [4] are given 

in Table B.2.  

Table B.2 

The CPSS2 and CPSS3 data 
CPSS2 CPSS3 

Parameter Value Parameter Value 
Ks2 2.4272 Ks3 0.3666 
Tw2 10.00 Tw3 10.00 
T12 0.9728 T13 0.9303 
T22 0.0500 T23 0.0500 
T32 0.8417 T33 1.5315 
T42 0.0500 T43 0.0500 

NOMENCLATURE 

()i Generator i 
Hi Inertia constant (s) 
ωi Rotor angular speed (rad/s) 
ωs Synchronous rotor angular speed (rad/s) 
δi Power angle (rad) 

Idi,Iqi 

 

d and q-axis components (p.u.) of the 
ith generator current 

KAi, TAi Gain (p.u.) and time constant (s) of AVR 
Efdi Rotor field voltage (p.u.) 
Vti Terminal voltage (p.u.) 

Vrefi Reference voltage (p.u.) 
Tei, Tmi Electrical and mechanical torque (p.u.) 

E’
qi q-axis transient internal voltage (p.u.) 

T’
doi d-axis transient open circuit generator 

time constant (s) 
Xdi, Xqi Generator d and q-axis reactance (p.u.) 

X’
di Generator d-axis transient reactance (p.u.) 

Di Damping coefficient 
P,Q Active and reactive powers (p.u.) 

K1ij,…,K6ij Linearized multi-machine system constants 
Ksi, Twi, Tji Gain, washout time constant, and time 

constants of PSSs of the ith generator 
Gi The ith generator 

PSS Power System Stabilizer 
CPSSi The ith conventional PSS 
SMIB Single Machine connected to Infinite Bus 

HPSSi The ith proposed H∞ PSS 
u, y The control signal and input signal of PSS 

Received on 24 March 2023 
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