
      Rev. Roum. Sci. Techn.– Électrotechn. et  Énerg. 
      Vol. 61, 1, pp. 47–52, Bucarest, 2021 

Automatique et ordinateurs 

 

1 University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovica 6, Novi Sad, Serbia, branislav.kordic@rt-rk.uns.ac.rs 
2 Jerusalem College of Technology, Jerusalem 9372115, Israel, goldmosh@g.jct.ac.il 

AN EVOLUTIONARY COMPUTATIONAL SYSTEM ARCHITECTURE 
BASED ON A SOFTWARE TRANSACTIONAL MEMORY 

BRANISLAV KORDIC1, MARKO POPOVIC1, MIROSLAV POPOVIC1, MOSHE GOLDSTEIN2,  
MOSHE AMITAY2, DAVID DAYAN2, ERICK FREDJ2 

Key words: Software transactional memory, Python, Diffusion equation evolutionary programming simulated annealing method 
(DEEPSAM), Python software transactional memory (PSTM), Evolutionary programming (EP). 

In the last decade software transactional memory has become a prominent programming paradigm, which aims to improve the 
execution performance of concurrent programs. However, most research in the field is done in programming languages such as 
C, C++ and JAVA. In this paper, we present a PSTM-based architecture of DEEPSAM, a computational chemistry program 
written in Python language. The PSTM-based architecture aims to improve execution performance of the original computational 
chemistry system architecture based on evolutionary programming and to provide transactional-memory-based means for its 
future optimizations. The metric analysis includes system execution time and problem size scalability. The experimental results 
show that the new PSTM-based version gained better execution time results relative to the original version. Likewise, the results 
did not reveal any architectural bottleneck of the new architecture. 

1. INTRODUCTION 
Engineering of computer based systems (ECBS) is an 

important field of electrical engineering, which uses 
computers as system control units. Transactional memory 
(TM) [1, 2] is a specific computer system component, 
which may be implemented as hardware, software, or 
hybrid (hardware and software). Computational chemistry 
system architecture, based on a particular TM, is presented 
in this paper. A similar approach may be used in ECBS of 
components for smart homes, smart grid, etc. 

TM provides the alternative to traditional lock-based 
mechanisms by replacing them with a lock-free mechanism. 
In general, TM aims to provide better performance for 
parallel computation from multicore architectures and to 
ease the writing and maintenance of parallel programs as 
well. Since transactional execution hardware support is still 
missing in modern processors, Software Transactional 
Memory (STM) [3] continues to be the major tool for 
researchers. 

In this paper, we present a case study of a new 
computational chemistry system architecture based on a 
STM. Many computational tasks in chemistry and biology, 
such as small molecule screening for drug discovery, next-
generation sequencing (NGS) short reads alignment, protein 
structure prediction, and many more, are complex CPU-
intensive real-world applications whose long execution 
times limit their practicality. The case study presented here 
analyses the impact of STM on the execution performance 
of such a real-world application: Diffusion Equation 
Evolutionary Programming Simulated Annealing Method 
(DEEPSAM) [4, 5].  

DEEPSAM is a hybrid evolutionary programming (EP) 
[6, 7, 8] computational chemistry program. It was designed 
to deal with the Protein Structure Prediction (PSP) problem 
[19]. DEEPSAM's EP algorithm is written in Python 2.x on 
top of mgtinker, a modified version of the TINKER 
molecular modeling software package [9], which is written 
in Fortran 77. DEEPSAM’s implementation contains 
dozens of thousands lines of Python and Fortran source 
code. The shortcoming of the current implementation, 
which we attempted to mitigate by using a STM-based 

approach, is barrier-based process synchronization, which 
limits full potential of parallel processes execution.  

The main goals of this research are: (i) to develop a new 
STM-based DEEPSAM architecture in order to enhance the 
existing barrier-based process synchronization of the 
original version of DEEPSAM utilizing STM for Python 
language, named as Python Software Transactional 
Memory (PSTM) [10], and (ii) to try to quantify the impact 
of PSTM on the system performance of such a complex 
program like DEEPSAM. Although the first goal is related 
to DEEPSAM in particular, it provides details about the 
complexity and potential labor effort needed for the 
integration of a STM into a quite complex real-world 
application in general. The attainment of the second goal 
provides a detailed analysis about how PSTM influences 
system execution time and problem size scalability. 

Since DEEPSAM is a program, which implements an 
evolutionary algorithm, this case study may be valuable for 
other researchers who extensively use and exploit the 
power of evolutionary and genetic algorithms, such as 
parallel-series electrical systems design optimization [11], 
power control optimization [12], multi-objective 
optimizations [13], machine design development [14], etc. 

In earlier research in the field, very few notable 
examples, which tried to quantify a STM-based solution in 
a real-world application, exist. Usually, they are evaluated 
against benchmark programs, which are convenient for 
early experiments, but may not be applicable for complex 
programs such as DEEPSAM. Among the first researchers 
who demonstrated a rather complex real-world application 
based on a STM are Zyulkyarov et al. [15] and Gajinov et 
al. [16]. In their work, they experimented with the 
internationally famous multi-player game Quake, using 
different versions of C/C++ based STM. Nakaike et al. [17] 
tried to overcome the scalability issue of JAVA-based 
applications, namely HSQLDB database and Geronimo and 
GlassFish application servers, using STM-based approach. 
Hofmann et al. [18] analyzed how hardware TM influences 
an operating system architecture and performance.  

2. DEEPSAM 
The PSP problem [19] entails the challenge of predicting 



48 System architecture based on a software transactional memory 2  

the native structure of a bio-molecule. Actually, PSP is the 
problem of finding the global minimum of a bio-molecule's 
Potential Energy Surface (PES), which is a multi-
dimensional function having approximately 10N local 
minima (N is the length of the bio-molecule sequence). 

Certain PSP computational tools rely on predefined sub-
structure fragments. These tools include PEP-FOLD [20], 
ROSETTA [21], PEPstr [22], PEPStrMod [23], etc. On the 
other hand, other tools implement methods that do not rely 
on predefined sub-structure fragments, but, on the bio 
molecule's sequence and on the PES modeling capabilities 
of purely ab-initio empirical Molecular Mechanics (MM) 
force fields, only. Examples of such methods include 
Diffusion Equation Method (DEM) [24], Molecular 
Dynamics (MD) [25], Monte Carlo (MC) [25], Simulated 
Annealing (SA) [26] in its two versions, MDSA and 
MCSA, Replica Exchange Molecular Dynamics (REMD) 
[27], etc. DEEPSAM implements a hybrid EP algorithm 
whose mutation operators, called DEMSA, combine tools 
of this kind. In Table 1, we present a qualitative comparison 
of those PSP tools. In our earlier research [4, 29, 30], 
DEEPSAM's protein structure prediction quality was scored 
by the results of calculating root mean square deviation 
(RMSD) and rank of maximal substructure (MAXSUB), 
among the calculated 3D geometry structures and those 
obtained experimentally. Description of those structural 
similarity comparison techniques is provided in [4].  

The default population size (n > 1) used in this research 
is 5, the same as in previous studies in which DEEPSAM 
produced successful bio-molecules' structure predictions. 

The population-oriented approach of EP provides a good 
sampling of the exponential PSP search space by exploring 
in parallel a set of widely distributed sub-regions of the 
PES. A set of specially designed mutation operators, called 
DEMSA, which are generated on-the-fly, at run time, 
combine complementary advantages of DEM, MDSA, and 
the L-BFGS quasi-Newton local minimization procedure 
[28]. For each one of the five bio-molecule’s conformations 
in the population, five probabilistically chosen different 
DEM smoothing levels are applied upon the PES. This 
generates 25 different smoothed PESs that have fewer 
minima relative to the bio-molecule's (unsmoothed) PES, 
achieving reduced search spaces, which are simultaneously 
sampled, in parallel. Each one of those DEMSA operators 
has two optimization steps. At the first step, it applies 
MDSA (or L-BFGS) at its smoothed PES, upon the 
corresponding conformation. At the second step, it applies 
MDSA (or L-BFGS) at the un-smoothed PES, upon the 

conformation calculated at the first step. MDSA is used if 
DEEPSAM decides that a long step size minimization is 
needed. L-BFGS is used if DEEPSAM decides that a small 
step size minimization is needed. For more details, see [7, 
8]. The probabilistic choice of smoothing levels, together 
with the choice of MDSA and/or L-BFGS at the smoothed 
and/or un-smoothed PESs, may cause the runtime of each 
iteration to defer significantly from the run time of any 
other iteration.  This means that we may expect the run 
times of two DEEPSAM runs to defer significantly. 

At each iteration, DEEPSAM implements two levels of 
parallelism: a process is created for each one of the 5 
molecular conformations in the current population. Each 
one of those 5 parent processes creates 5 child processes 
that accordingly run 5 different DEMSA operators, each 
one upon a replica of the same molecular conformation 
(Fig. 8 [4]). In other words, DEEPSAM's behavior, as 
explained here, has some similarity to REMD's behavior.  

DEEPSAM provides four alternative run modes, namely 
serial, serial-parallel, parallel-serial, and parallel. Here we 
focus exclusively on the parallel mode, in which all the 
processes are executed in parallel. 

In [4] the prediction of the structure of a set of cyclic 
peptides, for which X-ray crystallographic data are 
available, was used as DEEPSAM's proof of concept. As 
part of that study, DEEPSAM's structure prediction 
capabilities were compared with its components': nwsapss 
(one of DEEPSAM's DEMSA operators), anneal (Tinker's 
MDSA implementation), and pss (Tinker's DEM 
implementation). Two kinds of comparisons were 
implemented: by their run times (Table 8 [4]) and by the 
calculated deepest minima of the PESs of the studied cyclic 
peptides (Table 9 [4]). Those comparisons showed that 
DEEPSAM was better than any of its components alone. 
DEEPSAM was also used to study the relative influence of 
widely used Implicit Solvent Models on structure prediction 
[29]. DEEPSAM was also used to predict the structure of 
linear peptides whose lengths are between 10 and 20 amino 
acids [30]. The predicted structures were compared with 
available NMR structures and with structures predicted by 
PEP-FOLD [20]. Run time detailed information of those 
calculations may be found in Table 2S of the Supporting 
Information of [30]. In that study, DEEPSAM was shown 
to be a good structure predictor relative to the structure 
prediction capabilities of PEP–FOLD. 

3. PSTM 
The Python Software Transactional Memory (PSTM) 

Table 1 
A qualitative comparison of Protein Structure Prediction tools 

Tool Approach Calculated minima 
for cyclic peptides 

Calculated minima 
for linear peptides 

Comments 

Tools that implement methods that rely on predefined sub-structure fragments 
PEP-FOLD, ROSSETTA, 
PEPstr, PEPStrMod  - Compared  

Tools that implement methods that rely only on bio-molecule’s sequence and PES modeling 
DEM Global Minimization by PES Smoothing. Compared   
MDSA Global Minimization by Molecular Dynamics. 

(MD) Simulated Annealing (SA). 
Compared -  

L-BFGS Quasi-Newton Local Minimization. Compared -  
REMD Global Minimization by MD parallel execution 

upon molecular conformation replicas. 
- - DEEPSAM's DEMSA 

operators are also 
executed upon replicas. 

DEEPSAM Global Minimization by EP whose DEMSA 
mutation operators execute in parallel upon 
molecular conformation replicas. 

Best 
(Table 9 [4]) 

Best 
(Table I [30]) 

 

 



3 Branislav Kordic et al. 49 
 

[10] system comprises (i) software transactional memory, 
i.e., PSTM, and (ii) transactions. As the central component 
of PSTM, transactional execution is provided through its 
public API. In the PSTM execution model, a transaction 
starts execution by reading data from PSTM, then follows 
data processing, and finally, the transaction ends with 
writing (updating) data back to PSTM. Each transaction is 
part of an application, and it is executed in the context of 
that application. A transaction is executed sequentially as a 
set of instructions, possibly sharing common transactional 
variables with other transactions. From the application’s 
perspective, a transaction is executed atomically, and its 
outcome is either true (commit) or false (abort).  

Two versions of PSTM exist, one for Python 3.x and 
other for Python 2.x. Both are built on top of Python’s 
multiprocessing package. PSTM's version for Python 2.x 
was used because the current version of DEEPSAM is 
implemented in Python 2.x.  

The API of the Python 2.x version of PSTM follows: 
● new(comm_links) 
● addVars(comm_links, vars) 
● getVars(comm_links, vars) 
● cmpVars(comm_links, vars) 
● commitVars(comm_links, rw_sets) 
● delete(comm_links) 

The function addVars() adds new t-var(s) in PSTM. The 
function getVars() is used to read t-var(s) from PSTM. The 
function cmpVars() is an auxiliary function used to 
compare a set of t-vars defined by the transaction with the 
current t-var versions stored within PSTM. All the 
functions share a common argument comm_links used for 
communication between PSTM and transactions. The 
function commitVars() tries to commit (write) new values 
to PSTM. The argument rw_sets contain two sets of t-vars, 
a read set and a write set. The read set contains 
transaction’s local t-vars which are used for processing. The 
write set contains new t-vars values ready to commit 
(write). The functions new() and delete() create and delete a 
set of comm_links. 

4. IMPLEMENTATION 

4.1 DEEPSAM ARCHITECTURE 
DEEPSAM starts the execution with the main process 

degsam, which is located in the degsam.py module. Based 
on the input arguments, it executes the main iteration loop 
of DEEPSAM's EP algorithm. The main synchronization 
functionality is located in the demsa.py module. It 
coordinates the creation (spawning) and the 
synchronization of Python processes which constitute the 
first level of parallelism. Dictated by the fact that the 
algorithm processing is implemented in two distinct 
execution environments, namely Python and Fortran, and 
due to prior design choices, the processes' synchronization 
is facilitated by using the operating system's file system. 

The central data structure, which contains substantial 
details for child processes, is the degsamdictonary 
dictionary file. In the first iteration, the dictionary is created 
based on the input parameters and it is regularly updated 
throughout the execution. The main process distributes it to 
its child processes by storing it in the file degsamdict.dat. 
The child processes (the first level of parallelism), which 
are Python scripts, only read it; later, each one of them 
spawns a family of Fortran child processes (the second 

level of parallelism). After this point, depending on the run 
mode, processes are executed in parallel. When the Fortran 
programs end their execution, their parent Python process 
summarizes the results computed by its children. When all 
the degsam's child processes end their execution (Python 
processes), and when the control returns to the degsam 
process, the main process takes the data produced by its 
child processes and updates the dictionary file. Afterwards, 
the degsam process enters the next iteration, and the cycle 
described above repeats again, until all the iterations of the 
evolutionary loop gets to its end. 

The shortcomings of this process synchronization 
approach are as follows: (i) input data to the child processes 
are passed over a set of read and write I/O operations, 
which are sluggish, and (ii) using a busy-waiting loop as 
synchronization barrier for the Python processes which 
creates a bottleneck. 

The file degsamdict.dat is updated when the function 
writedict() is called. The function is called only from the 
degsam program and the demsa module, and it was a good 
starting point to introduce PSTM. 

4.2 PSTM-BASED DEEPSAM ARCHITECTURE 
The PSTM integration was accomplished in four steps. In 

the first step, all the modules which used the obsolete 
Python process control interface were identified. In 
particular, in order to avoid shared files between Python 
processes in the first level of parallelism, all the processes 
had to be created using the multiprocessing package. The 
multiprocessing package enabled us to utilize inter-process 
communication facilities, such as queues and pipes, which 
are essential for PSTM functionality. Only two DEEPSAM 
modules were modified: the degsam module and the 
demsamutation module. 

In the second step, the initial PSTM-into-DEEPSAM 
integration was performed. The aim of this step was to run 
PSTM inside DEEPSAM without interfering with the main 
execution path of the algorithm. The PSTM functionality 
was implemented in the module stm.py. We had gradually 
shifted the existing DEEPSAM functionality to use PSTM, 
because of DEEPSAM’s complexity and size. In this step, 
PSTM is successfully initialized and cleaned-up by the 
functions init_pstm() and cleanup_pstm(), respectively. The 
function init_pstm() creates communication links, initializes 
t-vars, and runs the PSTM server. The function 
cleanup_pstm() deletes all the t-vars and the 
communication links, and stops the PSTM server. The 
message sequence chart diagram of the PSTM-based-
DEEPSAM architecture is shown in Fig 2. A set of new 
PSTM-related functions, which were added during the 
integration process, are given in Table 2. 

In the third step, all the Python processes of the first level 
of parallelism, including the main process degsam, were 
supplied with a set of pipes comm_links used for the 
communication with PSTM. As function argument, the 
comm_links set is passed down to the functions popdemsa() 
and demsamutation_main_program() in the degsam.py and 
demsamutation.py modules, respectively. Each new 
argument, which is added to a function’s argument list, is 
placed in the first position. This argument passing 
convention is defined since some of the existing arguments 
were defined with default values which must be at the end 
of the formal argument list. The utility function launch() 
was also modified – it takes a set of pipes and a process 



50 System architecture based on a software transactional memory 4  

name, which is used for Python child processes spawning. 
After this step, all the Python processes were equipped with 
the facilities needed to start using the PSTM functionality. 

In the fourth step we had to introduce t-vars to PSTM, 
and to switch to PSTM-based DEEPSAM functionality. In 
terms of the transactional system, such as PSTM, the child 
processes of the first level of parallelization are transactions 

and their input-output dictionaries are t-vars. Therefore, 
now, instead of writing the content of the degsamdictonary 
dictionary to a file, the main process stores it in the PSTM, 
and child processes read it without issuing any file I/O 
operations. Similarly, instead of writing to output files, 
child processes write the results to the PSTM, making them 
available to the main process. 

 
Fig. 2 – The message sequence chart diagram of the PSTM-based DEEPSAM architecture. 

Table 2 
A set of new PSTM-related functions 

Function name Description 

writedict2stm(comm_links, degsamdictionary) A version of the function writedict() which is PSTM based. It is used to 
write an object of degsamdictionary to PSTM. 

read_stm(comm_links, tvar_name) General purpose function used to read a t-var (i.e., data) from PSTM. 
write_stm(comm_links, tvar_name, new_tvar_value) General purpose function used to write a t-var (i.e., data) to PSTM. 

init_pstm(degsamdictionary) The function used for PSTM initialization – create communication links, 
run the PSTM server, add t-vars and initializes them.  

cleanup_pstm(ptm, comm_links) Releases all the resources allocated by the function init_pstm() and shuts-
down the PSTM server.  

 



5 Branislav Kordic et al. 51 
 

The dictionary is stored to PSTM by the writedict2stm() 
function, which is the counterpart of the function writedict() 
that relies on the file degsamdict.dat, i.e., the function 
writedict2stm() writes a degsamdictionary object to PSTM 
instead into a file. The t-var exist is introduced, too. It is 
used in the first iteration of the evolutionary loop to check 
whether the dictionary exists. If it does not exist, it is 
created; otherwise it is loaded from the file system. The 
semantics of this t-var is the same as in the previous case, 
but with the difference that now it is stored in PSTM rather 
than in the file system. The functions stm_read() and 
stm_write() provide an interface for reading and writing a t–
var(s) from PSTM, respectively. 

5. RESULTS 

5.1 TESTING AND VALIDATION 

 

 

 
Fig. 3 – Execution time results for (a) enkephalin, (b) 2mq5 and (c) 1l2y 

in parallel execution mode. 

The new PSTM-based DEEPSAM architecture was 
tested applying both gray-box and black-box testing 
approach. Namely, the gray-box testing approach was used 
in the earlier phases of development since it was not 
manageable to conduct overall system functionality testing 
and validation. Each function, which was modified to use 
PSTM functionality, was instrumented and its output was 

tested every time it was called. The testing was performed 
at run-time, in every loop of the evolutionary algorithm. 
The function testing includes checking the data of the 
degsamdictionary object which is stored in the operating 
memory (and shared through a file) and its counterpart 
object which is stored in PSTM. The data of those two 
objects must be bit-exact.  

The black box testing approach was used in the later 
phases of development when it was possible to run the 
DEEPSAM version, which completely relies on the PSTM 
functionality. Since the evolutionary algorithm may 
produce different results in consecutive runs, bit-exact 
matching was not possible. Instead of validating the output 
results, in this phase the focus was to validate the program 
run-time execution behavior. During the testing, no errors, 
failures or undesirable behaviors were noticed. 

5.2 EXPERIMENTAL RESULTS 
The aim of the experiments was to quantify PSTM’s 

influence on the performance metrics such as the system 
execution time and the problem size scalability. The amino 
acid sequence length identifies the problem size (the 
structural complexity of peptides and proteins), influencing 
execution time, and in some cases that influence is 
significant. In order to analyze the problem size scalability, 
DEEPSAM was run upon three bio-molecules: enkephalin 
[31](a short peptide), 2mq5 [32](a medium size peptide), 
and 1l2y [33](a mini-protein). 

The experiments were conducted in DEEPSAM’s 
parallel execution mode and for 1, 2, 4, 6, 8, 15, 20, and 30 
iterations. Each experiment was run five times. Based on 
the obtained execution time results, the average execution 
time and the standard deviation were calculated. Prior to the 
calculation, the outliers were filtered out. The measured 
execution times varied significantly; in general, the 
variation increased as the number of iterations increased. 
The calculated standard deviation actually expresses that 
significant variation, indicating the range of possible 
execution times, and the non-deterministic-like nature of 
DEEPSAM’s algorithm.  

The experiments were executed under Linux Centos 7 
OS, running on top of a hardware machine equipped with 
two Intel Xeon CPU E5-2683 v3 @ 2.00GHz CPUs (total 
28 CPUs) and 128 GB of RAM. 

The execution-time results are presented in Fig. 3 
(standard deviation is annotated by small vertical lines). 
The results show that execution time for both DEEPSAM 
versions are comparable for all the inputs and for all the 
number of iterations. In general, both DEEPSAM versions 
exhibit similar behavior, which is demonstrated by small 
differences in the execution time results. In some cases, 
execution times of the PSTM-based architecture are slightly 
better, which is consequence of reduced system overheads, 
such as Python process management overheads and 
replacing active busy-waiting synchronization with more 
efficient synchronization facilities. Actually, the busy-
waiting loop synchronization in the original DEEPSAM 
architecture constantly occupies one of the underlying 
cores, which implies overall longer execution times for all 
participating processes in DEEPSAM. Note that protein 
execution times may be an order of magnitude longer than 
peptide execution times, thus, these slight improvements of 
execution times in the PSTM-based architecture can be 
significant in long computation runs. However, the non-



52 System architecture based on a software transactional memory 6  

deterministic nature of the algorithm may cause wide range 
of possible execution time results. 

Considering that size of PSP problems are identified with 
sequence length, the approach to the problem size 
scalability analysis taken here refers to the size and the 
complexity of the input bio-molecules. According to this 
scalability approach, and based on the results obtained by 
running experiments upon three peptides whose sizes and 
complexity are significantly different, it can be concluded 
that the PSTM-based DEEPSAM architecture retained the 
good problem size scalability performance of the original 
DEEPSAM. 

The obtained results reveal sporadic glitches, which 
appeared during the execution of experiments. It would be 
preferable if DEEPSAM could be run without running 
anything else in the computer, i.e., on the bare machine, but 
unfortunately, this is not feasible. It cannot be isolated 
(sandboxed) either. Therefore, some glitches may occur due 
to interference with OS services and other background 
processes, which we cannot control or prevent. 

6. CONCLUSIONS 
In this paper, we present a case study of STM integration 

in a real-world Computational Chemistry application based 
on evolutionary programming using DEEPSAM (a protein 
structure prediction program) and the Python Software 
Transactional Memory (PSTM). Starting from the original 
DEEPSAM version, the new PSTM-based DEEPSAM 
architecture was developed. The aim of the new architecture 
is to provide better performances for parallel computation by 
utilizing more power from multicore architectures. The 
experimental results indicate that the new PSTM-based 
architecture is able to achieve better execution performance 
and retain the problem size scalability without introducing 
any side effect to the existing architecture. Simultaneously, it 
enables the potential of lock-free facilities provided by the 
STM paradigm itself, which can be capitalized in the future 
by algorithm and architecture modifications.  

As directions of future work we plan (1) to develop an 
algorithm that would fully exploit STM facilities and (2) to 
develop system architecture for distributed computing 
based on a framework such as EFL [34] and TensorFlow. 

Received on September 16, 2019 

REFERENCES 
1. M. Herlihy, J. E. B. Moss: Transactional memory: Architectural support 

for lock-free data structures, Proc. of the 20th Annual International 
Symposium on Computer Architecture, pp. 289-300, ACM, New 
York, NY, USA (1993). 

2. T. Harris, J. R. Larus, R. Rajwar, Transactional Memory, 2nd edition, 
Morgan and Claypool, 2010. 

3. N. Shavit, D. Touitou: Software transactional memory, Proc. of the 14th 
Annual ACM Symposium on Principles of Distributed Computing, 
pp. 204-213,ACM, New York,NY, USA (1995). 

4. M. Goldstein, E. Fredj, B. Gerber, A New Hybrid Algorithm for Finding 
the Lowest Minima of Potential Surfaces: Approach and 
Application to Peptides, Journal of Computational Chemistry, 32, 
pp. 1785-1800 (2011). 

5. M. Goldstein, DEEPSAM: A Hybrid Evolutionary Algorithm for the 
Prediction of Biomolecules Structure, Lect Notes in Comput Sc - 
Hybrid Metaheuristics, 9668, pp. 218–221 (2016). 

6. A. E. Eiben, J. E. Smith, Introduction to evolutionary computing, 
Springer,Berlin Heidelberg (2007). 

7. T. Back, D. B. Fogel, Z. Michalewicz, Evolutionary Computation 1: 
Basic Algorithms and Operations, IOP Publishing Ltd.,UK (2000). 

8. L. J. Fogel, A. J. Owens, M. J. Walsh, Artificial Intelligence through 
Simulated Evolution, Wiley, USA (1966). 

9. J. W. L. Ponder, TINKER Molecular Modelling Package (2003), 
https://dasher.wustl.edu/tinker/ 

10. M. Popovic, B. Kordic: PSTM: Python software transactional memory, 
Proc. of the 22nd Telecomm. Forum, pp. 1106–1109 (2014). 

11. K. Guerraiche, M. Rahli, L. Dekhici, A. Zeblah, Optimal design of 
redundancy series-parallel electrical systems using metaheuristics,  
Revue roumaine des sciences techniques, 63, 1 , pp. 46-51 (2018). 

12. S. Ziane, A. Abdelghani, M. Abid, Power control of doubly fed 
induction generator using hybrid adaptive neural fuzzy sliding mode 
controller optimised by genetic algorithm, Revue Roumaine des 
sciences techniques, 63, 4, pp. 411–416 (2018). 

13. H. Labdelaoui, F. Boudjema, D. Boukhetala, Multiobjective optimal 
design of dual-input power system stabilizer using genetic 
algorithms,  Revue roumaine des sciences techniques, 62, 1 , pp. 
93–97 (2017). 

14. A. Boulayoune, C. Guerroudj, R. Saou, L. Moreau, M. E. Zaim, 
Optimization with particle swarm and genetic algorithm of flux 
reversal machine, Revue roumaine des sciences techniques, 62, 1 , 
pp. 19–24 (2017). 

15. F. Zyulkyarov, V. Gajinov, O. S. Unsal, A. Cristal, Atomic Quake: 
Using Transactional Memory in an Interactive Multiplayer Game 
Server, Proc. of the 14th ACM SIGPLAN Symposium on Principles 
and Practice of Parallel Programming, pp. 25–34 (2009). 

16. V. Gajinov, F. Zyulkyarov, O. S. Unsal, A. Cristal, E. Ayguadé, T. L. 
Harris, M. Valero: QuakeTM: Parallelizing a Complex Sequential 
Application Using Transactional Memory, Proc. of the 23rd 
International Conference on Supercomputing, pp. 126–135 (2009). 

17. T. Nakaike, R. Odaira, T. Nakatani, M. M. Michael: Real Java Applications 
in Software Transactional Memory, Proc. of the IEEE International 
Symposium on Workload Characterization, pp. 1–10  (2010). 

18. O. S. Hofmann, D. E. Portere, E. Witchel, C. J. Rossbach, H. E. 
Ramadan, A. Bhandari, MetaTM/TxLinux: Transactional Memory 
for an Operating System, ACM SIGARCH Computer Architecture 
News, 35, 2 , pp. 92–103 (2007). 

19. H. A. Scheraga, J. Lee, J. Pillardy, Y. J. Ye, A. Liwo, D. Ripoll, 
Surmounting the Multiple-Minima Problem in Protein Folding, J  
Global Optim, 15, 3, pp. 235–260 (1999). 

20. A. Lamiable, P. Thevenet, J. Rey, M. Vavrusa, P. Derreumaux, P. 
Tuffery, PEP-FOLD3: faster de novo structure prediction for linear 
peptides in solution and in complex, Nucleic Acids Res, 44, pp. 
W449–W454 (2016). 

21. R.F. Alford, A. Leaver-Fay, J.R. Jeliazkov, et al., The Rosetta All-
Atom Energy Function for Macromolecular Modeling and Design, 
J. Chem. Theory Comput., 13, pp. 3031–3048 (2017). 

22. H. Kaur, A. Garg, G.P.S. Raghava, PEPstr: a de novo method for 
tertiary structure prediction of small bioactive peptides, Protein 
Pept. Lett., 14, pp. 626-631 (2007). 

23. S. Singh, H. Singh, A. Tuknait, K. Chaudhary, B. Singh, S. Kumaran, 
G.P.S. Raghava, PEPstrMOD: structure prediction of peptides 
containing natural, non-natural and modified residues, Biol. 
Direct., 10, pp. 73 (2015). 

24. J. Kostrowicki, H. A. Scheraga, Application of the Diffusion Equation 
Method for Global Optimization to Oligopeptides, J Phys Chem, 96, 
18, pp. 7442–7449 (1992). 

25. T. Schlick, Molecular Modeling and Simulation – An Interdisciplinary 
Guide, Springer (2002). 

26. S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simulated 
annealing, Science, 220, 4598, pp. 671–80 (1983). 

27. Y. Sugita, Y. Okamoto, Replica-exchange molecular dynamics method 
for protein folding, Chem Phys Lett, 314(1-2), pp. 141-151 (1999). 

28. D. C. Liu, J. Nocedal, On the Limited Memory BFGS Method for 
Large Scale Optimization, Math Program, 45, pp. 503–528 (1989). 

29. Y. Goldtzvik, M. Goldstein, R.B. Gerber, On the crystallographic 
accurace of structure prediction by implicit water models: Test for 
cyclic peptides, Chem Phys, 415, pp. 168–172 (2013). 

30. M. Amitay, M. Goldstein, Evaluating the peptide structure prediction 
capabilities of a purely ab-initio method, Protein Eng Des Sel, 30, 
10, pp. 723–727 (2017). 

31. Y. Isogai, G. Nemethy, H.A. Scheraga, Enkephalin: Conformational 
analysis by means of empirical energy calculations, Proc Natl Acad 
Sci USA, 74, 2, pp. 414–418 (1977). 

32. H. Mohanram, S. Bhattacharjya, Cysteine deleted protegrin-1 (CDP-
1): anti-bacterial activity, outer-membrane disruption and 
selectivity. Biochim Biophys Acta, 1840, 10, pp. 3006–3016 (2014). 

33. J. Neidigh, R. Fesinmeyer, N. Andersen, Designing a 20-residue 
protein. Nat Struct Mol Biol, 9, pp. 425–430 (2002). 

34. R. B. Yehezkael, M. Goldstein, D. Dayan, Sh. Mizrahi, Flexible 
Algorithms: Enabling Well-defined Order-Independent Execution 
with an Imperative Programming Style", Proc. of ECBS-EERC 
2015, IEEE Press, pp 75–82 (2015). 


