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and observe maximum power point algorithm. 

The photovoltaic (PV) source emulator plays an essential role in evaluating the performance of solar PV arrays, maximum power point 
(MPPT algorithms), power converters, and control algorithms in the rapidly growing field of solar power generation. This paper 
presents a novel neural network (NN)-based solar array emulator (SAE) for emulating PV array dynamic characteristics. The proposed 
SAE reference model developed using NN, replicates PV array characteristics with a programmable dc power source's support under 
varying environmental conditions. A 640 W stand-alone PV system is designed and tested using the proposed SAE to validate its 
performance under various environmental conditions. The performance of the NN-based SAE with the MPPT algorithm is evaluated 
and compared to the conventional diode-based SAE. The results showed that the proposed NN-based SAE had good accuracy in 
emulating the dynamic characteristics of the PV array and was faster in execution than the conventional diode-based SAE. The output 
results of the developed NN-based SAE demonstrate its potential for evaluating MPPT algorithms and power converters.

1. INTRODUCTION 

Solar power generation (SPG) is a promising alternative to 
traditional power sources. The PV array in SPG is critical to 
evaluate, but its non-linear nature makes it challenging under 
varying environmental conditions [1,2]. Solar array emulators 
(SAEs) are a viable solution for accurately evaluating SPG [3]. 
SAEs are programmable dc sources that mimic the PV array's 
behavior under controlled conditions for repeatable 
assessments [4]. An SAE includes a reference model, tracking 
algorithm, and power stage for accurate SPG evaluation.  

The reference model mimics PV array characteristics [5]. The 
most discussed reference model in the literature is the electrical 
equivalent reference model that uses Kirchhoff's circuit laws to 
calculate the PV source characteristics equation [6]. The single 
and double-diode models with series and shunt resistance are 
the commonly discussed electrical equivalent models [7,8]. The 
internal parameters of these models are estimated by measuring 
the PV source's operating parameters using optimization 
techniques [9]. However, incorrect operating point measurement 
can affect the PV model's accuracy.  

The reference tracking algorithm plays a crucial role in 
accurately tracking the operating voltage and current of the 
SAE. One commonly used tracking algorithm is the direct 
referencing method [10,11], which employs an iterative 
approach to determine the operating points of the SAE using 
either voltage or current input. The difference between the 
expected and actual output of the SAE determines the 
number of iterations required. Alternatively, the resistance 
comparison algorithm [12] tracks the output voltage and 
current of the SAE using resistance as an input. 

The power stage of a PV SAE is responsible for converting 
the emulated electrical characteristic into real power [13]. 
However, a complex reference tracking algorithm and 
adaptive controller used in a buck converter-based SAE 
proposed in [14] may lead to stability and accuracy issues. 
Moreover, digital controllers like field-programmable gate 
arrays or digital signal processors must implement these 
algorithms, resulting in lengthy sampling times and inaccurate 
control responses. In contrast, power supply-based SAEs 

analyzed in [15] employ simple analog controllers and 
resistance comparison-based reference tracking algorithms, 
which improve repeatability and output stability and reduce 
complexity during hardware implementation. 

This paper proposes a novel SAE that utilizes experimental 
data from an actual PV array to enhance the reference model. 
The proposed SAE incorporates online load tracking as a 
simple reference tracking algorithm that eliminates the 
requirement for an additional control loop to monitor the SAE's 
output voltage and current, thereby improving stability and 
dynamic response. The programmable dc power source is the 
SAE power stage, mimicking the PV array characteristics with 
analog controller support. The NN-based SAE can replicate the 
PV array's dynamic characteristics, making it a suitable tool for 
emulating it and evaluating the maximum power point tracking 
(MPPT) controllers and power converters in solar PV systems. 

The paper is structured as follows: section 2 discusses the 
proposed neural network-based solar array emulator (NN-
based SAE), covering its components, data-driven modeling, 
and the innovative online load-tracking algorithm. Section 3 
focuses on developing the NN-based SAE's reference model, 
emphasizing multilayer feed-forward (MLFF) neural 
networks. moving on to section 4, the seamless integration of 
the online load-tracking algorithm, highlighting its crucial role 
in achieving accurate emulation, is presented. Section 5 
provides insights into monitoring and controlling the 
programmable dc power supply, offering a comprehensive 
understanding of the SAE's operational framework. Section 6 
presents experimental results, dynamic analyses, and 
comparative evaluations, shedding light on the efficacy and 
performance of the NN-based SAE. Finally, section 7 
concludes with the most significant findings. 

2. DESCRIPTION OF THE PROPOSED NEURAL 
NETWORK-BASED SOLAR ARRAY EMULATOR 

(NN-BASED SAE) 

Figure 1 illustrates the schematic diagram of the NN-
based SAE proposed in this paper. The SAE uses a data-
driven modeling approach for reference model development, 
which involves learning the PV array model from input and 
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output datasets from an actual PV array. The system employs 
an NN-based reference model that estimates the optimum PV 
array voltage (VPV(Est)) and current (IPV(Est)) using a feed-
forward neural network. The NN-based reference model is 
developed using data collected under various environmental 
and loading conditions from an entire PV array. The inputs 
to the NN model are irradiation, temperature, and load, 
which accurately estimate the PV array voltage and current. 

 

Fig. 1 – Schematic diagram of the Proposed NN-based SAE. 

The proposed SAE integrates the reference model into a 

programmable dc power supply through an online load-

tracking algorithm. The reference tracking algorithm uses 

the NN-estimated operating parameters of the SAE as the 

control signal and the load connected to the SAE as the 

feedback signal. The NN model outputs are converted into 

analog signals (VPV(Est)' and IPV(Est)'), which are used as the 

control signal to reproduce the dynamics of the SAE 

reference model using the SAE power stage. 

The SAE power stage receives the VPV(Est)' and IPV(Est)' 

through the analog controller platform called National 

Instrument (NI)-myDAQ and generates linearized emulated 

operating points of the NN-based SAE, namely voltage (VPV) 

and current (IPV) proportional to it. These emulated operating 

values are measured across the load feedback into the NN 

model to track SAE operation using the online load tracking 

algorithm. The proposed SAE is developed in three stages: 

reference model development using an Artificial Neural 

Network, online load tracking integration, and monitoring 

and controlling the programmable dc power supply. 

3. DEVELOPMENT OF REFERENCE MODEL 

USING ARTIFICIAL NEURAL NETWORK FOR SAE 

In this work, a multilayer feed-forward (MLFF) neural 

network is employed to estimate the optimum PV array 

voltage VPV(Est) and current IPV(Est). MLFF neural network is 

an artificial neural network (ANN) comprising cascaded 

neuron layers, including input, hidden, and output layers. 

Each neuron's output is the sum of its weighted inputs passed 

through a non-linear activation function [16].  

The proposed MLFF NN structure for estimating the 

VPV(Est) and IPV(Est) of the PV array is depicted in Fig. 2. The 

MLFF NN has two stages: development and operation. In the 

development stage, real-time experimental data is collected 

from a PV array and divided into training and test data. The 

training data is utilized to develop the network, whereas the 

test data is used to evaluate the performance of the developed 

network. During training, the MLFF maps the relationship 

between the input variables (irradiation, temperature, and 

loading conditions) and output variables (VPV(Est) and IPV(Est)) 

using the connecting weights. The training data set consists 

of input and corresponding output variable samples. 

 

 
Fig. 2 – Multilayer Feed-Forward Network for estimating PV array output 

voltage VPV(Est) and current IPV(Est). 

During the MLFF NN training process, weights in the 

network are randomly assigned, and the backpropagation 

algorithm is used to adjust them. The backpropagation 

algorithm performs feed-forward propagation of input, error 

backpropagation, and weight updating. The network output is 

determined using a summation function expressed by eq. (1). 

Mean square error (MSE) is used to evaluate the training 

process effectiveness and is expressed by eq. (2). The weight 

adjustment process continues during training until the set 

learning goal is achieved 
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where j and h denote the indices of output and hidden layer 

neurons, respectively, represent the output of the hth hidden 

layer neuron. n and m represent the number of input and output 

variables. wjh denotes the connection weight between the hth 

neuron and the jth neuron, and bi and k represent the bias 

constant and iterations. The weight adjustment process is 

continued during training until it reaches the set learning goal.  

After the training process, the developed network is 

evaluated for its estimation performance using the test data. 

The updated weights from the training process enable the 

network to provide an output that matches the expected 

values. The developed NN model is tested using a separate 

set of testing data following the training stage. Upon 

completing the training and testing stages, the network can 

estimate VPV(Est) and IPV(Est) for unknown input values. 

4. INTEGRATION OF ONLINE LOAD TRACKING 

ALGORITHM 

The online load tracking algorithm calculates the load 

connected to the SAE power stage and provides feedback to 

the NN-based SAE reference model. VPV and IPV output of 
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the SAE is measured and scaled down into VPV(M), and IPV(M) 

using a voltage transducer 0 – 5 V range and acquired using 

the NI-myDAQ. The acquired values are then collected in 

LabVIEW and scaled into the actual measured PV array 

voltage VPV(A) and current IPV(A). The algorithm monitors 

VPV(A) and IPV(A) and computes load resistance (RL = 

VPV(A)/IPV(A)) online. During the initial iteration, the resistive 

load is fixed to the Maximum under constant irradiation and 

temperature. The reference model estimates the output 

voltage VPV(Est) and output current IPV(Est) of the PV array, 

which is mimicked by the SAE power stage. 

The SAE power stage voltage output VPV is measured across 

the load that equals the emulated PV array VOC. The load 

resistance value is adjusted, the dc power supply generates 

different VPV values, and the corresponding IPV values are 

measured in series with the load resistance. The updated load 

resistance RL value is computed and fed back into the reference 

model of the NN-based SAE through the LabVIEW control 

and simulation loop. The emulated PV array characteristics are 

obtained by repeating the procedure under different 

environmental conditions by changing the irradiation and 

temperature values in the NN-based SAE. The proposed SAE 

is developed without iterative and sophisticated control loops 

to emulate the PV array. Figure 3 shows the flowchart of the 

online tracking algorithm integration. 

 

Fig. 3 – Online tracking algorithm flow chart. 

5. MONITORING AND CONTROL OF 

PROGRAMMABLE DC POWER SUPPLY 

The programmable dc power supply is monitored and 

controlled by using the estimated values of VPV(Est) and IPV(Est), 

which are scaled-down as VPV(Est)' and IPV(Est)' in the reference 

tracking algorithm stage. These scaled-down values are 

utilized to drive the SAE power supply with the help of the 

National Instrument (NI)-myDAQ, which acts as a control 

signal in the power stage. To ensure the accuracy of the SAE 

output in the reference tracking stage, an online load tracking 

system is integrated with the programmable dc power supply. 

The online load tracking system monitors the SAE operations 

and generates a feedback signal to the SAE reference model. 

6. RESULTS AND DISCUSSION  

This section describes the development of the SAE's 

reference model and reference tracking algorithm and the 

experimental analysis conducted with the developed SAE. A 

stand-alone PV system was implemented using the proposed 

SAE to perform dynamic analysis under varying irradiation 

levels and at STC. The execution speed of the NN-based 

SAE was determined through dynamic analysis. The 

tracking performance of the SAE was evaluated at STC and 

under varying irradiation levels, and the experimental results 

were compared with those of the diode-based SAE. 

6.1. DEVELOPMENT OF REFERENCE MODEL FOR 

NN-BASED SAE 

An NN-based reference model is developed using 

experimental data from an actual PV array with eight 

modules in a 2  4 configuration, with a peak power of 

640 W. The PV module parameters are listed in Table 1. The 

PV array and data logging unit used to collect the data are 

shown in Fig. 4. Experimental data is collected from a PV 

array with a peak power of 640 W, directly connected to a 50 

Ω rheostat for load variation. The PV array output voltage 

(VPV) and current (IPV) values are measured under different 

irradiation and temperature levels. An irradiation sensor 

measures the irradiation level and converts it to a voltage 

output between 0 – 1.6 V. The temperature sensor measures 

temperature variation between 0 – 100 C and converts the 

temperature data to a voltage signal between 0–5 V. The 

measured values are collected using NI myDAQ. A total of 

3440 datasets of irradiation, temperature level, load 

conditions, and PV array output voltage and current are 

collected, out of which 2408 datasets are used for training 

and the remaining for testing. 

Table 1 

Operating parameters of the Sukam PV module 

Specifications Value 

Voltage at PMPP (VMP) 17. 35 A 

Current at PMPP (IMP) 4.61 A 

Maximum Power Point (PMPP) 80.04 W 

Short Circuit Current (ISC) 5.2 A 

Open Circuit Voltage (VOC) 21.2 V 

 

 

Fig. 4 – Solar PV array and its data logging unit. 

A neural network with one hidden layer and three layers is 

developed. It takes irradiation, temperature, and load 

conditions as input and PV array output voltage and current as 

output. The number of hidden layer neurons is determined 

through trial and error, and tangent hyperbolic and linear 

activation functions are used in the hidden and output layers. 

The NN was trained with the Levenberg-Marquardt algorithm 

until it reached the MSE of 1.9 × 10-3, using 2 408 datasets for 

training and 1 032 datasets for testing. The NN had 20 hidden 

layer neurons and achieved a testing RMSE of 0.0139 in 3 678 

epochs, completing testing in 437 ms with a testing MSE of 
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0.0137. Figure 5 presents the estimated PV array output 

VPV(Est) and IPV(Est). These plots show that the developed 

reference model can satisfactorily estimate the VPV(Est) and 

IPV(Est) values, matching the PV array's VPV and IPV output. 

 

 
(a) 

 
(b) 

Fig. 5 – Estimated PV array output: (a) voltage VPV(Est), (b) current IPV(Est). 

6.2. PERFORMANCE EVALUATION OF THE 

DEVELOPED REFERENCE MODEL 

This study uses a PV array with a peak power output of 

640 W to evaluate the NN-based SAE. As mentioned earlier, 

the reference model of the NN-based SAE is trained and 

tested in MATLAB. Following this, the MATLAB script is 

used to implement the trained reference model of NN-based 

SAE in LabVIEW.  

 
(a) 

 
(b) 

Fig. 6 – Electrical characteristics of the simulated NN-based SAE at STC 
a) P–V; b) I–V. 

The reference model estimates the PV array's output 

VPV(Est) and IPV(Est) using the input received from 

LabVIEW. The reference model is co-simulated in the control 

and simulation loop with a Runga-Kutta-1 resolver and a step 

size of 1 ms. The simulated SAE is analyzed at STC, i.e., with 

an irradiation of 1000 W/m2 and a temperature of 25 C. The 

characteristic curves of the simulated NN-based PV array 

reference model are depicted in Fig. 6. The accuracy of the 

NN-based SAE reference model is determined by calculating 

the Relative Error (RE) under STC. The RE values of the 

reference model for the PV array are calculated using eq. (3) 

tabulated in Table 2 presents 2 RE between the PV array's 

theoretical and reference model output. 

 

RE(𝑋) =
|𝑋(Theoretical)– 𝑋(Simulated)|

𝑋(Theoretical)

100% , (3) 

where X is the PV array operating parameter. 

Table 2  

RE between the theoretical output and reference model output of the PV array 

 

The RE at maximum power point (MPP) is 0.04 %, 

demonstrating the NN-based reference model accuracy. 

Thus, the developed reference model of the PV array can be 

used for real-time emulation. 

6.3. HARDWARE IMPLEMENTATION OF 

REFERENCE TRACKING ALGORITHM OF THE 

PROPOSED SAE 

The hardware setup of the proposed SAE is shown in Fig. 7. 

 

 
Fig. 7 – The test setup of the proposed SAE. 

The proposed SAE hardware setup has a VPV(EST) range of 

0 – 42.4 V and an IPV(EST) range of 0 – 20.8 A, monitored 

using NI-myDAQ. The VPV(Est) and IPV(Est) outputs of the NN-

based SAE are scaled down to the 0 – 10 V range and sent to 

regulate the power stage. The voltage transducer and dc 

shunt measure VPV(M) and IPV(M), respectively, with the 
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Parameter Theoretical 

Output of 

PV Array 

Simulated 

output of the 

PV array  

 RE 

% 

Open Circuit 

Voltage (VOC) in 

V 

42.4 42.49 0.21 

Short Circuit 

Current (ISC) in A 
20.8 20.79 0.04 

Voltage at MPP 
(VMPP) in V 

34.7 34.72 0.05 

Current at MPP 

(IMPP) in A 
18.4 18.45 0.27 

Power at MPP 

(PMPP) in W 
640.28 640.58 0.04 
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measured values converted to the 0 – 10 V range. These 

measured VPV(M) and IPV(M) values are fed back to the 

LabVIEW environment via the NI-myDAQ analog input 

port-1 and port-2. The measured VPV(M) and IPV(M) values are 

then scaled back to the actual voltage VPV(A) and current IPV(A) 

values of the emulated PV array. 

6.4. EXPERIMENTAL SETUP WITH MPPT 

CONTROLLER 

An experimental setup performs dynamic analysis of the 

proposed SAE, like a stand-alone PV system. The hardware 

includes the NN-based SAE, a dc/dc converter, an MPPT 

controller, and a load. The experimental setup is depicted in 

Fig. 8. The NN-based SAE is directly connected to the boost 

converter and the load. The components of the boost 

converter are listed in Table 3. 

Table 3 

Boost converter components 

Component Values 

Inductance (L) 550 mH 
Capacitance (C) 330 µf 

Resistance (RLoad) 3.6 ohms 

Switching Frequency 10 kHz 

 

 

Fig. 8 – Experimental setup for dynamic analysis. 

The MPPT controller is used to track the maximum power 

output of the proposed SAE. The perturb and observe (P&O) 

algorithm is adopted in this work and developed in LabVIEW, 

which is implemented in National Instruments-myRIO. The 

LabVIEW blocks of the MPPT algorithm are shown in Fig. 9. 

The input values of the P&O algorithm are measured at the output 

of the NN-based SAE prototype. In contrast, the previous VPV, 

PPV, and duty cycle values are determined using the transport 

delay with a 500 ms interval. Based on the switching conditions 

(ΔPPV/ΔVPV >0), the P&O algorithm generates a duty cycle value 

fed into PWM port 1 of myRIO. myRIO then generates PWM 

pulses according to the estimated duty cycle. 

 

Fig. 9 – P&O MPPT algorithm blocks developed in LabVIEW. 

6.4.1. Dynamic analysis of the proposed sae at STC 

The proposed SAE reference model was evaluated through 

dynamic analysis to assess its execution speed and accuracy at 

STC. The maximum power output of the emulated solar PV 

array was 641 W, with VPV(Est) and IPV(Est) estimated as 34.8 V 

and 12.9 A, respectively. The P&O MPPT controller was 

employed to track the MPP, starting with a duty cycle 

perturbation of step size 0.01 and increasing the duty cycle value 

in steps until it reached the MPP. As depicted in Fig. 10a, the 

P&O algorithm tracked the maximum power of 634 W from the 

proposed SAE in 20.7 s. In contrast, the diode-based SAE took 

37.89 s to track the maximum power of 633.7 W, as shown in 

Fig. 10b. Both SAEs could track the maximum power with 

minimal error, but the execution time of the NN-based SAE was 

shorter than that of the diode-based SAE. 

 

 
(a) 

 
(b) 

Fig. 10 – a) Duty cycle output: b) – maximum power tracked on NN-based 
and diode-based SAE at STC. 

6.4.2. Dynamic analysis of the NN-based SAE 

The performance of the NN-based SAE is evaluated under 

varying irradiation conditions while maintaining a constant 

temperature of 25C.  

 
(a) 

 
(b) 

Fig. 11 – a) Changes in irradiation level; b) – maximum power tracked in 
the NN-based SAE with P&O MPPT controller. 
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The irradiation level varies from 1000 W/m2 to 700 W/m2 in 

steps of 100 W/m2 and then increases with an interval of 20 s. 

The objective is to study the behavior of the NN-based SAE 

under different irradiation conditions and how accurately it 

tracks the maximum power point. Figure 11 presents the 

varying irradiation levels and depicts the maximum power 

tracked by the P&O MPPT controller in the NN-based SAE 

under varying irradiation conditions. 

Figure 12 shows the maximum power tracked by the P&O 

controller in NN-based SAE and diode-based SAE. The NN-

based SAE estimates the output voltage and current of the 

emulated PV array. It drives the programmable dc power 

supply faster than the conventional diode-based SAE, which 

uses a diode model to calculate the output power. The NN-

based SAE emulates the PV array characteristics with a 

maximum of 9.5 s to track the maximum power for the 

irradiation changes. 

 

Fig. 12 – Comparison between the maximum power tracked in the  
NN-based and diode-based SAE using the P&O MPPT controller. 

In contrast, diode-based SAE takes 15.2 s, Table 5. 

Table 5  

Comparison of tracking time between the developed SAE and diode-based SAE 

 
G [W/m2] 

NN-based SAE Diode-based SAE 

Tracking time [s] Tracking time [s] 

1000 20.7 37.89 

900 08.2 14.4 

800 09.2 15.2 
700 09.5 13.1 

 

The accuracy of the developed SAE is evaluated by 

calculating the static MPPT tracking efficiency using: 

η(static MPPT) =
𝑃PV(out)

𝑃PV(MPP)

· 100% .       (4) 

Table 6 

Comparison of the power output of the emulated PV array using NN-based 
SAE and Diode-based SAE 

G [W/m2] Actual PMPP NN-based SAE Diode-based SAE 

PMPP ղstatic PMPP ղstatic 

1000 640.32 634.0 99 633.7 98.9 
900 570.20 548.2 96.1 547.6 96.0 

800 501.31 465.9 92.8 459.8 91.5 

700 431.85 390.9 90.4 389.9 90.2 
  Avg. 94.5 Avg. 94.15 

 

Table 6 presents the static MPPT efficiency of the NN-

based and diode-based SAE under different irradiation 

levels. The results show that the average static efficiency of 

the P&O MPPT controller in the NN-based SAE is 94.5 %, 

while the diode-based SAE has an efficiency of 94.15 %. The 

above results indicate that the developed NN-based SAE can 

accurately emulate the characteristics of the PV array, 

comparable to the diode-based SAE. 

7. CONCLUSION 

This work proposes a novel neural network-based SAE that 
uses a programmable dc source. The reference model of the SAE 
is developed using MATLAB and experimental data from the PV 
array. The online tracking algorithm connects the reference model 
of the SAE and the dc power supply, which is programmed to 
mimic the PV array's behaviour using the NI myDAQ. 

The dynamic analysis evaluates the developed SAE's 
performance in emulating the stand-alone PV system using the 
P&O MPPT controller. The static MPPT efficiency of the P&O 
MPPT controller in the NN-based SAE is 94.5%, close to that 
of the diode-based SAE. The developed SAE tracks the MPP 
in 20.7 s under STC conditions, which is faster than the Diode-
based SAE. The NN-based SAE takes a maximum of 9.5 s 
under varying irradiation conditions. These output results show 
that the NN-based SAE's reference model drives the SAE 
power stage faster than the diode-based SAE due to the NN-
based reference model, simple online tracking algorithm, and 
the online tracking algorithm analog controller NI-myDAQ. 
Therefore, the developed NN-based SAE is more suitable for 
emulating the PV array and validation of the MPPT algorithm 
and power converter. 

Received on 29 June 2023 
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