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The goal of this work is to construct an adaptive nonlinear voltage control law using a multivariable sliding extremum seeking 
(SES) technique. The developed scheme is applied to ensure the transient stability enhancement and the voltage regulation of the 
multi-machine power system. This control scheme can be depicted as an intelligent adaptive controller. It is a non-model-based 
method since the multivariable SES approach tunes on-line the gains of the nonlinear voltage controller based on the 
minimization of a cost function without needing knowledge of the nonlinear model of the multi-machine power system. This cost 
function represents the performances of the system. The efficiency and effectiveness of the proposed approach are discussed 
through different multi-machine power systems under different disturbances, initials conditions, and system configurations. 
 

1. INTRODUCTION 
Nowadays, the availability and quality of electrical energy 

have become top concerns for consumers and suppliers. As a 
result, studying the stability of electrical systems is becoming 
critically important [1–7]. The excitation control system of 
the synchronous generators has attracted many research 
efforts, as it constitutes an effective means for improving the 
stability of the power system [1–3, 5–7]. 

Traditional excitation systems are based on automatic 
voltage regulation and power system stabilizer (AVR/PSS). 
They are mainly designed by using the theory of linear 
control, in other terms; the nonlinear model of the system is 
approximated by a valid linear model in a small region 
around an operating point [4-7]. But since AVR / PSS are 
designed separately, regulating voltage, and improving 
system stability are difficult to be achieved simultaneously. 
Furthermore, the inconvenience of these types of design 
approaches is that the designed controllers depend on the 
operating conditions and may not work properly for modern 
power systems which are highly complex and nonlinear 
mainly when a major fault occurs [4]. 

For the above-mentioned reason, many advanced control 
techniques have been proposed for designing excitation 
controllers, such as adaptive control [8-9] where the transient 
stability is well improved and the voltage regulation response 
is acceptable, sliding mode control [10,11] and robust control 
[12] in which both transient stability and voltage regulation 
are well achieved, Takagi Sugeno fuzzy logic control 
systems solved through the use of linear matrix inequalities 
as in [13] or by the synergetic control theory [14]. Also, to 
ensure transient stability enhancement and voltage 
regulation, several attempts have been made based on a 
switching strategy between different control actions [15–17]. 

All these control systems developed are based on the 
identification of the installation model to adjust the 
controller’s gains. Our main aim in this article is to propose 
an improved adaptive nonlinear voltage controller that can 
achieve both voltage regulation and transient stability 

enhancement simultaneously and can be easily 
implementable in real-time by using the sliding extremum 
seeking control approach which is a model-free real-time 
optimization strategy.  Extremum seeking (ES) algorithm is 
well suited for systems with unknown dynamics or those 
affected by high levels of uncertainty and / or external 
dynamics [18,19]. 

Recently, the extremum seeking algorithm has been 
proposed for the adjustment of PID gains [20–22]. The 
parameters of the PID controller are modified iteratively by 
minimizing a so-called cost function (J (θ)), which 
characterizes the desired performance of the system. This 
approach is considered as an adaptive optimization method in 
real-time. 

In [20–22], the search for the extremum of the cost function 
is based on the gradient method, which implies that the PID 
parameters found are not necessarily global minima of J(θ). In 
addition, due to the high values of gradient magnitude term, 
the gradient-based ES does not adequately reject the effect of 
disturbances and parameter variations, which can affect the 
stability of the multi machine power system. 

To overcome the above-mentioned limitations, a new 
proportional-integral (PI) adjustment method based on 
sliding mode extremum seeking control scheme is proposed 
and applied for current control of a brushless PMSM to 
solve a class of multivariable optimization problem [23]. 
Indeed, the disadvantage of adjustment of the PI controller 
parameters with the extremum seeking algorithm based on 
the gradient method is eliminated by using the sliding 
mode, which makes the regulator robust against modeling 
uncertainties and disturbances [24,25]. 

In this paper, motivated by the advantages of the sliding 
mode extremum seeking control approach, an adaptive 
nonlinear voltage controller is proposed to achieve both 
transient stability enhancement and improvement of voltage 
regulation of multi-machine power systems. The proposed 
controller is designed based on several sliding surfaces to 
optimize the gains of the nonlinear voltage controller 
through the minimization of an appropriate cost function. 
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The remainder of this paper is organized as follows. The 
dynamic model of the system is briefly described in 
Section 2. The proposed sliding mode extremum seeking-
based adaptive non-linear voltage controller is designed for 
the multi machines power system in Section 3. The control 
performance of the proposed controller is verified based on 
a two-machine infinite-bus power system and a three-
machine infinite bus power system respectively in 
Section 4, followed by Section 5 that concludes this paper. 

2. DIRECT FEEDBACK LINEARIZATION 
COMPENSATED MODEL OF POWER SYSTEM 

2.1 DYNAMIC MODEL OF POWER SYSTEM 
The third-order single-axis dynamic generator model is 

widely used in transient stability and voltage regulation 
studies. In general, for an electrical system with n-
generator, the dynamic model of the i-th generator can be 
written as follows: 
Mechanical equations 
 

€ 

˙ δ i t( ) = ω i t( ) − ω0 , (1) 

 

€ 

˙ ω i t( ) = −
Di

2Hi
ω i t( ) − ω0( ) +

ω0
2Hi

Pmi − Pei t( )( ) . (2) 

Generator electrical dynamics 

 

€ 

˙ E qi t( ) =
1

Td 0i
' E fi t( ) − Eqi t( )( ) . (3) 

Electrical equations 
 

€ 

Eqi t( ) = Eqi
' t( ) + xdi − xdi

'( )Idi t( ) , (4) 

 

€ 

Efi t( ) = kciu fi t( ) , (5) 

 

€ 

Idi t( ) = Eqj
'

j=1

k
∑ t( ) Gij sin δ ij t( )( ) − Bij cos δ ij t( )( )( ) , (6) 

 

€ 

Iqi t( ) = Eqj
'

j=1

k
∑ t( ) Bij sin δ ij t( )( ) +Gij cos δ ij t( )( )( ) , (7) 

 

€ 

Pei t( ) = Eqi
' t( )Iqi t( ) , (8) 

 

€ 

Qei t( ) = Eqi
' t( )Idi t( ) , (9) 

 

€ 

Eqi t( ) = xadi t( )I fi t( ) , (10) 
 

€ 

Vtdi t( ) = xdi
' Iqi t( ) , (11) 

 

€ 

Vtqi t( ) = Eqi
' t( ) − xdi' Idi t( ) , (12) 

 

€ 

Vti t( ) = Vtqi
2 t( ) +Vtdi

2 t( ) , (13) 
where δi(t) the angle of the i-th generator, in radian; ωi(t) 
the relative speed of the i-th generator, in rad/sec; Pmi the 
mechanical input power, in p.u.; Pei (t) the electrical power, 
in p.u.; ω0 the synchronous machine speed, in rad/sec, ω0 = 
2πf0; Di the per unit damper constant; Hi the inertia 
constant, in seconds. E'qi(t) the transient EMF in quadrature 
axis, in p.u.; Efi(t) the equivalent EMF in the excitation coil, 
in p.u.; T′doi the direct axis transient open circuit time 
constant, in second; Eqi the EMF in quadrature axis, in p.u.; 
Vti the generator terminal voltage, in p.u.; xdi  the direct axis 
reactance, in p.u.; x'di the direct axis transient reactance, in 
p.u.; Idi the direct axis current, in p.u.; Iqi the quadrature axis 
current, in p.u.; kci the gain of the excitation amplifier, in 
p.u.; ufi the input of the SCR amplifier; xadi the mutual 
reactance between the excitation coil and the stator coil; 
Yij = Gij+jBij the i-th row and j-th column element of nodal 
admittance matrix, in p.u.; Qei the reactive power, in p.u.; Ifi 
the excitation current. 

2.2 FEEDBACK LINEARIZATION COMPENSATION 
DESIGN 

In this paper, the design objective is to improve the 
voltage regulation and transient stability performance of the 
multi-machine power system, subjected to severe 
disturbances. Therefore, the generator terminal voltage 
must be considered when designing the control law. From 
the model given above, it can be found that the synchronous 
generator is nonlinear through the excitation loop. The 
direct feedback linearization (DFL) technique is designed to 
cancel the nonlinearities in the electrical equations.  

Indeed, by employing the DFL compensating law [12,13]: 

 

€ 

u fi t( ) =
1

kciIqi t( )
v fi t( ) −Tdoi

' Eqi
' ˙ I qi + Pmi( ) +

+
1

kci
xdi − xdi

'( )Idi t( )( ),
 (14) 

  
where 

€ 

v fi t( )  
is the new input. 

The DFL compensated system model derived is 
presented by two subsystems 1 and 2 as follows:  

 

€ 

1 :
Δ ˙ V ti t( ) = f i1Δω i t( ) −

f i2

Tdoi
' ΔPei t( ) +

f i2

Tdoi
' v fi t( ),

y1i t( ) = ΔVti t( ),

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 (15) 

 

€ 

2 :

Δ ˙ δ i t( ) = Δω i t( ),

Δ ˙ ω i t( ) = −
Di

2Hi
Δω i t( ) − ω0

2Hi
ΔPei t( ),

Δ ˙ P ei t( ) = −
1

Tdoi
' ΔPei t( ) +

1
Tdoi

' v fi t( ),

y2i t( ) = Δδ i t( ),

⎧ 

⎨ 

⎪ 
⎪ 
⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

 (16) 

with 

 

€ 

f i1 = −
1+ xdi

' Bii( ) −Eqi' 2Bii −Qei t( )Vtqi t( )[ ]
Vti t( )Iqi t( )

−

−
xdi
' 1+ xdi

' Bii( )
Vti t( )

,

 (17) 

 

€ 

f i2 = −
1+ xdi

' Bii( )Vtqi t( )
Vti t( )Iqi t( )

, (18) 

where fi1(t) and fi2(t) are highly nonlinear functions and 
 

€ 

Δδ i t( ) = δ i t( ) −δ i0 ; Δω i t( ) = ω i t( ) − ω0; ΔPei t( ) = Pei t( ) − Pmi .(19) 

Full mathematical details and physical assumptions of 
this model can be found in [12,13,16]. 

3. ADAPTIVE NON-LINEAR VOLTAGE 
CONTROLLER BASED MULTIVARIABLE SLIDING 

MODE EXTREMUM SEEKING APPROACH 

3.1 THE COST FUNCTION OF THE SLIDING MODE 
EXTREMUM SEEKING APPROACH 

Now we should define the cost function that will be used 
by the multivariable sliding extremum seeking approach to 
deal with the coupling problem of transient stability and 
voltage regulation. The proposed control scheme is 
characterized by first defining a suitable pair of sliding 
surfaces for the first and the second subsystems respectively: 
  

€ 

S1i = ΔVti t( ) , (20) 

 
  

€ 

S2i =
d
dt

+ λ i
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

Δδ i ,λ i > 0 . (21) 

The suggested control strategy must move the states of the 
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two subsystems towards their sliding surfaces S1i = 0 and 
S2i = 0, and eventually, converge to the points 

€ 

ΔVti t( ) = 0 
and 

€ 

Δδ i t( ) Δω i t( ) ΔPie t( )[ ]T = 0 0 0[ ]T  respectively. 
Then, define a hierarchical coupled sliding surface as 
 

€ 

Si = S1i − zi , (22) 

where zi is defined as 

€ 

zi = sat S2i φzi( )Zu, 0 < Zu < 1 and 

€ 

φzi  is the boundary layer of 

€ 

S2i  to smooth z, 

€ 

φzi  transfers 

€ 

S2i  to the proper range of S1i, and the definition of sat(.) 
function is   

€ 

sat = sgn ϕ( ), if ϕ ≥ 1,  or  ϕ, if  ϕ < 1. 
The subsystem 1 involves knowledge of subsystem 2. The 

adopted cost function, which will quantify the performance 
of the proposed adaptive nonlinear voltage controller, is 

 

€ 

y t( ) =
1
T

Si
2 t( )

0

T

∫ dt . (23) 

3.1 CONTROLLER DESIGN   

Selecting   

€ 

xi = ΔVti t( ) Δω i t( ) ΔPei t( )[ ]T  as a state 
vector, the DFL-compensated model adopted (15,16) can be 
written as follows: 
   

€ 

˙ x i t( ) = Aixi + Biui t( ) , (24) 
where 

€ 

Ai =

0 f i1 t( ) − f i2 t( ) Td 0i
0 −Di 2Hi −ω0 2Hi

0 0 −1 Td 0i

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
;Bi =

− f i2 t( ) Td 0i
0

1 Td 0i

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
;

 

€ 

ui t( ) = v fi t( ). 
The feedback control law adopted is: 

     

€ 

v fi t( ) =  -  Γ i
T t( ) θ i , (25) 

where 

    

€ 

θ i = Ki1 Ki2 Ki3[ ]T ;  Γ i t( ) = ΔVti t( ) Δω i t( ) ΔPei t( )[ ]T (26)  

€ 

θ i  and Γ i(t) will be developed to simultaneously solve the 
control problems of the transient stability enhancement and 
the voltage regulation.  

In our case, the matrices Ai and Bi are uncertain 
(

€ 

f i1 t( )and 

€ 

f i2 t( )  are variable). The most appropriate 
control theory is the free model adaptive control theory 
such as the extremum seeking method since it alleviates the 
controller from the knowledge of the system model. The 
adopted scheme aims to determine the different gains 

€ 

Ki1 , 

€ 

Ki2  and 

€ 

Ki3  by adopting a simplified minimum search 
method with a periodic switching function. 

Assume that there exists an ideal adaptive nonlinear 
voltage controller   

€ 

vfi
* t( )  with optimal gain vector 

€ 

θ i
* = Ki1

* Ki2
* Ki3

*[ ]
T

 as follows: 

     

€ 

vfi
* t( ) = − Γ i

T t( )θ i* . (27) 
The goal is to design an adaptive nonlinear voltage 

control law such that the tracking errors 

€ 

ΔVti t( ),Δω i t( ),ΔPei t( )( )  converge to zero as 

€ 

t→∞. In this 
case, the adopted controller   

€ 

v fi t( )  approximates the ideal 
unknown   

€ 

vfi
* t( )  such that the error  

 
  

€ 

ev fi t( ) = vfi
* t( ) − v fi t( ), (28) 

converges to zero as . 

The convergence process of 

€ 

θ i  to 

€ 

θ i
*
 can be divided into 

three stages as follows [26]: 
1.  The convergence stage: the system trajectory 

converges to the sliding mode from an initial value. 
2. The forced tracking stage: the system trajectory 

converges to the extremum point in the sliding mode. 
3.  The steady-state oscillation stage: the system 

trajectory remains at a vicinity of the extremum 
point with oscillation. 

The sliding extremum seeking approach adopted is based 
on the principle of varying the estimated gains 

€ 

θ i  so that 
the cost function 

€ 

Ji θ i( )  reaches the minimum point.  
For each generator ‘i’ of the multi-machine power 

system (k is the number of the generators in this system), 
the proposed scheme utilizes three sliding surfaces to 
optimize the gains 

€ 

Ki1 , 

€ 

Ki2 , and 

€ 

Ki3  of the proposed 
controller, corresponding respectively to the variation of the 
generator terminal voltage, rotor speed, and the active 
electrical power delivered by the generator. 

Hence the vector of the switching functions is defined as: 
 

€ 

σ i t( ) = σ i1 σ i2 σ i3[ ]T , (29) 
where 

 

€ 

σ i t( ) = yi t( ) − g i t( )
= Ji θ i1 t( ),θ i2 t( ),θ i3 t( )( ) − g i t( ),

 (30) 

€ 

g i t( )  is a column vector of increasing functions satisfying: 

 

€ 

˙ g i t( ) = pi t( ) , (31) 
and 

€ 

pi t( )  is a column vector of positive constants. 
The parameter  is designed to satisfy: 

 

€ 

˙ θ ij = Ksesij sgn sin πσ ij βij( )( ) . (32) 

The derivative of the switching function 

€ 

σ ij t( )  defined 
in (29) is 

 

€ 

∂
∂t
σ ij t( ) = ˙ y i t( ) − ˙ g i t( )

= φ ij θ i t( )( )Ksesij sgn sin πσ ij βij( )( ) − pij ,
 (33) 

where yi(t) is the cost function and 

€ 

φ ij θ i t( )( )  is defined as 

€ 

φ ij θ i t( )( ) = ∂Ji θ i t( )( ) ∂θ ij  
where 

€ 

φ ij θ i t( )( )  
is the j-th 

element of the vector 

€ 

ϕ i θ i t( )( ) = ∂Ji θ i t( )( ) ∂θ i .
 

The sliding control law can be expressed by: 

 

€ 

˙ θ ij = vij ,
vij = Ksesij sgn sin πσ ij βij( )( ). (34) 

 

It is important to point out that for the classic sliding mode, 
only one sliding mode intervenes; on the other hand, in the 
extremum seeking control system with sliding mode a series 
of sliding modes can occur. Therefore, the corresponding 
switching functions for each 

€ 

θ ij  are defined as [27]: 
 

€ 

ξnij = σ ij t( ) − nβij i = 1,.....k ; j = 1,2,3( ) . (35) 
The switching function is satisfying the condition 

 

€ 

−βnij ≤ ξnij t( ) ≤ βnij ;
˙ ξ nij t( ) = ˙ σ ij t( );

sgn ξnij t( )( ) = −sgn φ ij θ i t( )( )( ) sgn sin πσ ij βij( )( ).
 (36) 

Remark:  In this paper and based on assumption 
presented in [27,28], the cost function yi(t) is approximately 
expressed by 

€ 

yi t( ) = Ji θ i t( )( ) . 
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3.2 STABILITY ANALYSIS 
To analyze the convergence and stability of the closed-

loop system, the following Lyapunov function is considered: 

 

€ 

Vi =
1
2
ξ ni ξ ni

T , (37) 

where 

€ 

ξ ni = ξni1 ξni 2 ξni 3[ ] . 
The derivative of Vi with respect to time is given by: 

 

€ 

˙ V i = ˙ ξ ni
ξ ni

T = ˙ ξ nij
ξnij

j =1

3

∑ . (38)

                          

 

The parameter 

€ 

θ ij  defined in (32) is designed to satisfy: 

 

€ 

˙ θ ij = −Ksesij sgn φ ij θ i t( )( )( ) sgn ξnij( ) , (39)               

from which the derivative of the switching function with 
respect to time is determined by: 
 

€ 

˙ ξ nij = −Ksesij φ ij θ i t( )( ) sgn ξnij( ) − pij  (40) 

This allows that 

 

€ 

˙ V i = −ξnij
t( ) φ ij θ i t( )( ) Ksesij

+ pij sgn ξnij
t( )( )( )

j =1

3

∑ . (41) 

Define a 

€ 

γ ij  vicinity 

€ 

Ω i
*
j γ l ij ,γ r ij( )  of the maximum 

point 

€ 

θ ij
*

 
as: 

 

€ 

Ω i
*
j γ l ij ,γ r ij( ) = θ ij θ ij

* − γ lij ≤ θ ij ≤ θ ij
* + γ rij{ } , (42) 

where 

€ 

γ lij  and 

€ 

γ rij  are positive constante . Then one of the 
following possibilities holds 

 

€ 

φ ij θ i t( )( ) > pij Ksesij , ∀θ ij ∉ Ω i
*
j γ l ij ,γ r ij( ),

φ ij θ i t( )( ) ≤ pij Ksesij , ∀θ ij ∈ Ω i
*
j γ l ij ,γ r ij( ).

 (43) 

FOR THE FIRST POSSIBILITY  
It is assumed that the initial condition 

€ 

θ ij 0( )  of the 
system is outside the 

€ 

γ ij  vicinity, i.e., 

 

€ 

φ ij θ i 0( )( ) > pij Ksesij . (44) 
Then, as long as the system is outside the 

€ 

γ ij  vicinity, we have 

 

€ 

φ ij θ i t( )( ) > pij Ksesij , θ ij ∉ Ω i
*
j γ l ij ,γ r ij( ) , (45) 

and 

 

€ 

˙ V i = −Ksesij
ξnij

t( )
φ ij θ i t( )( ) +

+
pij

Ksesij

sgn ξnij
t( )( )

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ j =1

3

∑ < 0, (46) 

which indicates that the system will move towards the 
sliding mode 

€ 

ξnij = 0 . 
The equivalent control input can be derived by solving 

€ 

˙ σ ij t( ) = 0 for 

€ 

vij t( ) : 

 

€ 

˙ σ ij t( ) =
∂
∂θ ij

J i θ i t( )( )veqij − pij = 0. (47) 

This implies that:  

 

€ 

veqij =
pij

φ ij θ i t( )( )
. (48) 

Furthermore, note that under the assumption that, the 
local cost function 

€ 

Ji θ i t( )( )  is concave function we have 

 

€ 

θ ij t( ) −θ ij*( ) ∂Ji
∂θ ij t( )

< 0 , ∀ θ ij t( ) ≠ θ ij* . (49) 

Let 

€ 

ˆ θ ij = θ ij t( ) −θ ij* , the time derivative of 

€ 

ˆ θ ij  is: 

 

€ 

ˆ ˙ θ ij = veqij . (50) 

From eqs. (48) and (49), it follows that 
 

€ 

ˆ θ ij t( ) ˆ ˙ θ ij t( ) < 0 , (51) 
that is 

€ 

θ ij t( ) →θ ij
*  in the region (45) as long as the sliding 

mode exists, which implies that (28) converges to zero. 
FOR THE SECOND POSSIBILITY  

In this subsection, we use the switching function 

€ 

σ ij t( )  
to discuss the convergence. Once the sliding mode reached, 
the system enter the 

€ 

γ ij  vicinity, i.e., 

 

€ 

φ ij θ i t( )( ) ≤ pij Ksesij , ∀θ ij ∈ Ω i
*
j γ l ij ,γ r ij( ). (52) 

If  

€ 

2nβij < σ ij t( ) < 2n +1( )βij  (53) 
then 

€ 

θ ij = Ksesij > 0 . (54) 
It can be seen that 

€ 

θ ijwill continue to increase and two 
cases may happen. 
Case 1: If 

€ 

pij Ksesij  is designed to be small, before 

decreases to 

€ 

σ ij t( ) = 2nβij  from 

€ 

σ ij t( ) = 2n +1( )βij , the 

system will cross the region 

€ 

φ ij θ i t( )( ) ≤ pij Ksesij  
and 

reach the region 

€ 

φ ij θ i t( )( ) > pij Ksesij . In this case, the 
condition of sliding modes comes into existence and the 
system converges to sliding surface 

€ 

σ ij t( ) = 2nβij  on which 

the system moves to region 

€ 

φ ij θ i t( )( ) ≤ pij Ksesij . 

Case 2: If 
 
is designed to be large enough, the 

system is still in the region 

€ 

φ ij θ i t( )( ) ≤ pij Ksesij  
and 

€ 

σ ij  
decreases to 

€ 

σ ij t( ) = 2nβij  from 

€ 

σ ij t( ) = 2n +1( )βij . 
From the sliding surface 

€ 

σ ij = 2nβij , we can get: 
 

€ 

2n −1( )βij < σ ij t( ) < 2nβij , (55) 
which implies that: 
 

€ 

θ ij = −Ksesij < 0. (56) 
It can be seen that 

€ 

σ ij  will continue to decrease and two 
cases may happen 
Case 1: If is designed to be small, the system will 

cross the region 

€ 

φ ij θ i t( )( ) ≤ pij Ksesij  
and reach the region 

€ 

φ ij θ i t( )( ) > pij Ksesij . In this case, the condition of sliding 
modes comes into existence and the system converges to 
sliding surface 

€ 

σ ij t( ) = 2n −1( )βij  on which the system 

moves to region 

€ 

φ ij θ i t( )( ) ≤ pij Ksesij . 

Case 2: If is designed to be large enough, the 

system is still in the region 

€ 

φ ij θ i t( )( ) ≤ pij Ksesij  and 

€ 

σ ij  
reduces to 

€ 

σ ij t( ) = 2n −1( )βij . 
When (40) and (41) appear, the direction of movement 

changes and so do for (42) and (43). The system will repeat 
those movements near the extreme point.  

3. SIMULATION RESULTS 
To validate the performances of the developed adaptive 

nonlinear voltage controller, two different configurations of 
the multi-machine power systems are considered:  
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! Three-generator infinite bus power system (Fig.1). 
The full mathematical details can be found in [10]. 
The initials conditions are listed in Table 1.  

! Two-machine infinite bus power system (Fig.2). The 
full mathematical details can be found in [12,13]. 
The initials conditions are listed in Table 2.  

The feasibility of the proposed controller is verified by 
the Matlab software environment. 

 
Fig. 1– A three-machine infinite bus power system. 

 
Fig. 2 – A two-machine infinite bus power system. 

Table 1 
Initial conditions. 

Machine   

€ 

δ(!) 

€ 

Pm p.u( )  

€ 

E f p.u( )  

€ 

Vt p.u( )  
1 37.93 0.8005 0.3770 0.9999 
2 32.07 0.6863 0.4513 1.0200 
3 20.88 0.5004 0.6077 1.0399 

Table 2 
Initial conditions. 

Machine   

€ 

δ(!) 

€ 

Pm p.u( )  

€ 

Vt p.u( )  
1 52.72 0.95 1.00 
2 54.48 0.95 1.02 

3.1. THREE-GENERATOR INFINITE BUS POWER 
SYSTEM 

In this configuration, the fault considered is a permanent 
fault with sudden increase in mechanical input power 
(Fig. 3, 4 and 5). First, a symmetrical three-phase short 
circuit on the transmission lines between buses 5 and 6 is 
applied at t = 1s (Fault location λ = 0.2). This fault is 
eliminated by the opening the breakers of the faulted line at 
1.15 s. Secondly the mechanical input power of generator 
# 1 has increase of 30 %. This rise is applied at t = 1.5 s.  

 
Fig. 3 – System state responses of the generator 1 of the three-generator 

connected to the infinite bus power system. 

Fig. 4 – System state responses of the generator 2 of the three-generator 
connected to the infinite bus power system. 

Fig. 5 – System state responses of the generator 3 of the three-generator 
connected to the infinite bus power system. 

Figures 6-8 show the variations of controllers’ gains of 
the system three generators connected to the infinite bus 
power system. 
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Fig. 6 – Controller’s gains variations of the generator 1. 

 
Fig. 7 – Controller’s gains variations of the generator 2. 

 
Fig. 8 – Controller’s gains variations of the generator 3. 

3.2 TWO-MACHINE INFINITE BUS POWER SYSTEM 

The simulation is performed for two successively, 
symmetrical three-phase short circuit fault (location λ = 0.01). 
The first fault happens at t = 1s. This fault is eliminated by the 
opening the breakers of the faulted line at t = 1.15 s. The 
transmission lines are restored at t = 2.5 s. The second fault 
occurs at t = 3.15 s. The fault is removed by opening the 
breakers of the faulted line at t = 3.15 s (Fig. 9 and Fig. 10). 

In order to evaluate the performance of the proposed 
adaptive nonlinear voltage controller (Adapt Non Vol C) 
more accurately, the state responses of the proposed 
controller are compared to those of the robust nonlinear 
voltage Controller (Rob Non Vol C) described in [12]. 

Zhu et al in [12], have developed a robust nonlinear 
voltage controller based on the direct feedback linearization 
(DFL) technique and the robust control theory. The 
proposed controller is expressed as: 

 

€ 

v f1 = 22.4Δδ1 t( ) +12.8Δω1 t( ) − 82.5ΔPe1 t( ),
v f 2 = 22.4Δδ 2 t( ) +14.2Δω2 t( ) − 82.6ΔPe2 t( ).

 (57) 

 
Fig. 9 – System state responses of the generator 1 of the two-generator 

infinite bus power system. 

It can be seen from Figs. 3-5 and Figs. 9-10 that the 
control tasks tackled are satisfactorily achieved. Indeed, the 
transient stability is improved, and the generator terminal 
voltages were well regulated in all cases, which confirm the 
effectiveness of the proposed approach.  

The deviation of the generator terminal voltage (∆V) and 
the deviation of power angle (

€ 

Δδ ) levels are used to 
evaluate the performances of the proposed controller and 
the robust nonlinear voltage controller proposed in [12]. For 
this comparison, three indices are used, namely the Integral 
square error (ISE), the integral of absolute error (IAE) and 
the integral of time multiplied by absolute error (ITAE). 
The simulation time T is set at 20 s and the results of this 
comparison are reported in Tables 3 and 4. 

 
Fig. 10 – System state responses of the generator 2 of the two-generator 

infinite bus power system. 
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Fig. 11 – Controller’s gains variations of the generator 1 for the case 1. 

 
Fig. 12 – Controller’s gains variations of the generator 2. 

Figures 11 and 12 show the variations of controllers’ 
gains of the system two generators connected to an infinite 
bus power system. 

Table 3 
Values of performance indices under different conditions for transient 

stability evaluation  
Comparator indices of transient stability (

€ 

Δδ )  
System  

responses ITAE IAE ISE 

Rob Non Vol C 3.8109e+03 835.2794 447.6468 
Adapt Non Vol C 2.7822e+03 732.0862 397.9413 

Table 4 
Values of performance indices under different conditions for voltage 

regulation evaluation 
Comparator indices 

of voltage regulation (ΔV) 
 

System 
 responses ITAE IAE ISE 

Rob Non Vol C 2.5006e+03 470.1989 103.5874 
Adapt Non Vol C 1.7506e+03 405.1086 100.5577 

As shown in Tables 3 and 4, all performance indices 
confirm that the proposed controller gives better 
performances compared to the robust nonlinear voltage 
controller in term of fast convergence responses with better 
damping of power system oscillations, and minimum steady 
state error (the system responses of proposed controller are 
closer to the set points). 

Furthermore, according to Figs. 3-5 and Figs. 9,10 the 
chattering observed on the controller’s gains (Figs. 6-8 and 
Figs. 11,12) has no effect on the control law applied. 
Therefore, chattering is no longer a big issue in the proposed 
control scheme since multiple sliding surfaces are applied. 

4. CONCLUSION 
In this article, an adaptive control law based on 

multivariable sliding extremum seeking approach is used to 
ensure control and stability of multi-machine power systems. 

One of the main advantages of this technique is to introduce 
an approach that requires little or no knowledge of the system 
model. Moreover, it is not even important if the model of the 
system is linear or nonlinear as in our case. We only need the 
cost function that characterizes the desired behavior. Despite 
the non-linearity and the time-varying properties of the multi-
machine power system, the proposed adaptive nonlinear 
voltage controller via the multivariable SES approach 
satisfactorily addressed it. Indeed, the transient stability is 
greatly improved by the proposed controller and the post-
fault voltage level is reached despite the different operating 
points, faults locations, and changes in the mechanical input 
power, and this for the different multi-machine power 
systems. Simulation results reveal the superiority of the 
proposed technique over the robust approach since the 
proposed controller has a faster convergence speed with less 
oscillation, and where the steady state responses of system 
are closer to the set points. 

In a general way, it is important to emphasize that the 
joint use of the sliding extremum seeking technique with 
any regulator offers a very appreciable flexibility and ease 
of design in the field of controlling linear systems just as 
much as non-linear systems since we just need to find the 
cost function that can represent the desired dynamics of the 
system and use the technical ES to minimize it. 

Received on September 10, 2020 
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