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Based on an output error, several evolutionary methods have been applied to identify the parameters of an Induction Machine 
(IM). The main drawback of these methods is their premature convergence in many situations. To overcome this issue and 
achieve a more accurate solution, this paper proposes a Memetic Algorithm (MA), which combines a Genetic Algorithm (GA) 
and a local search method. This approach uses the Hooke-Jeeves (HJ) method for the local search as a mutation operator.GA 
has proven good ability in global search. The HJ method has a good ability to refine the local search and achieve the optimal 
accuracy solution. The proposed MA, which maintains a tradeoff between exploration and exploitation strategies, is applied to 
minimize the related objective function to obtain the electrical and mechanical machine parameters. The validation of the 
method is confirmed by an experiment carried out on an (0.4 kW) IM with parameters estimated using the measured data. 
Using the estimated parameters, the computed transient and steady-state currents agree well with the measured data.

1. INTRODUCTION 
The induction machine (IM) is commonly used in industrial 

and transport applications [1, 2]. It offers better performance 
than other ac motors. IM is an effective industrial solution in the 
field of high-performance drives. An efficient control of an IM 
needs a convenient model with accurate parameters. Different 
models consider the saturation or core loss effects [3–5]. Several 
methods of parameter identification based on the output error 
method [6,7] are proposed in the literature [8–11]. These 
methods vary by the nature of the input–output signals, the 
adopted IM model, and the used optimization method. 

This paper aims to determine the parameters of an IM by 
the minimization of the quadratic error between the 
experimental current of the IM and the computed one from the 
adopted model. It is generally challenging to find the global 
optimum with deterministic methods. Fortunately, 
evolutionary methods are an approach for circumventing the 
problems of deterministic methods [12,13]. Many 
evolutionary optimization techniques, such as genetic 
algorithm (GA) [14], firefly (FA) [15], sunflower optimization 
algorithm (SOA) [16], and particle swarm optimization (PSO) 
[17], have been successfully applied to identify the parameters 
of IM. However, premature convergence is the main problem 
of these methods. To overcome this issue and achieve an 
accurate solution, this paper proposes a memetic algorithm 
(MA), which includes a hybridization between a GA and a 
local search method to reduce the probability of premature 
convergence. For this purpose, the Hooke-Jeeves (HJ) method 
is used as the local search method applied as a mutation 
operator. It is well known that GA has proven good ability in 
global search when it evolves through selection, crossover, 
and mutation operators. The last genetic operator is often cited 
as a key to allowing a “jump out” from local minima. 
Fortunately, the mutation operator is based on the HJ method, 
which might be the key to improving a local search and 
refining the accuracy of solutions. The proposed MA 
combines the abilities of global and local searching to 
maintain a good balance between exploration and exploitation 
strategies. On the other hand, MA can be evolved in another 
way, such as a GA exploring the search space to discover 
promising areas and providing a solution located within the 
attraction pool of the global minimum. Then, a local search 
uses the solution provided by the GA as an initial solution and 
continues the disruption process until the convergence 

criterion is satisfied [18]. 
Several memetic algorithms have been proposed in the 

literature [19-20]. The efficiency of a genetic search can be 
improved by hybridization with deterministic or stochastic 
search methods. In [21], a new minimum-time minimum-loss 
control algorithm for IM using a hybrid system (GA–PSO) is 
suggested to obtain high performance and efficiency under 
practical constraints on voltage and current. The hybrid PSO-
Jaya optimization algorithm is proposed in [22] to extract the 
optimal unknown parameters of poly-phase IM from the 
nameplate data. Bosworth et al. [23] used the Fletcher-Reeves 
method as a mutation operator. In [24], the simulated annealing-
inspired selection operator is introduced into the hybrid schema. 
The use of a biased binary crossing operator [25] based on the 
recruitment mechanism into the immune system [26] is 
discussed. Cheng et al. [27] proposed a new mutation operator 
based on the neighborhood search mechanism. 

This paper proposes an MA for a parametric identification 
method through an output error. MA is a hybridization 
between a GA, and HJ used as a local search method operator 
that replaces the mutation, which is applied to an individual 
respecting the mutation probability. The proposed MA 
realizes a good exploration ability of GA and a good 
exploitation of the HJ method. To highlight the performance 
of the proposed MA, it is compared to a GA and HJ method 
separately from the IM parameters identification. Using only 
the starting current and the corresponding phase voltage, the 
electrical and mechanical parameters of an IM are 
determined simultaneously. This is achieved by minimizing 
the quadratic output error between the measured current and 
the computed one from the adopted model. 

This paper is structured as follows: section 2 describes the 
GA incorporating the HJ method as a mutation operator.  
Section 3 presents the induction machine model. Section 4 
introduces an identification method through an output error 
method. The procedure is used to determine simultaneously 
the electrical and mechanical parameters of an IM from 
measurements of the starting current and the corresponding 
phase voltage. Section 5 confirms the identification method 
by experimental results to show the MA's performance. 
Finally, section 6 draws some conclusions. 

2. MEMETIC ALGORITHM  
This section describes the HJ method, GA, and MA. 
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2.1 HOOKE-JEEVES METHOD 
The Hooke-Jeeves (HJ) method is a deterministic 

technique that does not require knowledge of the objective 
function and without derivatives calculation. It combines 
exploratory search and pattern search. The first two iterations 
of the HJ’s procedure in a 2-dimensional space [28–30] are 
illustrated in Fig. 1. 

 
Fig. 1 – Illustration of the first two phases of the HJ method. 

 
Fig. 2 – Flowchart of the HJ method. 

The HJ’s procedure is summarized as follows: 

Step 1: Let P1 be the initial point. 
Step 2: An exploratory search along the coordinate axes 
leads to point P2. 
Step 3: A new pattern search along direction P1P2 leads to 
point P3 
Step 4: Starting from P3, another exploratory search leads 
to P4. 
Step 5: A new pattern search along direction P2P4 leads to 
the next point P5. 
This iterative process repeats itself until the error test stops 
the program. 

The flowchart of the HJ method is represented in Fig. 2. 

2.2 GENETIC ALGORITHM 
A genetic algorithm (GA) optimization process starts with 

a random population of many individuals evolving under 
specified selection rules to a state that minimizes the 

objective function. Each individual represents an IM, which 
is characterized by the following parameters vector	𝐏 =
[σ 𝑇! 𝐿! 𝑇! 𝐽 𝐵]"	and a value of an objective 
function which represents the output quadratic error between 
the measured current and the computed one from the adopted 
model of the IM. The elements of the vector P are called 
genes. All genes are bound to respect the search space.  The 
new population is obtained iteratively by applying the 
genetic operators (Boltzman selection, continuous crossover, 
non-uniform mutation) and replacement strategy for the IM 
parameters identification [31]. 

The GA is combined with the HJ method as the mutation 
operator to hasten the algorithm's convergence and highlight the 
optimal solution accuracy. The following step describes the MA. 

2.3 MEMETIC ALGORITHM 
There are many ways of designing an MA because local 

search methods are also numerous. In this paper, 
hybridization is used to find in an MA the local search (HJ) 
operator that replaces the mutation for an individual 
according to the mutation probability. 

 

Fig.3 – Flowchart of the MA. 

GA has proven good capacity to explore the search space, 
while the HJ method has a high-performance capacity to 
exploit the local search. The hybridization emergence comes 
from combining the advantages of GA’s evolutionary and 
HJ’s deterministic methods. Often, these methods are 
complementary because one detects good areas in the global 
search space while the other concentrates intensively on 
exploiting these areas of the search space. Thus, the 
interesting areas of the search space can be explored quickly 
by a GA and more exploited by the HJ method by refining 
the accuracy solution to maintain the trade-off between 
exploration and exploitation. The flowchart of the MA is 
illustrated in Fig 3. 

3. INDUCTION MOTOR MODEL 
Using the usual simplifying hypothesis, the saturation 

effect, core losses, and skin effect are neglected; only the first 
space harmonic is considered, and the air gap is constant.  In 
the Park model, the dynamic equations of the IM [32] related 
to a reference linked to the stator are given by 
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where A1and A2 are respectively given by 
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𝑈 = [𝑉&! 𝑉'!]" (5) 

The mechanical equation is given by: 

𝐽 ,-
,%
= 𝑇./ − 𝑇0 − 𝑇(.!, (6) 

Tem is the electromagnetic torque given by: 

𝑇./ = (1 − σ)𝐿!>𝐼'!𝐼&() − 𝐼&!𝐼'() ?, (7) 

And Tres is the friction torque assumed to be: 

𝑇(.! = 𝐵Ω. (8) 

So, the mechanical equation becomes  
dΩ
dt =

1
𝐽
(1 − σ)𝐿!>𝐼'!𝐼&() − 𝐼&!𝐼'() ? −

𝐵Ω
𝐽  (9) 

The machine is governed by the nonlinear eq. (1) and (9). 
So, the IM is completely characterised by the parameters 
vector 𝐏 = [σ 𝑇! 𝐿! 𝑇! 𝐽 𝐵]%, which can be 
determined from the measurement of the starting current and 
the corresponding simple voltage applied to the machine. 

4. IDENTIFICATION METHOD  
The method determines simultaneously the electrical and 

mechanical parameters of a mathematical model of the IM. 
So, the model can match the input–output behavior of the 
IM. This can be achieved by measuring the current and the 
corresponding voltage applied to the machine on transient 
from standstill to steady state. The used identification 
method is illustrated in Fig.4.  

 
Fig. 4 – Identification process. 

To estimate the vector of parameters	𝑃 =
[σ 𝑇! 𝐿! 𝑇! 𝐽 𝐵]%, the quadratic error 𝐹1	between the 
measured values Imi and the computed ones Ici is obtained by 
the using Runge-Kutta algorithm from the adopted model at 
the same instants and is minimized by the GA, HJ, and MA 

𝐹1 =D(𝐼/2 − 𝐼32)$
4

25#

 (10) 

where n is the number of the measured values. 

5. EXPERIMENTAL RESULTS 
The experimental data is obtained from a transient test on a 

three-phase IM. A Dspace card simultaneously measures the 
start-up current and the corresponding phase voltage. The 
experimental setup is shown in Fig. 5. This experiment is 
carried out on a three-phase IM with the following 
characteristics: motor M: 4 poles, 220/380 V, 0.4 kW. 

 
(a)                                            (b) 

Fig. 5 – (a) View of the experimental setup, (b) measurement setup. 

The curves in Fig. 6 represent the measured voltage and 
the no-load starting current of the IM, respectively. 

 
(a) 

 
(b) 

Fig. 6 – Motor M; (a) Voltage measured; (b) current measured. 

The estimated parameters obtained using the measured 
data are given in Table 1. It can be noticed that the 
experimental results confirm well the fast convergence of the 
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MA and the optimal solution accuracy compared to the GA 
and HJ methods. 

Table 1 
Parameters resulting from the identification of motor M, 

Parameters GA HJ MA 

s 0.1073 0.112 0.1088 
Tr (ms) 76.39 72.5 74.8 
Ts (ms) 36.68 35.3 36.25 
Ls (mH) 1026.67 984.021 1012 
J (kg.m2) 0.0041 0.0041 0.0041 
B (N.m.s/Rd) 0.0031 0.0031 0.0031 
Number of iterations 950 454 183 
Time computing (s) 9908.453 29112.78 7784.51 

The computed current is obtained by the estimated 
parameters. Figure 7 shows the superposition of the 
calculated current with the measured one both in transient 
and steady state. 

 (a) 

 (b) 

 (c) 

Fig. 7 – Superposition of the measured current and calculated one with the 
estimated parameters to motor M; (a) by GA; (b) by MA; (c) by HJ. 

Calculated current                   Measured current 

 
(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Fig. 8 – Parameters evolution of motor M; (a) of leakage coefficient;  
(b) of Tr; (c) of Ls; (d) of Ts; (e) of J; (f) of B. 

Figure 8 illustrates the parameters' evolution versus the 
number of iterations for the motor M. This confirms the 
convergence for different algorithms. 
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6. CONCLUSIONS 
This paper proposes a memetic algorithm to identify the 

induction machine parameters. MA is a hybridization between 
GA and HJ methods as a local search. To hasten the 
convergence, avoid the risk of premature convergence, and 
improve the estimated parameters accuracy, the hybridization 
approach is used as a local search (HJ) operator that replaces 
the mutation, which is applied to an individual respecting the 
mutation probability. The GA ensures the exploration of wider 
areas for locating the attraction pool of global optimum. The 
HJ method has a good ability to refine the exploitation and 
achieve the optimal accuracy solution. Then, a good balance 
between exploration and exploitation is achieved. Therefore, 
the electrical and mechanical parameters of an IM are 
determined simultaneously by using only the measured current 
and the corresponding phase voltage. This identification 
method is based on the output error and uses three optimization 
methods, GA, HJ, and MA, as minimization techniques. The 
validation of these methods is realized from an experiment 
carried out on an IM (0.4 kW) parameters estimation by 
measured data. The matching in the transient and steady state 
of computed currents with the measured ones confirms the 
accuracy of the identified parameters. The results show the 
superior MA versus GA and HJ to highlight the computing 
time and convergence speed performance. 

Nomenclature 
Vdr, Vqr      d-q axes rotor voltage 
Vds, Vqs     d-q  axes stator voltage 
Idr, Iqr          d-q  axes rotor current  
Ids, Iqs          d-q  axes stator current 
φdr,φqr         rotor winding flux  
               linkages 
φds, φqs      stator winding flux  
               linkages 
Rs, Rr      stator and rotor  
               resistances (Ω) 
ω             mechanical velocity   
               (Rd/s) 
ωe                   electrical velocity   
               (Rd/s) 

Lm         mutual inductance (H) 
Ls, Lr   stator and rotor  
          inductances (H) 
J        rotor inertia (kg.m2) 
Tem       electromagnetic torque  
          (N.m) 
Tres       resistive torque (N.m) 
B       viscous friction  
          coefficient (N.m.s/Rd) 
σ        leakage coefficient 
Tr          rotor time constant (s) 
Ts          stator time constant (s) 
Po          number of pole pairs 
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