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NEW KIND OF INFINITE IMPULSE RESPONSE DIGITAL FILTERS 
INTENDED FOR PULSE PERIOD FILTERING 

DJURDJE PERIŠIĆ1 
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This paper describes a new kind of infinite impulse response (IIR) digital filter designed for pulse period filtering. The IIR 
digital filter is designed using a third-order IIR frequency locked loop (IIR FLL), which is based on the time measurement and 
processing of both, the input and output periods. A general form of the difference equation describing this type of IIR FLL of 
any order is developed and compared with the corresponding difference equation of classical digital filters. The mathematical 
analyses in time domain were performed using the Z transform approach and theory of linear discrete systems. An analysis of 
IIR digital filter was performed in time and frequency domain. The transfer functions and Z transform of the third-order IIR 
FLL outputs are developed. The main part of the article is devoted to design the appropriate IIR FLL digital filter using the 
corresponding IIR FLL. For this purpose, the theory of IIR digital filter and the corresponding MATLAB tools are used, but 
taking into account the differences of these systems. Filtering abilities of the designed IIR FLL digital filter are demonstrated. 
Computer simulation of the designed IIR FLL is made in the time domain to enable precise insight into its properties. 

1. INTRODUCTION
As stated [1,2], by processing the periods of the pulse 

signal and the time differences between the input and output 
periods, new types of PLLs and FLLs can be created, which 
have new properties compared to classical PLLs and to 
FLLs. In [3–10] the numerous applications of such systems 
were demonstrated. One of the new applications, which is 
very interesting for many fields in which electronics are 
used, is the digital filtering of the period of the pulse signal, 
demonstrated in [1,2]. In these papers, FLLs process only 
the input periods. Although FLLs and digital filters are 
completely different systems, it has been shown that FLL 
systems have a lot of similarities in the mathematical sense 
with classic FIR (Finite Impulse Response) digital filters, in 
which only analog samples of the input signal are processed. 
FLLs which function as FIR digital filters, we rightly called 
FIR FLL digital filters. It was also proven that the complete 
theory of classical FIR digital filters, as well as the relevant 
MATLAB application software, can be used to develop FIR 
FLL digital filters. Of course, in this development, the 
differences between these systems must be taken into 
account. It was shown how to develop a FIR FLL digital 
filter and how to correctly interpret the physical phenomena 
obtained in its analyzes using the MATLAB software, 
intended for FIR digital filters. 

In this paper, we will describe how the theory of classic 
IIR (Infinite Impulse Response) digital filters can be used to 
design IIR FLL digital filters, intended for filtering an 
impulse signal period. The term IIR in classic digital filters 
means that samples of both the input and output signals are 
used in the processing. Accordingly, IIR FLL systems 
process both the input and output periods. This paper, also 
describes a development methodology for IIR FLL digital 
filters of any order, using the theory of IIR digital filters 
and the appropriate MATLAB tools.  

Refrences [3–10] are also of fundamental importance for 
this paper. In addition to the description of various 
applications of FLL and PLL systems, they describe the 
methodology of their analysis and the way of realization of 
these systems, what will be also used in the analysis and 
realization of IIR FLL digital filters. The articles and books 

in [11–25] are only used as theoretical base, for electronics 
implementations and the development necessities. 

2. GENERAL DIFFERENCE EQUATION OF IIR FLL
The procedure in realizing an IIR FLL digital filter using

a classic digital filter, consists in replacing the parameter of 
an IIR FLL digital filter with the coefficients of an already 
designed IIR digital filter. To do that, these systems must 
have the transfer functions of the same order, with the same 
number of identical parameters and coefficients. The FLL 
IIR digital filter is successfully realized only if, after this 
replacement, the magnitudes of the frequency responses of 
these two systems are identical. In order to achieve this 
task, let's first consider the difference equation of the Mth-
order IIR digital filter, eq. (1). The sum of products of 
(M+1) filter coefficients ad0,ad1,ad2,...,adM and the 
corresponding samples of the output signal y(k-i) is equal to 
the sum of the products of (M+1) filter coefficients bd0, bd1, 
bd2,...,bdM  and the corresponding samples of the input signal 
x(k-i). The suffix "d" to the coefficients, indicates that they 
belong to digital filters. Note that the variable "k", 
represents the discrete time tk when an amplitude of the 
input signal is sampled, measured and taken in calculation. 
Since it is accepted ad0 =1, eq. (1) can be transformed into 
eq. (2), which is structurally similar to the forms of the FLL 
difference equations, which are used [1–12]. The  
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general case of an input signal Sin and an output signal Sop 
of the M-th order FLL is shown in Fig. 1. It shows the 
physical relations between the variables. The periods TIk 
and TOk, as well as the time difference τk, occur at discrete 
times tk, tk+1, tk+2,…tk+M-1, tk+M, defined by the falling edges 
of the pulses of Sop in Fig. 1. Note that the variable "k", 
represents the discrete time tk when an input period is 
measured and taken in calculation. The difference equation 
for M-th order FLL, corresponding to Fig. 1, is shown in 
eq. (3). According to eq. (3), there are "M+1" system 
parameters a0, a1, a2,..., aM and "M" system parameters b1, 
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b2,... bM. Note that the assumed a0=1 in Eq. (3), just like 
ad0=1 in digital filters, in Eq. (2). The start of the "M" 
calculation starts at a discrete time, just like in Fig. 1.  The 
beginning of "M" calculations starts at discrete time , 
just like in Fig. 1. 

 
Fig. 1 – The time relations between the input and output variables of the 

M-th order FLL. 
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The number of parameters "b" of the M-th-order FLL, in 
eq. (3), is "M" and the number of coefficients "bd" of the 
digital filter of the M-th order, in eq. (2), is equal "M+1". 
Obviously we have to choose the (M+1)-th order FLL to be 
able to adopt the digital filter coefficients instead of the 
FLL "b" parameters. On the other hand, the number of 
parameters "ad" and "a" in eqs. (2) and (3) is identical, i.e., 
"M+1". When we increase the order of FLL by one, i.e,. on 
(M+1)-th order, the number of parameters "a" will be one 
more than the number of coefficients "ad". Therefore, if we 
want the number of parameters "ad" and "a" to be identical, 
we must give up the parameter "aM+1". Increasing the order 
of FLL from M-th order to (M+1)-th order and adopting 
aM+1=0 was done by modifying eq. (3) into eq. (4). Taking 
into account that the parameter a0=1 and coefficient ad0=1, 
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the number of parameters “b” and “a” in eq. (4) and the 
number of coefficients “bd” and “ad” in eq. (2), are 
identical. That number is "M+1". Now it is possible to use 
all the calculated coefficients of the digital filter, given by 
eq. (2), instead of the parameters of the FLL difference 
equation, given by eq. (4). So, eq. (4) represents the general 
form of the (M+1)-th order FLL when the FLL is to 
function as an IIR FLL digital filter. But, the order of the 
digital filter, whose coefficients are to be used instead of 
the parameters of the FLL, must be of the M-th order, i.e., 
for one order lower than the order of the IIR FLL.  

3. EXAMPLE OF AN IIR FLL FILTER DESIGN 
USING THEORY OF CLASSIC DIGITAL FILTER 
Let us now demonstrate the entire process of developing 

an IIR FLL digital filter.  In order to make the description 
clearer, we will choose the lower order of IIR FLL and 
digital filter. If we choose the third order IIR FLL3 than, 
according to the previous conclusion, digital filter should be 
of the second-order. From the general eq. (2) of the digital 
filter, the difference equation of the second-order filter can 
be easily obtained, if we adopt M=2 and replace k=k+2 in 
eq. (2). Equation (2) will turn to eq. (5). In a similar way, 
for M+1=3, from Eq. (4) can be obtained the difference 
equation of IIR FLL3, shown in eq. (6). Note that these two 
equations are structurally similar. They describe systems of 
the same order and they have the same number of 

coefficients, i.e., parameters. For further analysis, we also 
need eq. (7). Equation (7) comes out as natural relation 
between the variables in Fig. 1. The variable τk will serve to 
identify the phase relation, as well as the time relation 
between the input and output periods, during both the 
locking procedure and the stable state of a FIR FLL3. In the 
first step, we need to find the Z transforms of the transfer 
functions of the described IIR FLL3 using eqs. (6) and (7). 
The Z transforms of eqs. (6) and (7) are presented in eqs. 
(8) and (9). In eqs. (8) and (9), TO0, TI0 and τ0 are the 
initial conditions of the variables TOk, TIk and τk. Based on 
eq. (6), for k=-2, TO1=b1TI0+a1TO0 and for k=-1, TO2= 
b1TI1+b2TI0+a1TO1+a2TO0. Using the given expressions 
and eq. (8), TO(z) is calculated and shown in eq. (10), 
where R(z)=z3TO0/(z3-z2a1-za2). It is now of interest to 
investigate under which conditions this IIR FLL3 is the 
stable system. To do that, let us suppose that the step input 
is TI(k) = TI = constant. Substituting the Z transform of 
TI(k), i.e., TI(z) = TI·z/(z-1) into eq. (10) and using the 
final value theorem, it is possible to find the final value of 
the output period TO∞, which IIR FLL3 reaches in the stable 
state. We can calculate TO∞ = lim TO(k) if k→∞, using 
TO(z). This is shown in eq. (11). It comes out from eq. 
(11), that TO∞=TI if eq. (12) is satisfied. Changing TO(z) 
given by eq. (10) into eq. (9), τ(z) is calculated and shown 
in eq. (13), where Sab= b2+b1+a2+a1-1. Based on eqs. (10) 
and (13), we can define two transfer functions HTO(z) and 
Hτ(z)= τ(z)/TI(z), shown in eqs. (14) and (15). Finally, 
based on eq. (5), we can express the transfer function of the 
second-order digital filter, shown in eq. (16). 
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Equation (14) is structurally the same like eq. (16) and 
the next step is to simply change the parameters of FLL3 in 
eq. (14) with the corresponding coefficients of the digital 
filter, shown in eq. (16). This will give b1= bd0, b2= bd1, b3= 
bd2, a1= -ad1 and a2= -ad2. After this substitution, eq. (14) 
transforms into eq. (17). The transfer functions HDF(z) and 
HTO(z), given by eqs. (16) and (17), cover the same zeros 
and poles, but the difference between them is in their 
denominators. Namely, their ratio can be expressed as 
HTO(z)= HDF(z)·z-1. This means that the magnitudes of the 
frequency responses of HTO(z) and HDF(z) will be the same. 
But due to one step delay, which refers to factor “z-1”, IIR 
FLL3 will introduce an additional delay of -2π [rad] on the 
output signal, in relation to the phase which the digital filter 
makes on its output signal. Note that if we consider only 
half of the sample rate, this delay will be -π [rad]. Based on 
the MATLAB rules for definitions of vector “b” and “a” of 
the IIR digital filters, we can define vectors bDF and bTO, as 
well as vectors aDF and aTO, using the transfer functions 
HDF(z) and HTO(z), given by eqs. (16) and (17). The 
corresponding vectors bDF, bTO, aDF and aTO are shown in 
eqs. (18), (19), and (20). If we change b1=b0d, b2=b1d, 
b3=b2d, a1=-a1d and a2=-a2d in eq. (15), we can determine 
vectors bτ and aτ, which are shown in eqs. (21) and (22). All 
of vectors are necessary for the frequency analyses of the 
described IIR FLL3 and the digital filter, using MATLAB 
tools intended for the IIR digital filters. 
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TO(z)
TI(z)

=
z2bd0 +zbd1 +bd2
z2+zad1+ad2

⋅z−1,           (17) 

€ 

bDF = [bd0 bd1 bd2 ] ,                    (18) 

€ 

bTO = [0 bd0 bd1 bd2 ] = [0 bDF ],               (19) 

€ 

aDF = aTO = [1 ad1 ad2 ]                       (20) 
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bτ = [0 −1 (−ad1 + bd0 −1)
(bd1 + bd0 − ad2 − ad1 −1)],

                 (21) 

€ 

a τ = aDF = aTO = [1 ad1 ad2 ].                 (22) 
After we developed vectors “a” and “b”, based on the 

transfer functions of the IIR FLL3, the further procedure of 
frequency analysis of the outputs TO and τ, can be 
performed in a completely identical way. In the following 
text, we will give the emphasis to the design and analysis of 
the filter characteristics of IIR FLL3 using output TO and 
comparing it with the corresponding digital filter. In order 
to design an IIR FLL3 digital filter, we have to first design 
the corresponding IIR digital filter of the second order (IIR 
DF2). Let us design Butterworth low pass IIR DF2, defined 
by the cutoff frequency fg=2000 Hz and sampling 
frequency fs=10000 Hz. Using MATLAB command [bDF, 
aDF] = butter (N, fn), where the filter order N=2 and 
fn=fg/(fs/2), we can get vectors bDF=[0.2066 0.4131 0.2066] 
and aDF=[1 -0.3695 0.1958]. Note that eq. (12) is satisfied, 
if we change b1=0.2066, b2=0.4131, b3=0.2066, a1=-(-
0.3695) and a2=-0.1958. This means that after changing the 
parameters with the coefficients of IIR DF2, IIR FLL3 will 
stay stable. In order to determine the frequency responses 
of HTO and HDF, we need vectors bTO, aTO, bDF and aDF, 
which are defined in eqs. (18), (19) and (20). Based on 
these vectors and using MATLAB commands freqz (bTO, 
aTO, 1024, fs) and freqz (bDF, aDF, 1024, fs), the frequency 
responses of IRR FLL3 and IRR DF2, are determined and 
presented in Fig. 2 for the half of the sample rate. It can 
seen that the magnitudes of the IIR DF2 and IIR FLL3 are 

identical. Since both of IIR FLL3 and IIR DF2 are the IIR 
digital filters, no one of their phases is linear, but for the 
half of the sample rate, the phase of IIR FLL3 is -360° and 
the phase of IIR DF2 is -180°. It can be seen in Fig. 2 that 
the phases, which two systems introduced into the output 
signals, differ for expected -180°, for the half of the sample 
rate. This proves that the adaptation of the third-order FLL, 
with the aim of functioning as a second-order IIR digital 
filter, has been successfully realized. 

 

 
Fig. 2 – Magnitudes and phases of the frequency responses of 

HTO(z) and HDF(z). 

Let us demonstrate the filter characteristics of the 
Butterworth low pass IIR FLL3 digital filter, based on the 
third-order FLL. Suppose that the input period TIk+1 is defined 
as TI(k+1) = 6+S1(k) + S2(k) [time units], where 
S1(k)=5·sin(2π/fs·f1·k) and S2(k)=5·sin(2π/fs·f2·k). The input 
periods are continuously changing under effects of two 
sinusoidal signals S1 and S2. Suppose that the values of 
frequencies are f1=1000 Hz and f2=4000 Hz. Note that the 
frequency f1 is less than the cutoff frequency fg=2000 Hz and 
the frequency f2 is greater than fg. The time unit [t.u.] can be, 
µsec, msec or any other, but assuming the same time units for 
all time variables. It was more suitable to omit [t.u.] in the 
diagrams. The first step in this presentation is to form vector TI 
of 10000 values of TI, using the above equation for TIk+1. 
Based on the vector TI, the output period vector TO = filter 
(bTO, aTO, TI) is determined. This vector was also formed in 
simulations on the basis of eqs. (6) and (7). After that, using 
the "fft" command, the input and output vectors of IIR FLL3 
are formed as X = fft (TI) and Y = fft (TO). Finally, using the 
command "stem", stem (abs (X)) and stem (abs (Y)), the 
spectrums of the input and output periods are presented in Fig. 
3. These spectrums present the absolute values of the 
amplitudes, covering the whole sample rate. They appear as 
positive values in the symmetric second half of the sample 
rate. It is visible in Fig. 3 that signal S1 at 1000 Hz, is only 
slightly attenuated, since f1 is less than cutoff frequency 
fg=2000 Hz. This agrees with magnitude of the IIR FLL3 
frequency response shown in Fig. 2, since at f1=1000 Hz, the 
attenuation is close to zero.  t the same time signal S2 at 4000 
Hz is suppressed for about -24.5 dB in Fig. 2, because f2=4000 
Hz is greater than cutoff frequency fg.  It can be seen in Fig. 3, 
that the zero component at the frequency close to zero is not 
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attenuated, what is also in agreement with the magnitude of 
IIR FLL3, shown in Fig. 2. A more complete description 
regarding the zero component are presented in [1,2]. 

 

 
Fig. 3 – The input spectrum of TI and the output spectrum of TO. 

In order to gain additional insight and understanding of 
the physical process of IIR FLL3, we will now present the 
inputs and outputs of the IIR FLL3 in the time domain, 
which is shown in Figs. 4 and 5. These presentations will 
also allow us to check the mutual agreements between the 
frequency and time analyzes and then to check the 
agreement of these analyzes with the frequency response of 
the IIR FLL3 and with the math simulation of the IIR FLL3 
functioning, which was made using eqs. (6) and (7). Their 
complete compliance will be a full guarantee of the 
complete correctness of this entire article. 

 

 
 
Fig. 4 – The simulation of the input and output signals of IIR FLL3,  

using eq. (6). 

All signals in Fig. 4 are generated by simulation of the 
input and output signals using eq. (6). All signals are 
presented in 60 steps. The initial conditions, used for all 
signals in Fig. 4, are TO0=0 t.u., τ0=0 t.u. and TI0=6 t.u. 

Signal S1k is presented in Fig. 4a. Since the frequency of S1k 
is f1=1000 Hz and the sampling frequency fs=10000 Hz, it 
means that signal S1k is sampled 10000/1000= 10 times per 
period. This can be noticed in Fig. 4a. Signal S2k is presented 
in Fig. 4b. Since the frequency of S2k is f2=4000 Hz, it means 
that signal S2k is sampled 10000/4000=4.5 times per period. 
Both S1k and S2k in Figs. 4a and 4b are deformed sinusoidal 
signals. However, the number of samples per period of S2k is 
significantly smaller, so the S2k signal is highly deformed 
into needle-like shapes, which create a wider range of higher 
frequency components in the frequency domain. The sum of 
S1k and S2k is shown in Fig. 4c. The input TIk, as the sum of 6 
t.u, S1k and S2k is presented in Fig. 4d. At last, the input TI(k) 
as well as TO(k) are shown in Fig. 4e. Figure 4e shows that 
the IIR FLL3 generates a slightly deformed S1k signal at its 
output, while the S2k signal is practically eliminated. This is 
in agreement with Fig. 3, where we can see that, in the output 
spectrum of TOk, the component of 4000 Hz, belonging to 
S2k, has almost completely disappeared. The identical results 
of the simulations in the time domain, shown in Fig. 4, with 
the results of the analysis in the frequency domain are proof, 
at the same time, that the entire Z transform mathematical 
analysis of IIR FLL3 is correct. 

It is of interest to check whether the time presentations 
from Fig. 4 corresponds to the magnitude and phase of the 
frequency response of IIR FLL3, shown in Fig. 2. To do that 
it is necessary to determine from Fig. 4 how much the 
phase and magnitude of TIk are changed, passing through 
IIR FLL3. Of course, the changes introduced by the IIR 
FLL3 depend on the frequency of the input signal. 
Therefore, we will adopt to perform this check for the 
signal S1k, whose frequency is f1=1000 Hz. Let's note that 
the given task will be realized with quality only if there is 
no admixture of other signals in the signal S1k. The 
presence of a part of the spectrum from another signal in 
the signal S1k, will affect the overall phase and magnitude 
of the output signal. Therefore, in order to determine the 
phase and magnitude which IIR FLL3 enters into the input 
signal, it is necessary to compare the original signal S1k 
with the output signal TOk which contains frequency of 
1000 Hz. These two signals are taken from Figs. 4a and 4e, 
enlarged and shown in Fig. 5a. It can be seen in Fig. 5a that 
the signal S1k which appears in the output signal TOk is 
partially deformed, due to the presence of a smaller part of 
the spectrum of the signal S2k, whose frequency is f2 = 
4000 Hz. Therefore, this signal is not suitable for accurate 
determination of the change in phase and magnitude of S1k 
at the output of IIR FLL3. A better solution is shown in Fig. 
5b, which is obtained by completely eliminating the signal 
S2k from the input of IIR FLL3. It can be seen in Fig. 5b, 
that the signal which appears in the form of the output 
signal TOk, is identical in amplitude and shape to the signal 
S1k, but it is phase delayed. The signal S1k, as consisting 
part of TOk in Fig. 5b, is also dc leveled up by 6 t.u, 
because this has already been done in the input signal TIk. 

Let us now calculate the phase, which IIR FLL3 adds to 
S1k, using Fig. 5b. The time difference between original signal 
S1k and S1k belonging to TOk in Fig. 5b, is marked with τ∞. The 
period of S1k is TS1. The phase difference between S1k and TOk 
is Ph=-(τ∞/TS1)·360°. Note that, according to Fig. 1 and eq. (7), 
τk is mathematically defined as positive in case when TOk is 
delayed in comparison to TIk. 
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Fig. 5 – The time presentation of the input signal S1k and the output signal 

TOk: a. Signal S2k is present in the input signal TIk b. Signal S2k is not 
present in the input signal TIk.  

Any positive increment of τk will represent the 
corresponding phase delay of TOk. In definition of phase 
difference in MATLAB math, the phase difference is negative 
if an output signal is delayed in comparison to an input signal. 
Because of that, sign "-" is used in the above expression of Ph. 
If we magnify Fig. 5b, we can measure, that relation 
τ∞/TS1=21/114, so that Ph=-(21/114)·360° = -66.3°. Let us now 
determine the same phase difference by the frequency 
response of HTO. Using the proportionality of the magnified 
phase of HTO frequency response, we can calculate that the 
phase at frequency of 1000 Hz is -66.21°, as shown in Fig. 2. 
These two results agree each to other. At last, let us compare 
the magnitude of the frequency response in Fig. 2, at the 
frequency of 1000 Hz, with the time presentation of S1k, 
belonging to TOk in Fig. 5b. Namely, if we magnify Fig. 5b 
and measure AS1 and ATO, it can be found that 20 log 
(ATO/AS1) = 20 log (87/88) = -0.09 dB, what is approximately 
close to negative zero. It is also visible in Fig. 2, that the 
magnitude of the frequency response at f=1000 Hz is close to 0 
dB. This result agrees with the attenuation of S1k at 1000 Hz, 
which is calculated using Fig. 5b. 

4. CONCLUSION 
Unlike [1,2] which describe the new kind of FIR digital 

filters based on the processing of the input periods only, this 
article presents the design of a new kind of an IIR digital filter, 
based on the processing of the input and output periods. Both 
of them use the theory, respectively, of the classical FIR and 
IIR digital filters. They are both of them intended for the 
filtering of impulse signal periods.  

This article represents an important contribution to the 
theory and application of new kind of IIR FLL digital filters, 
based on FLL. The shown adaptation for the third order FLL 
to function as an IIR digital filter, using the theory of the 
classical IIR digital filters, can be applied to a FLL of any 
order. 

This article opened the wide possibilities for the usage 
of IIR FLL digital filters widely in electronics, 
telecommunications, control and measurements, which use 
the different forms of periodic and non-periodic pulse 
signals. There is an obvious need to filter them in some of 
the applications. 

The article contains a wide range of different 
presentations and analyzes such as mathematics, usage of 
the Z transform for the discrete linear system analyses, 
simulation, time presentation of signals, the presentations of 
the frequency responses of the transfer functions and the 
presentation of the frequency spectrums of the input and 
output signals. Therefore, just like in [1], it was made the 
corresponding effort to connect in logical whole all 
segments of the different presentations and analyzes. This 
helped, not only to proof the correctness of all presented 
materials, but to facilitate the understanding of the physical 
process described. It is also of interest to emphasize that for 
the realization of any IIR FLL digital filter, it is necessary 
to use a microprocessor to perform numerous calculations. 
If we respect the described principles of hardware control 
of FLL functioning, described in [3–10], all parts of an IIR 
FLL filter can be realized by a microprocessor. 

However, the presented mathematical process of finding 
the transfer functions and their corresponding vectors can 
be a very long and complex procedure, especially for very 
high-order FLLs, which are expected to be used in filtering. 
Therefore, in the next step, it is necessary to develop all the 
necessary equations, used in this adaptation, for the FLL of 
any order. This will enable a short, simple and safe 
adaptation, which will almost be reduced to the 
development of a classical IIR digital filter. 
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