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Cloud computing is a new technology that enables users to store and retrieve data via the Internet on demand rather than using their 
hardware. Cloud computing comprises distinct data centers (servers) and clients (users). Load unbalancing is a multi-variant, multi-
constraint issue that lowers the efficacy and performance of system resources. Therefore, a load scheduling technique is needed to 
distribute work among the right VMs and preserve the trade-off between them. To achieve better performance, this paper presents a 
novel mayfly optimization algorithm for load balancing (MFO-LB), which utilizes mayfly flight behavior and mating dynamics. The 
proposed technique balances the load in the cloud by managing the incoming loads by allocating resources according to user requests. 
The proposed work intends to increase performance by uniformly dividing the workload among the virtual machines, which will 
decrease utilization and reaction time. The proposed MFO-LB approach is beneficial for maintaining system stability, reducing 
response time (RT), and maximizing resource productivity in cloud environments. Finally, the effectiveness of the proposed technique 
is assessed by employing several metrics, including execution cost, RT, execution time, and makespan. The proposed method achieves 
up to 23.4 % low RT, a 24 %decrease in makespan, and a 31.5 % decrease in completion time, respectively.

1. INTRODUCTION
Cloud computing (CC) is an internet-based technology 

that has seen rapid growth in communication breakthroughs 
by making computing resources and services available 
online to clients with various needs [1]. The cloud computing 
model encompasses the hardware and software data centers 
use to distribute applications over the Internet [2]. In general, 
users anticipate a particular quality of service (QOS), which 
can be achieved by utilizing an emerging technology known 
as virtualization [3]. A virtual machine (VM) is an 
implementation of cloud computing that provides compute 
resources in virtual resources [4–6]. Cloud service providers 
store data on several cloud servers or data centers (DCs). 
Tasks are allocated to distinct servers using virtual machines 
in response to requests from cloud providers [7]. Virtual 
machines are assigned different tasks. Distributed computing 
supports virtual machines (VMs), and all incoming work is 
distributed among them. Some VMs may be overworked, 
while others may need to be more utilized when duties are 
distributed among VMs. 

A key role of cloud computing is to optimize performance 
and productivity by efficiently sharing resources [8]. The 
cloud enables cloud providers to set up contemporary data 
centers and users to get their fields working on the cloud at 
an affordable cost [9,10]. Cloud providers provide vital 
services to users who face challenging tasks due to limited 
resources. The cloud service provider’s (CSP) role in 
providing services to users is exceedingly complicated with 
the accessible virtual cloud resources [11]. The growing 
number of cloud clients has resulted in a significant demand 
for computer resources. The phrase "load" can refer to 
memory, storage, or CPU, as well as network load [12]. 

Load balancing (LB) spreads workloads to ensure that 
every data center is idle, under-loaded, or overloaded [13]. 
LB in a cloud domain aims to ensure that no virtual machines 
are overloaded while others are overloaded or doing nothing 
[14,15]. In LB, the processing time for applications is 

reduced. LB can effectively reduce energy consumption and 
provide QoS because it distributes the load and decreases 
resource consumption [16]. The cloud service provider 
(CSP) and the cloud service user benefit from LB [17]. 

While processing user requests, some VMs receive a high 
volume of tasks, while others receive fewer tasks. As a result, 
CSP has unbalanced machines with a large gradient in user 
tasks and resource consumption [18,19]. So, in a cloud 
environment, we need a capable machine to schedule the 
work [30,31]. Various factors, including turnaround time and 
RT, must be considered when developing an LB algorithm. 
Many optimization techniques have been employed for LB 
in cloud environments, such as particle swarm optimization 
(PSO) [29], firefly optimization (FFO) [28], ant colony 
optimization (ACO), etc., but they lack accuracy in 
allocating resources effectively. This paper proposes a novel 
mayfly optimization technique for load balancing (MFO-
LB) to solve these problems. The major goal of the proposed 
work is given as follows, 
 The proposed MFO-LB method creates an objective

function based on three variables, execution time,
execution cost, and load, to assign jobs to VMs based on
capacity.

 MFO-LB is based on the mayfly flight behavior and
mating process to manage the incoming load.

 The proposed work intends to increase performance by
uniformly dividing the workload among the virtual
machines, reducing utilization and reaction time.

 The performance of the proposed method is evaluated
using specific parameters such as latency, execution
time, RT, and cost.

The remaining section of the paper has been arranged as 
follows: The related work is briefly presented in section 2. 
Section 3 presents the suggested methodology. The detailed 
presentation of the experiment's findings in section 4 
demonstrates the effectiveness of the suggested strategy. 
Section 5 brings the suggested methodology to a close. 
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2. LITERATURE SURVEY 
LB is one of the major issues in cloud computing. Numerous 

experts have devised strategies to preserve LB across virtual 
servers. Some of these are covered in this section.  

Reference [7] introduced a chaos social spider algorithm 
(CSSA) to schedule user workloads in cloud VMs with 
balanced work distribution. The proposed solution would 
shorten the cloud scheduling procedure, enhancing the cloud 
system's throughput. Experimental results show that the 
proposed CSSA reduces make time by 14.8 percent compared 
to ABC, PSO, GA, and HFKCS for 100–1000 tasks. 

Reference [20] presented an LB method based on 
constraint measure (CMLB). According to the experiment 
results, the suggested CMLB performs better by migrating 
only three jobs, while the existing LB technique, which 
includes HDLB, DLB, and HBB-LB, moves many tasks. 

Reference [18] introduced a modified honeybee-inspired 
method for better allocating LB and resources. By dividing tasks 
over many networks, this strategy ensures that resources are not 
underused or abused. It also shortens the virtual machine’s 
reaction time and evaluates each cloudlet’s workload. 

Reference [17] introduced a binary variation of the bird 
swarm optimization LB (BSO-LB) approach based on three 
bird-mimicking behaviors. Using an appropriate fitness 
function can reduce the makespan and increase resource 
utilization. 

Reference [10] presented a dynamic scheduling system 
that determines the compatibility of requests and virtual 
machines. The proposed technique might reduce RT and 
makespan by evenly distributing requests among the VMs. 

Reference [6] proposed a hybrid LB method using pigeon-
inspired optimization (PIO) and Harries Hawks optimization 
(HHO) to improve RTs for customers when they request 
something. Compared to existing techniques, the proposed 
method significantly balances the virtual machine load in 
less time. The suggested method is 97 % more efficient than 
the state-of-art method. 

Reference [22] proposed an updated LB algorithm (LBA) 
considering QoS task parameters, virtual machine priority, and 
resource allocation. The LB algorithm suggests 78 % more 
resources than the dynamic LBA algorithm. 

Reference [27] suggested LB as a metaheuristic 
optimization strategy to mitigate scheduling difficulties and 
enhance cloud infrastructure service provider performance. 
The suggested method is divided into two stages: statically 
constrained metaheuristic optimization (MHOS-S) and 
dynamically constrained metaheuristic optimization (MHO-
D), which deal with the problem's dynamic aspects and 
consider its static properties. According to the results, the 
suggested technique performs better in difficult settings than 
current metaheuristic algorithms.  

Reference [15] developed multi-objective scheduling 
using particle swarm optimization (MOSPSO) for activity 
development to provide optimal resource allocation. The 
preliminary results suggest that MOSPSO's calculation may 
reduce makespan by up to 50 %. 

Reference [5] presented spider monkey optimization-
inspired LB (SMO-LB). The experimental results demonstrate 
that this technique decreases task average RT by 10.7 s and 
makespan by 21.5 s compared with existing methods. 

From the above-reviewed methods, the researchers focus 
on minimizing the RT and makespan time in the cloud. This 

is still a difficult task. Our proposed MFO-LB method 
overcomes these challenges by using a mayfly optimization 
algorithm. The proposed framework is presented in the 
following section. 

3. PROPOSED LOAD BALANCING TECHNIQUE 
The mayfly optimization method for load balancing 

technology (MFO-LB), which is based on the flying and 
mating behaviors of mayflies, is described in this section. 
The suggested method combines the concepts of 
evolutionary and swarm intelligence algorithms. The 
purpose of this process is to distribute the task to a VM using 
the mayfly optimization algorithm (MFO) to reduce 
execution times and costs while balancing the load. Using 
the suggested LB technique, all VMs in the cloud are 
monitored in real-time. The suggested load-balancing 
architecture is depicted as a system model in Fig. 1.  

 
Fig. 1 – MFO-LB architecture. 

3.1. PROBLEM STATEMENT 
Using cloud D as an example, which consists of x physical 

machines or any actual machine made up of X VMs, any 
physical machine is also made up of many virtual machines 
in the same way: The first virtual machine is denoted by 
VM1, and the final by VMx (VM). Similarly, if users make 
up the cloud, the user function can be described as:  

𝑺𝒊 = {𝒕𝟏, 𝒕𝟐, … 𝒕𝒛}.                             (1) 

The major objective of this process is to maintain an 
optimal load across all VMs in a cloud environment, limit 
expenses and energy use, and maximize resource utilization 
and QoS. This research has suggested an effective multi-
purpose approach based on the mayfly optimization 
algorithm to address this issue. 

3.2. MAYFLY OPTIMIZATION ALGORITHM FOR 
LOAD BALANCING 

The LB has been the problem of the mating of mayflies. 
The users' tasks should be to find the correct sources of VMs. 
To implement MFO in LB, the cloud environment should be 
reconfigured based on matching assumptions. The 
processing ability of virtual machines is based on their 
allocated resources (RAM, processing units, and bandwidth) 
relative to the projected traffic flow length. Each pair 
represents a user task and a virtual machine (VM). A load 
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balancer can achieve an optimal balancing state using this 
mating process, as shown in Fig. 2. 

 

 
Fig. 2 – Flow diagram of mayfly optimization. 

The mayfly optimization technique begins with the 
social behavior of mayflies. As each job in the VM is 
assigned, the VM constantly integrates tasks based on its 
balancing state (overloaded, balanced, or underloaded). 
Males and females initially received distinct virtual 
machines (VM) and user tasks. After evaluating the fitness 
function, update the capacity of the virtual machine. Once 
the VM's capacity has been updated, rank and match the 
tasks and VM, then determine the fitness function. Once the 
best solution has been identified, effectively replace the 
worst option with the best one while allocating many 
resources. 

Step 1: Initialization 
In this step, the male and female populations are randomly 

assigned. There are many solutions in the population. User 
tasks and virtual machines (VM) were used to build the 
solution. VMs are initially randomly assigned tasks.  

Step 1.1: Fitness calculation 
A fitness function is then used to update the solutions. As 

a result, each mayfly is randomly placed as a candidate 
solution in the problem space, represented as a dim-
dimensional vector, 

𝐅 = (𝐹1, 𝐹2, … … 𝐹𝑑𝑖𝑚).                    (2) 
A may fly's velocity can be described as the alteration in 

direction and position of every flight during flight, as well as 
a dynamic interaction of both social flying and individual 
experience as 

𝑽 = (𝑉1, 𝑉2, … … 𝑉𝑑𝑖𝑚).                     (3) 
Step 2: Update of the velocity of Male Flies  

Male mayflies are always effective and migrate on their 
own choice. If 𝑧𝑎(𝑡) is the actual situation of the male mayfly 

and j denotes the searching space at iteration t, the position 
of the mayfly is altered by adding a velocity 𝑔𝑎(𝑡 + 1) to the 
current position from  

𝑧𝑎(𝑡 + 1) = 𝑧𝑎(𝑡 + 1) + 𝑔𝑎(𝑡 + 1).           (4) 

The mayflies’ movement on the top of the water to dance 
is arithmetically modelled where 𝑔𝑎(𝑡 + 1) is given 
according to the following equation: 

𝑔𝑎𝑏(𝑡 + 1) = 𝑔𝑎𝑏(𝑡) + 𝑚1𝑒−β𝑠𝑝
2(𝑝best𝑎𝑏 − 𝑧𝑎𝑏(𝑡)) +

+𝑚2𝑒−β𝑠𝑓
2
(𝑓best𝑎 − 𝑧𝑎𝑏(𝑡)).              (5) 

A positive constant 𝑚1 and 𝑚2 are utilized to scale the 
social and cognitive contributions respectively. In addition, 
pbest is the best mayfly position that a have ever visited. 
Mayflies are hidden from others by using the visibility 
coefficient β. In the dimension b, 𝑧𝑎𝑏(𝑡) and 𝑔𝑎𝑏(𝑡) 
represent the candidate's velocity and position.   

Step 2.1: Evaluate the fitness of male flies 
The Cartesian distance between 𝑧𝑎 with 𝑝best𝑎 and xi 

𝑧𝑎 with fbest is described by the variables 𝑠𝑝 and 𝑠𝑓 . These 
distances are determined using the formula: 

|𝑍𝑎 − 𝑧𝑎| = √∑ (𝑍𝑎𝑏 − 𝑧𝑎𝑏)2𝑛
𝑏=1 .            (6) 

The best position 𝑝best𝑎𝑏  at time t+1 is estimated as 
follows in the case of minimization problems: 

𝑝best𝑎 = {𝑧𝑎(𝑡 + 1),    if 𝑙(𝑧𝑎(𝑡 + 1)) < 𝑙(𝑝best𝑎)
kept same,                otherwise            .     (7) 

The global best position 𝑓best𝑎  at time 𝑡, is represented 
as follows: 

𝑓best𝑎 ∈ {𝑝best1, 𝑝best2, … 𝑝best𝑛/𝑙(𝑝best.))} =
min {𝑙(𝑝best1), 𝑙(𝑝best2), … 𝑙(𝑝best𝑛) .                            (8)  

The algorithm must function properly so that the finest 
mayflies achieve their up-and-down nuptial dance. 
Consequently, the most effective mayflies must constantly 
alter their velocities, which are calculated as: 

𝑔𝑎𝑏(𝑡 + 1) = 𝑔𝑎𝑏(𝑡) + 𝑛𝑐 · 𝑠.                         (9) 
Here nc represents the coefficient of nuptial dance, and 

s denotes the random number between [–1, 1]. By moving up 
and down in this way, the algorithm takes on a stochastic 
component. 

Step 3: Updating of the velocity of Female Mayflies 
Females are not grouped like males. Males fly around 

females to breed. By adding a velocity 𝑢𝑎(𝑡 + 1) to the 
position s that has been updated via the following equation, 
with 𝑢𝑎(𝑡) representing the a-th female candidate path in the 
solution space: 

𝑢𝑎(𝑡 + 1) = 𝑢𝑎(𝑡 + 1) + 𝑔𝑎(𝑡 + 1).           (10) 
Males usually breed with females in order of quality, 

then the second-best male with the second-best female and 
so on. As a result, the velocity was determined as follows: 

𝑔𝑎𝑏(𝑡 + 1) =

= {𝑔𝑎𝑏(𝑡) + 𝑚2𝑒−𝛽𝑠𝑞𝑙
2

(𝑔𝑎𝑏(𝑡) − 𝑢𝑎𝑏(𝑡)), if 𝑙(𝑢𝑎) > 𝑙(𝑧𝑎)
𝑔𝑎(𝑡) + 𝑙𝑞 · 𝑠,                                           if 𝑙(𝑢𝑎) ≤ 𝑙(𝑧𝑎)

 .   (11) 

where 𝑔𝑎𝑏(𝑡) is the female mayfly velocity a in length b = 1, 
2,...N at time t, the female mayfly position a in the length b 
at time t is given by 𝑢𝑎𝑏(𝑡), 𝑚2is the optimistic attractor 
constant and the coefficient of fixed visibility is defined as 
𝛽, and 𝑠𝑞𝑙 is defined as the female and male mayflies 
cartesian distance, thus it is estimated as eq. (11). The lq 
parameter determines when a female is not attracted to a 
male and so flies at random, while s is a random number 
between [–1, 1]. 
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Step 4:  Genetic and crossover 
Once the velocity and position of the individuals have 

been updated, the topmost half will be renamed as male 
mayflies, and the other half will be renamed female mayflies. 
According to the mayfly mating procedure, two mayflies 
must mate in the following order: Females with the best 
relationships date the best men, females with the second-best 
relationships date the second-best men, and so on. As a result 
of these crossings, two offspring are formed using: 

of𝑓spring1 = 𝐼 · male + (1 − 𝐼) · female    (12) 

of𝑓spring2 = 𝐼 · female + (1 − 𝐼) · male .    (13) 

Individuals and offspring of half-named male and 
female mayflies will be sorted with their alternates. The best 
candidates can reach the global optima and thus identify the 
solution after multiple iterations. Mayflies were chosen as 
the most effective optimization method because they 
combine the advantages of swarm intelligence and 
evolutionary algorithms, which achieves a better balance of 
exploitation and exploration. Therefore, by mimicking this 
behaviour in the cloud, LB will become more dynamic. 

4. RESULT AND DISCUSSION 

This section examines the proposed MFO-LB technique 
using several factors like makespan, execution time, RT, 
completion time, and resource utilization by several tasks. 
It's implemented in Java and tested with Cloudsim on several 
different cloud settings. The experiment setup and algorithm 
validation will be established initially in this simulation 
algorithm. The Cloudsim simulator is used for this 
simulation setup, and each VM has the same configuration, 
requiring the cloud service provider to establish the threshold 
value and the VM capabilities. In this study, we develop a 
generic scenario in which ten virtual machines are produced 
and one data center is constructed. These virtual machines 
(VMs) are to be installed on every host that the data center 
creates using algorithms; each host is assigned a PES 
(processing core) variation number. 

4.1. PERFORMANCE METRICS 
 The effectiveness of the developed strategy has been 

assessed using specific metrics such as makespan, RT, 
execution time, completion time, latency, VM migration, and 
computational cost to demonstrate the efficiency. The 
performance metrics are explained as follows. 

4.1.1. Makespan 
The time it takes a virtual machine (VM) to complete all 

tasks in the task queue is known as its makespan. When a job 
has certain goals to achieve, the cloud service provider is 
responsible for determining the systems' make span in 
numerous scenarios [21]. A minimum makespan implies 
efficient mapping of user tasks to CNs. Makespan is 
computed based on  

Makespan = Completion time of last server − 
−starting time of first server.               (14) 
4.1.2. Response time 

It is the time taken to balance the load and respond to a 
user's query by allocating the load VMs with the minimum 
number of tasks. The correlation between a system's reaction 
time and efficacy is inverse. The optimal RT is equal to the 
optimum makespan value. 

RT = Execution time + waiting time            (15) 

4.1.3. Execution time 
It measures how long a virtual machine (VM) takes to 

run or complete a task. The average execution time is 
calculated by applying:  

ET = 𝑇𝑎
𝐿𝑏

 .                                     (16) 

4.1.4. Completion time 
The addition of the execution time, waiting time, and 

transmission time of the Xth task on Yth virtual machine 
provides the completion time of a task allocated to a VM 
which is stated as: 

CT = Execution time + Transmission time + 
+Waiting time.                          (17) 
4.1.5. Latency 

The delay in the LB system for the number of requests 
(N), Processing time per request (P) network latency (𝑁𝐿), 
and Queueing Time (Q) is referred to as latency (L). A 
system with higher efficiency has lower latency, 

𝐿 = 𝑁 ⋅ 𝑃 + 𝑁𝐿 + 𝑄.                        (18) 
4.1.6. VM migration 

Migration (M) is the process of transferring a virtual 
machine from one actual hardware environment to another 
when the number of servers (S) is full. An unbalanced system 
frequently migrates virtual machines. 

𝑀 =  𝑆 ⋅ 𝑉𝑀 ⋅ (Number of servers exceeding thresholds
Total number of servers

). (19) 

4.1.7. Computational cost 
It is the simulation of the execution time during the step 

in which the target process is time-measured. There may be 
a charge if certain tasks are to be accomplished. 

Total Cost = Execution time + 
+Charge associated with task.           (20) 

4.2. COMPARATIVE ANALYSIS 
The efficiency of the suggested strategy has been 

demonstrated by evaluating its efficacy against established 
methodologies [25,26]. For comparative analysis, four state-
of-the-art algorithms, including the MOSPSO, MHO, SMO-
LB, and BSO-LB are chosen in this study. 

As shown in Fig. 3, the suggested technique has been 
compared with the state-of-arts methods. According to Figure 3, 
the MFO-LB technique allows VMs to be placed optimally in a 
greater number of tasks than existing systems. When compared 
to BSO-LB, the proposed model reduces the makespan by 25 %. 
Figure 4 shows how the proposed method compares to other 
current systems in terms of RT. In comparison with existing 
techniques, the MFO-LB approach is faster to converge and is 
more accurate at assigning tasks to VMs. 

 

 

Fig. 3 – Makespan comparison. 
 

Fig. 4 – Comparison of response 
time. 

This figure compares the suggested strategy to 
alternative methods in terms of execution time Fig. 5. By 
optimizing VM placement scheduling, the proposed MFO-
LB technique can support both static and dynamic tasks and 
thus provides faster execution times than other state-of-the-
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art approaches. As a result, MFO-LB reduces execution 
times and schedules tasks faster than any other method.  

 
Fig. 5 – Execution time comparison with existing techniques. 

 

Fig. 6 – Latency comparison. 
 

Fig. 7 – No. of task vs virtual 
machines. 

From Fig. 6, the latency for 140 users for the proposed 
technique is about 4.2 s, 5.2 s for BSO-LB. The comparative 
study demonstrates that the suggested technique has a lower 
latency than the others, thus illustrating its usefulness. 
Following the analysis, the technique presented secures the 
load-balancing system from latency. The proposed MFO-LB 
approaches are compared to existing systems based on the 
number of VMs they utilize. The comparison is significant 
considering that service providers hoped to deliver services 
with fewer virtual machines to handle more customer tasks. 
As shown in Fig. 7, the MFO-LB approach optimally 
schedules jobs. Therefore, the suggested strategy uses fewer 
virtual machines than traditional methods. According to 
Figure 8, the resource usage graph of the suggested system is 
compared with the existing system, which indicates how 
efficiently resources are being used. Resource utilization is 
maximized to 70.01 percent using the proposed approach. 
Iteration is shown on the x-axis, and resource use is shown on 
the y-axis. Figure 9 compares the number of VM migrations 
accomplished with the suggested approach and other 
approaches. Using the proposed MFO-LB method, virtual 
machines are balanced, resulting in fewer VM migrations and 
less PM overload. The proposed method produces a small 
number of VM migrations. 

 

 

Fig. 8 – Comparison of resource 
utilization. 

 

Fig. 9 – Task migrated 
comparison. 

Figure 10 shows the computational complexity and 
computational cost of the suggested MFO-LB method and 
the existing algorithm. The data can be complicated and 
heterogeneous, such as more efficient information [20]. The 
distributed control method will be converted by using nodes 
with high-complexity devices. Figure 10 shows that the 
computational complexity obtained by MOSPSO, MHO, 
SMO-LB, BSO-LB, and MFO-LB is 59 %, 50 %, 42 %, 32 
% and 17 % respectively. the computational complexity 
obtained by MOSPSO, MHO, SMO-LB, BSO-LB, and 
MFO-LB is 61 %, 54 %, 40 %, 35 and 20% respectively. It 
can be observed that MFO-LB outperforms the other 
methods. 

 
Fig. 10 – Computational complexity and computational cost analysis. 

 
Fig. 11 – Comparison of completion time. 

In Fig. 11, the MOSPSO, MHO, SMO-LB, BSO-LB, 
and MFO-LB methods are compared in terms of completion 
time. The amount of time needed to perform a task increases 
along with its number. Among the recognized techniques, 
the MOSPSO technique has the fastest completion time. The 
physical machine within the data center is experiencing an 
uneven workload. As a result of effective LB and task 
allocation mechanisms, the MFO-LB takes 31 % less 
completion time than the BSO-LB. Therefore, the suggested 
method greatly decreases the task completion time. 

5. CONCLUSION 

This paper proposed a mayfly optimization algorithm for 
load balancing (MFO-LB), which is based on the behavior 
of the mayfly and the mating process. A mathematical model 
for task mapping is employed by the MFO-LB algorithm in 
a cloud environment and has also been developed to make 
use of mayfly Optimization to determine the ideal load 
balance between virtual machines. The findings demonstrate 
that, in terms of RT, makespan, and completion time, the 
recommended work outperforms the current tactics. The 
suggested approach reduces reaction time by up to 23.4 %, 
makespan by 24 %, and completion time by up to 31.5 %, in 
that order. Future work will include incorporating intelligent 
optimization methods for efficient LB to decrease the 
imbalance, and the results will be applied in real-world 
applications for throughput, makespan, and RT. 
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