
Rev. Roum. Sci. Techn.– Électrotechn. et Énerg.

Vol. 69, 1, pp. 79–84, Bucarest, 2024

1 Department of Computer Science Engineering, Loyola Institute of Technology and Science, Thovalai, Nagercoil, Tamil Nadu, India
(Corresponding author)
2 Department of Electronics and Communication Engineering, PSN College of Engineering and Technology, Tirunelveli, Tamil Nadu, India
3 Centre for Computational Imaging and Machine Vision, Department of Electronics and Communication Engineering, Sri Eshwar
College of Engineering, Coimbatore, Tamil Nadu, India
4 Department of Information Technology, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, Tamil Nadu, India
E-mails: mariajesi.cse@lites.edu.in, akhilanappathurai@psncet.ac.in, muthukumaran.n@sece.ac.in, arulkumarv@ssn.edu.in

DOI: 10.59277/RRST-EE.2024.69.1.14

LOAD BALANCING IN CLOUD COMPUTING VIA MAYFLY
OPTIMIZATION ALGORITHM

MARIA JESI 1, AHILAN APPATHURAI 2, MUTHU KUMARAN 3, ARUL KUMAR 4

Keywords: Cloud computing; Load balancing; Mayfly optimization; Task scheduling.

Cloud computing is a new technology that enables users to store and retrieve data via the Internet on demand rather than using their
hardware. Cloud computing comprises distinct data centers (servers) and clients (users). Load unbalancing is a multi-variant, multi-
constraint issue that lowers the efficacy and performance of system resources. Therefore, a load scheduling technique is needed to
distribute work among the right VMs and preserve the trade-off between them. To achieve better performance, this paper presents a
novel mayfly optimization algorithm for load balancing (MFO-LB), which utilizes mayfly flight behavior and mating dynamics. The
proposed technique balances the load in the cloud by managing the incoming loads by allocating resources according to user requests.
The proposed work intends to increase performance by uniformly dividing the workload among the virtual machines, which will
decrease utilization and reaction time. The proposed MFO-LB approach is beneficial for maintaining system stability, reducing
response time (RT), and maximizing resource productivity in cloud environments. Finally, the effectiveness of the proposed technique
is assessed by employing several metrics, including execution cost, RT, execution time, and makespan. The proposed method achieves
up to 23.4 % low RT, a 24 %decrease in makespan, and a 31.5 % decrease in completion time, respectively.

1. INTRODUCTION

Cloud computing (CC) is an internet-based technology
that has seen rapid growth in communication breakthroughs
by making computing resources and services available
online to clients with various needs [1]. The cloud computing
model encompasses the hardware and software data centers
use to distribute applications over the Internet [2]. In general,
users anticipate a particular quality of service (QOS), which
can be achieved by utilizing an emerging technology known
as virtualization [3]. A virtual machine (VM) is an
implementation of cloud computing that provides compute
resources in virtual resources [4–6]. Cloud service providers
store data on several cloud servers or data centers (DCs).
Tasks are allocated to distinct servers using virtual machines
in response to requests from cloud providers [7]. Virtual
machines are assigned different tasks. Distributed computing
supports virtual machines (VMs), and all incoming work is
distributed among them. Some VMs may be overworked,
while others may need to be more utilized when duties are
distributed among VMs.

A key role of cloud computing is to optimize performance
and productivity by efficiently sharing resources [8]. The
cloud enables cloud providers to set up contemporary data
centers and users to get their fields working on the cloud at
an affordable cost [9,10]. Cloud providers provide vital
services to users who face challenging tasks due to limited
resources. The cloud service provider’s (CSP) role in
providing services to users is exceedingly complicated with
the accessible virtual cloud resources [11]. The growing
number of cloud clients has resulted in a significant demand
for computer resources. The phrase "load" can refer to
memory, storage, or CPU, as well as network load [12].

Load balancing (LB) spreads workloads to ensure that
every data center is idle, under-loaded, or overloaded [13].
LB in a cloud domain aims to ensure that no virtual machines
are overloaded while others are overloaded or doing nothing
[14,15]. In LB, the processing time for applications is

reduced. LB can effectively reduce energy consumption and
provide QoS because it distributes the load and decreases
resource consumption [16]. The cloud service provider
(CSP) and the cloud service user benefit from LB [17].

While processing user requests, some VMs receive a high
volume of tasks, while others receive fewer tasks. As a result,
CSP has unbalanced machines with a large gradient in user
tasks and resource consumption [18,19]. So, in a cloud
environment, we need a capable machine to schedule the
work [30,31]. Various factors, including turnaround time and
RT, must be considered when developing an LB algorithm.
Many optimization techniques have been employed for LB
in cloud environments, such as particle swarm optimization
(PSO) [29], firefly optimization (FFO) [28], ant colony
optimization (ACO), etc., but they lack accuracy in
allocating resources effectively. This paper proposes a novel
mayfly optimization technique for load balancing (MFO-
LB) to solve these problems. The major goal of the proposed
work is given as follows,
• The proposed MFO-LB method creates an objective

function based on three variables, execution time,
execution cost, and load, to assign jobs to VMs based on
capacity.

• MFO-LB is based on the mayfly flight behavior and
mating process to manage the incoming load.

• The proposed work intends to increase performance by
uniformly dividing the workload among the virtual
machines, reducing utilization and reaction time.

• The performance of the proposed method is evaluated
using specific parameters such as latency, execution
time, RT, and cost.

The remaining section of the paper has been arranged as
follows: The related work is briefly presented in section 2.
Section 3 presents the suggested methodology. The detailed
presentation of the experiment's findings in section 4
demonstrates the effectiveness of the suggested strategy.
Section 5 brings the suggested methodology to a close.

80 Load balancing in cloud computing via mayfly algorithm 2

2. LITERATURE SURVEY

LB is one of the major issues in cloud computing. Numerous
experts have devised strategies to preserve LB across virtual
servers. Some of these are covered in this section.

Reference [7] introduced a chaos social spider algorithm
(CSSA) to schedule user workloads in cloud VMs with
balanced work distribution. The proposed solution would
shorten the cloud scheduling procedure, enhancing the cloud
system's throughput. Experimental results show that the
proposed CSSA reduces make time by 14.8 percent compared
to ABC, PSO, GA, and HFKCS for 100–1000 tasks.

Reference [20] presented an LB method based on
constraint measure (CMLB). According to the experiment
results, the suggested CMLB performs better by migrating
only three jobs, while the existing LB technique, which
includes HDLB, DLB, and HBB-LB, moves many tasks.

Reference [18] introduced a modified honeybee-inspired
method for better allocating LB and resources. By dividing tasks
over many networks, this strategy ensures that resources are not
underused or abused. It also shortens the virtual machine’s
reaction time and evaluates each cloudlet’s workload.

Reference [17] introduced a binary variation of the bird
swarm optimization LB (BSO-LB) approach based on three
bird-mimicking behaviors. Using an appropriate fitness
function can reduce the makespan and increase resource
utilization.

Reference [10] presented a dynamic scheduling system
that determines the compatibility of requests and virtual
machines. The proposed technique might reduce RT and
makespan by evenly distributing requests among the VMs.

Reference [6] proposed a hybrid LB method using pigeon-
inspired optimization (PIO) and Harries Hawks optimization
(HHO) to improve RTs for customers when they request
something. Compared to existing techniques, the proposed
method significantly balances the virtual machine load in
less time. The suggested method is 97 % more efficient than
the state-of-art method.

Reference [22] proposed an updated LB algorithm (LBA)
considering QoS task parameters, virtual machine priority, and
resource allocation. The LB algorithm suggests 78 % more
resources than the dynamic LBA algorithm.

Reference [27] suggested LB as a metaheuristic
optimization strategy to mitigate scheduling difficulties and
enhance cloud infrastructure service provider performance.
The suggested method is divided into two stages: statically
constrained metaheuristic optimization (MHOS-S) and
dynamically constrained metaheuristic optimization (MHO-
D), which deal with the problem's dynamic aspects and
consider its static properties. According to the results, the
suggested technique performs better in difficult settings than
current metaheuristic algorithms.

Reference [15] developed multi-objective scheduling
using particle swarm optimization (MOSPSO) for activity
development to provide optimal resource allocation. The
preliminary results suggest that MOSPSO's calculation may
reduce makespan by up to 50 %.

Reference [5] presented spider monkey optimization-
inspired LB (SMO-LB). The experimental results demonstrate
that this technique decreases task average RT by 10.7 s and
makespan by 21.5 s compared with existing methods.

From the above-reviewed methods, the researchers focus
on minimizing the RT and makespan time in the cloud. This

is still a difficult task. Our proposed MFO-LB method
overcomes these challenges by using a mayfly optimization
algorithm. The proposed framework is presented in the
following section.

3. PROPOSED LOAD BALANCING TECHNIQUE

The mayfly optimization method for load balancing
technology (MFO-LB), which is based on the flying and
mating behaviors of mayflies, is described in this section.
The suggested method combines the concepts of
evolutionary and swarm intelligence algorithms. The
purpose of this process is to distribute the task to a VM using
the mayfly optimization algorithm (MFO) to reduce
execution times and costs while balancing the load. Using
the suggested LB technique, all VMs in the cloud are
monitored in real-time. The suggested load-balancing
architecture is depicted as a system model in Fig. 1.

Fig. 1 – MFO-LB architecture.

3.1. PROBLEM STATEMENT
Using cloud D as an example, which consists of x physical

machines or any actual machine made up of X VMs, any
physical machine is also made up of many virtual machines
in the same way: The first virtual machine is denoted by
VM1, and the final by VMx (VM). Similarly, if users make
up the cloud, the user function can be described as:

𝑺𝒊 = {𝒕𝟏, 𝒕𝟐, … 𝒕𝒛}. (1)

The major objective of this process is to maintain an
optimal load across all VMs in a cloud environment, limit
expenses and energy use, and maximize resource utilization
and QoS. This research has suggested an effective multi-
purpose approach based on the mayfly optimization
algorithm to address this issue.

3.2. MAYFLY OPTIMIZATION ALGORITHM FOR
LOAD BALANCING

The LB has been the problem of the mating of mayflies.
The users' tasks should be to find the correct sources of VMs.
To implement MFO in LB, the cloud environment should be
reconfigured based on matching assumptions. The
processing ability of virtual machines is based on their
allocated resources (RAM, processing units, and bandwidth)
relative to the projected traffic flow length. Each pair
represents a user task and a virtual machine (VM). A load

3 Maria Jesi et al. 81

balancer can achieve an optimal balancing state using this
mating process, as shown in Fig. 2.

Fig. 2 – Flow diagram of mayfly optimization.

The mayfly optimization technique begins with the
social behavior of mayflies. As each job in the VM is
assigned, the VM constantly integrates tasks based on its
balancing state (overloaded, balanced, or underloaded).
Males and females initially received distinct virtual
machines (VM) and user tasks. After evaluating the fitness
function, update the capacity of the virtual machine. Once
the VM's capacity has been updated, rank and match the
tasks and VM, then determine the fitness function. Once the
best solution has been identified, effectively replace the
worst option with the best one while allocating many
resources.

Step 1: Initialization

In this step, the male and female populations are randomly
assigned. There are many solutions in the population. User
tasks and virtual machines (VM) were used to build the
solution. VMs are initially randomly assigned tasks.

Step 1.1: Fitness calculation

A fitness function is then used to update the solutions. As
a result, each mayfly is randomly placed as a candidate
solution in the problem space, represented as a dim-
dimensional vector,

𝐅 = (𝐹1, 𝐹2, … … 𝐹𝑑𝑖𝑚). (2)
A may fly's velocity can be described as the alteration in

direction and position of every flight during flight, as well as
a dynamic interaction of both social flying and individual
experience as

𝑽 = (𝑉1, 𝑉2, … … 𝑉𝑑𝑖𝑚). (3)
Step 2: Update of the velocity of Male Flies

Male mayflies are always effective and migrate on their
own choice. If 𝑧𝑎(𝑡) is the actual situation of the male mayfly

and j denotes the searching space at iteration t, the position
of the mayfly is altered by adding a velocity 𝑔𝑎(𝑡 + 1) to the
current position from

𝑧𝑎(𝑡 + 1) = 𝑧𝑎(𝑡 + 1) + 𝑔𝑎(𝑡 + 1). (4)

The mayflies’ movement on the top of the water to dance
is arithmetically modelled where 𝑔𝑎(𝑡 + 1) is given
according to the following equation:

𝑔𝑎𝑏(𝑡 + 1) = 𝑔𝑎𝑏(𝑡) + 𝑚1𝑒−β𝑠𝑝
2
(𝑝best𝑎𝑏 − 𝑧𝑎𝑏(𝑡)) +

+𝑚2𝑒−β𝑠𝑓
2

(𝑓best𝑎 − 𝑧𝑎𝑏(𝑡)). (5)
A positive constant 𝑚1 and 𝑚2 are utilized to scale the

social and cognitive contributions respectively. In addition,
pbest is the best mayfly position that a have ever visited.
Mayflies are hidden from others by using the visibility
coefficient β. In the dimension b, 𝑧𝑎𝑏(𝑡) and 𝑔𝑎𝑏(𝑡)
represent the candidate's velocity and position.

Step 2.1: Evaluate the fitness of male flies

The Cartesian distance between 𝑧𝑎 with 𝑝best𝑎 and xi
𝑧𝑎 with fbest is described by the variables 𝑠𝑝 and 𝑠𝑓 . These
distances are determined using the formula:

|𝑍𝑎 − 𝑧𝑎| = √∑ (𝑍𝑎𝑏 − 𝑧𝑎𝑏)2𝑛
𝑏=1 . (6)

The best position 𝑝best𝑎𝑏 at time t+1 is estimated as
follows in the case of minimization problems:

𝑝best𝑎 = {
𝑧𝑎(𝑡 + 1), if 𝑙(𝑧𝑎(𝑡 + 1)) < 𝑙(𝑝best𝑎)

kept same, otherwise
. (7)

The global best position 𝑓best𝑎 at time 𝑡, is represented
as follows:

𝑓best𝑎 ∈ {𝑝best1, 𝑝best2, … 𝑝best𝑛/𝑙(𝑝best .))} =
min {𝑙(𝑝best1), 𝑙(𝑝best2), … 𝑙(𝑝best𝑛) . (8)

The algorithm must function properly so that the finest
mayflies achieve their up-and-down nuptial dance.
Consequently, the most effective mayflies must constantly
alter their velocities, which are calculated as:

𝑔𝑎𝑏(𝑡 + 1) = 𝑔𝑎𝑏(𝑡) + 𝑛𝑐 · 𝑠. (9)
Here nc represents the coefficient of nuptial dance, and

s denotes the random number between [–1, 1]. By moving up
and down in this way, the algorithm takes on a stochastic
component.

Step 3: Updating of the velocity of Female Mayflies

Females are not grouped like males. Males fly around
females to breed. By adding a velocity 𝑢𝑎(𝑡 + 1) to the
position s that has been updated via the following equation,
with 𝑢𝑎(𝑡) representing the a-th female candidate path in the
solution space:

𝑢𝑎(𝑡 + 1) = 𝑢𝑎(𝑡 + 1) + 𝑔𝑎(𝑡 + 1). (10)
Males usually breed with females in order of quality,

then the second-best male with the second-best female and
so on. As a result, the velocity was determined as follows:

𝑔𝑎𝑏(𝑡 + 1) =

= {
𝑔𝑎𝑏(𝑡) + 𝑚2𝑒−𝛽𝑠𝑞𝑙

2

(𝑔𝑎𝑏(𝑡) − 𝑢𝑎𝑏(𝑡)), if 𝑙(𝑢𝑎) > 𝑙(𝑧𝑎)

𝑔𝑎(𝑡) + 𝑙𝑞 · 𝑠, if 𝑙(𝑢𝑎) ≤ 𝑙(𝑧𝑎)
 . (11)

where 𝑔𝑎𝑏(𝑡) is the female mayfly velocity a in length b = 1,
2,...N at time t, the female mayfly position a in the length b
at time t is given by 𝑢𝑎𝑏(𝑡), 𝑚2is the optimistic attractor
constant and the coefficient of fixed visibility is defined as
𝛽, and 𝑠𝑞𝑙 is defined as the female and male mayflies
cartesian distance, thus it is estimated as eq. (11). The lq
parameter determines when a female is not attracted to a
male and so flies at random, while s is a random number
between [–1, 1].

82 Load balancing in cloud computing via mayfly algorithm 4

Step 4: Genetic and crossover

Once the velocity and position of the individuals have
been updated, the topmost half will be renamed as male
mayflies, and the other half will be renamed female mayflies.
According to the mayfly mating procedure, two mayflies
must mate in the following order: Females with the best
relationships date the best men, females with the second-best
relationships date the second-best men, and so on. As a result
of these crossings, two offspring are formed using:

of𝑓spring1 = 𝐼 · male + (1 − 𝐼) · female (12)

of𝑓spring2 = 𝐼 · female + (1 − 𝐼) · male . (13)

Individuals and offspring of half-named male and
female mayflies will be sorted with their alternates. The best
candidates can reach the global optima and thus identify the
solution after multiple iterations. Mayflies were chosen as
the most effective optimization method because they
combine the advantages of swarm intelligence and
evolutionary algorithms, which achieves a better balance of
exploitation and exploration. Therefore, by mimicking this
behaviour in the cloud, LB will become more dynamic.

4. RESULT AND DISCUSSION

This section examines the proposed MFO-LB technique
using several factors like makespan, execution time, RT,
completion time, and resource utilization by several tasks.
It's implemented in Java and tested with Cloudsim on several
different cloud settings. The experiment setup and algorithm
validation will be established initially in this simulation
algorithm. The Cloudsim simulator is used for this
simulation setup, and each VM has the same configuration,
requiring the cloud service provider to establish the threshold
value and the VM capabilities. In this study, we develop a
generic scenario in which ten virtual machines are produced
and one data center is constructed. These virtual machines
(VMs) are to be installed on every host that the data center
creates using algorithms; each host is assigned a PES
(processing core) variation number.

4.1. PERFORMANCE METRICS
 The effectiveness of the developed strategy has been

assessed using specific metrics such as makespan, RT,
execution time, completion time, latency, VM migration, and
computational cost to demonstrate the efficiency. The
performance metrics are explained as follows.

4.1.1. Makespan
The time it takes a virtual machine (VM) to complete all

tasks in the task queue is known as its makespan. When a job
has certain goals to achieve, the cloud service provider is
responsible for determining the systems' make span in
numerous scenarios [21]. A minimum makespan implies
efficient mapping of user tasks to CNs. Makespan is
computed based on

Makespan = Completion time of last server −
−starting time of first server. (14)
4.1.2. Response time

It is the time taken to balance the load and respond to a
user's query by allocating the load VMs with the minimum
number of tasks. The correlation between a system's reaction
time and efficacy is inverse. The optimal RT is equal to the
optimum makespan value.

RT = Execution time + waiting time (15)

4.1.3. Execution time
It measures how long a virtual machine (VM) takes to

run or complete a task. The average execution time is
calculated by applying:

ET =
𝑇𝑎

𝐿𝑏
 . (16)

4.1.4. Completion time
The addition of the execution time, waiting time, and

transmission time of the Xth task on Yth virtual machine
provides the completion time of a task allocated to a VM
which is stated as:

CT = Execution time + Transmission time +
+Waiting time. (17)
4.1.5. Latency

The delay in the LB system for the number of requests
(N), Processing time per request (P) network latency (𝑁𝐿),
and Queueing Time (Q) is referred to as latency (L). A
system with higher efficiency has lower latency,

𝐿 = 𝑁 ⋅ 𝑃 + 𝑁𝐿 + 𝑄. (18)
4.1.6. VM migration

Migration (M) is the process of transferring a virtual
machine from one actual hardware environment to another
when the number of servers (S) is full. An unbalanced system
frequently migrates virtual machines.

𝑀 = 𝑆 ⋅ 𝑉𝑀 ⋅ (
Number of servers exceeding thresholds

Total number of servers
). (19)

4.1.7. Computational cost
It is the simulation of the execution time during the step

in which the target process is time-measured. There may be
a charge if certain tasks are to be accomplished.

Total Cost = Execution time +
+Charge associated with task. (20)

4.2. COMPARATIVE ANALYSIS

The efficiency of the suggested strategy has been
demonstrated by evaluating its efficacy against established
methodologies [25,26]. For comparative analysis, four state-
of-the-art algorithms, including the MOSPSO, MHO, SMO-
LB, and BSO-LB are chosen in this study.

As shown in Fig. 3, the suggested technique has been
compared with the state-of-arts methods. According to Figure 3,
the MFO-LB technique allows VMs to be placed optimally in a
greater number of tasks than existing systems. When compared
to BSO-LB, the proposed model reduces the makespan by 25 %.
Figure 4 shows how the proposed method compares to other
current systems in terms of RT. In comparison with existing
techniques, the MFO-LB approach is faster to converge and is
more accurate at assigning tasks to VMs.

Fig. 3 – Makespan comparison.

Fig. 4 – Comparison of response
time.

This figure compares the suggested strategy to
alternative methods in terms of execution time Fig. 5. By
optimizing VM placement scheduling, the proposed MFO-
LB technique can support both static and dynamic tasks and
thus provides faster execution times than other state-of-the-

5 Maria Jesi et al. 83

art approaches. As a result, MFO-LB reduces execution
times and schedules tasks faster than any other method.

Fig. 5 – Execution time comparison with existing techniques.

Fig. 6 – Latency comparison.

Fig. 7 – No. of task vs virtual
machines.

From Fig. 6, the latency for 140 users for the proposed
technique is about 4.2 s, 5.2 s for BSO-LB. The comparative
study demonstrates that the suggested technique has a lower
latency than the others, thus illustrating its usefulness.
Following the analysis, the technique presented secures the
load-balancing system from latency. The proposed MFO-LB
approaches are compared to existing systems based on the
number of VMs they utilize. The comparison is significant
considering that service providers hoped to deliver services
with fewer virtual machines to handle more customer tasks.
As shown in Fig. 7, the MFO-LB approach optimally
schedules jobs. Therefore, the suggested strategy uses fewer
virtual machines than traditional methods. According to
Figure 8, the resource usage graph of the suggested system is
compared with the existing system, which indicates how
efficiently resources are being used. Resource utilization is
maximized to 70.01 percent using the proposed approach.
Iteration is shown on the x-axis, and resource use is shown on
the y-axis. Figure 9 compares the number of VM migrations
accomplished with the suggested approach and other
approaches. Using the proposed MFO-LB method, virtual
machines are balanced, resulting in fewer VM migrations and
less PM overload. The proposed method produces a small
number of VM migrations.

Fig. 8 – Comparison of resource
utilization.

Fig. 9 – Task migrated
comparison.

Figure 10 shows the computational complexity and
computational cost of the suggested MFO-LB method and
the existing algorithm. The data can be complicated and
heterogeneous, such as more efficient information [20]. The
distributed control method will be converted by using nodes
with high-complexity devices. Figure 10 shows that the
computational complexity obtained by MOSPSO, MHO,
SMO-LB, BSO-LB, and MFO-LB is 59 %, 50 %, 42 %, 32
% and 17 % respectively. the computational complexity
obtained by MOSPSO, MHO, SMO-LB, BSO-LB, and
MFO-LB is 61 %, 54 %, 40 %, 35 and 20% respectively. It
can be observed that MFO-LB outperforms the other
methods.

Fig. 10 – Computational complexity and computational cost analysis.

Fig. 11 – Comparison of completion time.

In Fig. 11, the MOSPSO, MHO, SMO-LB, BSO-LB,
and MFO-LB methods are compared in terms of completion
time. The amount of time needed to perform a task increases
along with its number. Among the recognized techniques,
the MOSPSO technique has the fastest completion time. The
physical machine within the data center is experiencing an
uneven workload. As a result of effective LB and task
allocation mechanisms, the MFO-LB takes 31 % less
completion time than the BSO-LB. Therefore, the suggested
method greatly decreases the task completion time.

5. CONCLUSION

This paper proposed a mayfly optimization algorithm for
load balancing (MFO-LB), which is based on the behavior
of the mayfly and the mating process. A mathematical model
for task mapping is employed by the MFO-LB algorithm in
a cloud environment and has also been developed to make
use of mayfly Optimization to determine the ideal load
balance between virtual machines. The findings demonstrate
that, in terms of RT, makespan, and completion time, the
recommended work outperforms the current tactics. The
suggested approach reduces reaction time by up to 23.4 %,
makespan by 24 %, and completion time by up to 31.5 %, in
that order. Future work will include incorporating intelligent
optimization methods for efficient LB to decrease the
imbalance, and the results will be applied in real-world
applications for throughput, makespan, and RT.

ACKNOWLEDGEMENTS

The Author with a deep sense of gratitude would thank the
supervisor for his guidance and constant support rendered
during this research.

Received on 3 February 2023

REFERENCES
1. S. Afzal, G. Kavitha, Optimization of task migration cost in infrastructure

cloud computing using IMDLB algorithm, 2018 International
Conference on Circuits and Systems in Digital Enterprise Technology
(ICCSDET), pp. 1–6 (2018).

2. S. Afzal, G. Kavitha, Load balancing in cloud computing–A hierarchical
taxonomical classification, Journal of Cloud Computing, 8, 1, pp. 1–
24 (2019).

3. A. Ahilan, P. Deepa, A reconfigurable virtual architecture for
memory scrubbers (VAMS) for SRAM based FPGA’s, International
Journal of Applied and Engineering Research, 10, 10, pp. 9643–
9648 (2015).

84 Load balancing in cloud computing via mayfly algorithm 6

4. M. Alouane, H. El Bakkali, Virtualization in cloud computing: NoHype

vs HyperWall new approach, 2016 International Conference on
Electrical and Information Technologies (ICEIT), pp. 49–54 (2016).

5. S. Alshattnawi, M. Al-Marie, Spider monkey optimization algorithm for

load balancing in cloud computing environments, International Arab
Journal of Information Technologies, 18, 5, pp. 730–738 (2021).

6. G.A.P. Princess, A.S. Radhamani, A hybrid meta-heuristic for optimal

load balancing in cloud computing, Journal of Grid Computing, 19, 2,
pp. 1–22 (2021).

7. V.M.A. Xavier, S. Annadurai, Chaotic social spider algorithm for load

balance aware task scheduling in cloud computing, Cluster
Computing, 22, 1, pp. 287–297 (2019).

8. K. Balaji, Load balancing in cloud computing: issues and challenges,
Turkish Journal of Computer and Mathematics Education
(TURCOMAT), 12, 2, pp. 3077–3084 (2021).

9. A. Chawla, N. S. Ghumman, Package-based approach for load balancing

in cloud computing, Big Data Analytics, pp. 71–77 (2019).
10. F. Ebadifard, S.M. Babamir, Autonomic task scheduling algorithm for

dynamic workloads through a load balancing technique for the cloud-

computing environment, Cluster Computing, 24, 2, pp. 1075–1101
(2021).

11. M. Gamal, R. Rizk, H. Mahdi, B.E. Elnaghi, Osmotic bio-inspired load

balancing algorithm in cloud computing, IEEE Access, 7, pp. 42735–
42744 (2019).

12. N.J. Navimipour, F.S. Milani, A comprehensive study of the resource

discovery techniques in peer-to-peer networks, Peer-to-Peer
Networking and Applications, 8, 3, pp. 474–492 (205).

13. B. Jana, M. Chakraborty, T. Mandal, A task scheduling technique based

on particle swarm optimization algorithm in cloud environment, Soft
Computing: Theories and Applications, Springer, Singapore, 2019, pp.
525–536.

14. A. Kaur, B. Kaur, P. Singh, M.S. Devgan, H.K. Toor, Load balancing
optimization based on deep learning approach in cloud environment,
International Journal of Information Technology and Computer
Science, 12, 3, pp. 8–18 (2020).

15. N. Malarvizhi, J. Aswini, S. Sasikala, M.H. Chakravarthy, E.A. Neeba,
Multi-parameter optimization for load balancing with effective task

scheduling and resource sharing, Journal of Ambient Intelligence and
Humanized Computing, 2021, pp. 1–9.

16. S.T. Milan, L. Rajabion, H. Ranjbar, N.J. Navimipour, Nature inspired

meta-heuristic algorithms for solving the load-balancing problem in
cloud environments, Computers & Operations Research, 110, pp. 159–
187 (2019).

17. K. Mishra, S.K. Majhi, A binary bird swarm optimization-based load
balancing algorithm for cloud computing environment, Open
Computer Science, 11, 1, pp. 146–160 (2021).

18. S.K. Mishra, B. Sahoo, P.P. Parida, Load balancing in cloud computing:
a big picture, Journal of King Saud University – Computer and
Information Sciences, 32, 2, pp. 149–158 (2020).

19. G. Muthusamy, S.R. Chandran, Cluster-based task scheduling using

K-means clustering for load balancing in cloud datacenters, Journal
of Internet Technology, 22, 1, pp. 121–130 (2021).

20. V. Polepally, K.S. Chatrapati, Dragonfly optimization and constraint
measure-based load balancing in cloud computing, Cluster
Computing, 22, 1, pp. 1099–1111 (2019).

21. H. Ren, Y. Lan, C. Yin, The load balancing algorithm in cloud
computing environment, Proceedings of 2012 2nd International
Conference on Computer Science and Network Technology, pp. 925–
928 (2012).

22. D.A. Shafiq, N.Z. Jhanjhi, A. Abdullah, M.A. Alzain, A load balancing

algorithm for the data centres to optimize cloud computing
applications, IEEE Access, 9, pp. 41731–41744 (2021).

23. A.K. Sharma, K. Upreti, B. Vargis, Experimental performance analysis

of load balancing of tasks using honeybee inspired algorithm for
resource allocation in cloud environment, Materials Today:
Proceedings, 2020.

24. S.G. Sophia, K.K. Thanammal, An improved homomorphic encryption
technology for the surveillance of cloud data, Solid State Technology,
63, 2s, pp. 2671–2674 (2020).

25. A. Ullah, Artificial bee colony algorithm used for load balancing in
cloud computing, IAES International Journal of Artificial Intelligence,
8, 2, p. 156 (2019).

26. Y. Zhu, P. Liu, Multi-dimensional constrained cloud computing task
scheduling mechanism based on genetic algorithm, International
Journal of Online Engineering, 9, pp. 15–18 (2013).

27. S. Ziyath, S. Senthilkumar, MHO: meta heuristic optimization applied
task scheduling with load balancing technique for cloud infrastructure

services, Journal of Ambient Intelligence and Humanized Computing,
12, 6, pp. 6629–6638 (2021).

28. N. Dif, E. Boudissa, M. Bounekhla, I. Dif, Firefly algorithm

improvement with application to induction machine parameters

identification, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 65, 1,
pp.35–40 (2020).

29. A. Zangeneh, Optimal design of onshore wind farm collector

system using particle swarm optimization and Prim’s algorithm ,
Rev. Roum. Sci. Techn. – Électrotechn. et Énerg.,64, 4, pp. 349–
356 (2019).

30. M. Balakrishnan, M. Nalina, K. Ramya, K. Senthilsriram, Cloud
computing+ based data validation and migration in ETL using talend.
In 2022 6th International Conference on Electronics, Communication
and Aerospace Technology, IEEE, pp. 1349–1355 (2022).

31. M.S. Kumar, F.D. Shadrach, S.R. Polamuri, R. Poonkodi, V.N. Pudi, A

binary bird swarm optimization technique for cloud computing task

scheduling and load balancing. 2022 International Conference on
Innovative Computing, Intelligent Communication and Smart
Electrical Systems (ICSES). IEEE, pp. 1–6, 2022.

32. R. Raja Kumar, J. Athimoolam, A. Appathurai, S. Rajendiran, Novel
segmentation and classification algorithm for detection of tomato leaf

disease. Concurrency and Computation: Practice and Experience, 35,

12, 7674 (2023).

