
Rev. Roum. Sci. Techn.– Électrotechn. et Énerg.

Vol. 69, 2, pp. 243–248, Bucarest, 2024

1 School of Automation, University of Electronic Science and Technology of China, Chengdu 610054 China
E-mail: Ruiyang.wang@std.uestc.edu.cn, guqiuxiang@alu.uestc.edu.cn, jravis.tian@std.uestc.edu.cn, siyu.lu@std.uestc.edu.cn,
winfirms@uestc.edu.cn (Corresponding Author)
2 College of Resource and Environment Engineering, Guizhou University, Guiyang 550025, China
E-mail: ztyin@gzu.edu.cn (Corresponding Author)
3 School of Geographical Sciences, Southwest University, Chongqing, 400715, China. E-mail: xliswu@swu.edu.cn
4 Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge 70803 LA, USA. E-mail: xchen87@lsu.edu
5 Department of Geography and Anthropology, Louisiana State University, Baton Rouge 70803 LA, USA. E-mail: Lyin5@lsu.edu

DOI: 10.59277/RRST-EE.2024.69.2.21

PARALLEL PLATFORM CONTROLLER BASED ON ADAPTIVE
DIFFERENCE ALGORITHM – PART 1

RUIYANG WANG1, QIUXIANG GU1, SIYU LU1, JIAWEI TIAN1, ZHENGTONG YIN2, *, XIAOLU LI3,
XIAOBING CHEN4, LIRONG YIN5, WENFENG ZHENG1 *

Keywords: Workspace control; Model predictive controller (MPC); Adaptive difference algorithm; Parallel platform control.

There are two main approaches to motion control on parallel platforms: joint space control and workspace control. Joint space

control is an easy-to-implement semi-closed-loop strategy, but its control effect could be better. The workspace control is to obtain
the real-time position of the parallel platform through the forward solution and close the speed and position loop of the parallel

platform in the workspace. This paper uses a model predictive controller (MPC) to control the parallel platform with workspace

control as the research goal. The loss function is constructed based on the swarm intelligence optimization idea, and the adaptive

difference algorithm is used to optimize the parameters of MPC. This part details the research background and the algorithm
design process. Then, the MPC algorithm is implemented on the upper computer using C++, and the physical test is implemented.

The test results show that the controller has a good control effect on the physical platform.

1. INTRODUCTION

Six-degree-of-freedom (6-DOF) parallel robots are widely
used in motion simulation, high-precision pose adjustment, and
CNC machining systems [1–6]. Motion control includes
trajectory planning, trajectory tracking, and other related
content. Aiming at trajectory, some scholars have proposed a
multi-objective constrained evolutionary algorithm [7] and a
trajectory planning method based on time and energy
optimization [8]. In addition, there are relatively simple
trajectory planning methods such as spline interpolation,
velocity trapezoidal curve, and velocity S-curve [9]. Trajectory
tracking [10] mainly includes two technical routes of joint space
control and workspace control, and each technical route has a
variety of control strategies that can be used. Y. Zuo et al.
proposed a linear active disturbance rejection controller for the
PMSM speed control system considering the speed filter [11].
In addition, various control methods, such as high-order
differential feedback control, fuzzy neural network sliding
mode control, and L1 adaptive control [12–16], have been
applied to the 6-DOF parallel platform control.

This paper presented a control model for a 6-DOF parallel
robot. We first established the state-space equation for the
motion of the parallel platform in the workspace based on
modern control theory. At the same time, to reduce the
influence of external noise on the control system, which
leads to inaccurate modeling, this paper also designed a
model predictive controller (MPC) to control the parallel
platform. Then, based on the idea of swarm intelligence
optimization, the loss function of the MPC parameter
optimization was constructed. Then, the MPC algorithm was
implemented on the upper computer of the control center
using C++ language, and the physical test was completed.
The physical test results show that the parallel platform
achieves good real-time control results. Finally, the Adaptive
Differential Evolution algorithm optimized the model's
predictive control parameters. In addition, this paper also
carried out simulation experiments on MATLAB to compare
the MPC algorithm with the PI controller.

2. STATE SPACE MODELING

This paper established a control model for the controlled

parallel platform according to modern control theory [17] to

complete the design of the motion controller of the parallel

platform. In this study, the motion of the parallel platform in

the workspace is decomposed into two parts: the translation

of the moving platform's center of mass and the rotation

around the center of mass.

The time under physical conditions changes continuously,

while the digital control system can only complete the

motion control under the discrete time state. Therefore, when

establishing the control model of the controlled object, it is

first necessary to discretize its motion state. Assuming that

the discrete time step is ts according to Newton's second

law when the center of mass of the parallel platform moves

in translation at a uniform speed in the workspace, the

relationship between the displacement, velocity, and

acceleration of the center of mass of the platform is:

 {
S(k+1)=s(k)+v(k)ts+

1

2
a(k)ts

2,

v(k+1)=v(k)+a(k)ts.
 (1)

Let the system control function U(k) = a(k) state

variable X(k) = [s(𝑘)v(𝑘)]T. Writing eq. (1) as a state space

expression yield

{

X(k+1) = AX(k)+BU(k),

Y(k)=CX(k),

A= [
1 ts
0 1

] ,

B= [
1

2
ts

2

ts
] ,

C= [
1 0

0 1
] .

 (2)

Next, we need to determine the controllability of the above

model. The controllability matrix of the parallel platform

system is:

244 Six degrees of freedom parallel platform – Part 1 2

 [B AB]= [
1

2
ts

2 3

2
ts

2

ts ts
]. (3)

Equation (3) shows that the matrix is full rank when ts≠0.

Therefore, the parallel platform system is fully controllable.

According to the relevant conclusions of rigid body

mechanics, the rotation motion of the parallel platform

around the center of mass belongs to the uniform rotation of

a rigid body around a fixed axis. It has the same

mathematical expression as the translational motion of the

center of mass. Therefore, the state-space model developed

in terms of the uniform variable linear motion of the centroid

of the parallel platform is also applicable to the uniform

variable rotation around the centroid.

3. DESIGN OF MOTION CONTROLLER

FOR PARALLEL PLATFORM

The 6-DOF platform used in this study is shown in Fig. 1.

Fig. 1 – Schematic diagram of a six-degree-of-freedom parallel platform.

For the 6-DOF parallel platform, when modeling the state

space of the parallel platform, factors such as the friction

force of the joint joints of each manipulator are not modeled.

Therefore, when designing the controller, it is necessary to

adopt a more robust control method to make the system

achieve a better control effect. MPC [18,19] is a special kind

of control. Its current control action is obtained at each

sampling instant by solving a finite-time domain open-loop

optimal control problem. The current state of the process is

used as the initial state of the optimal control problem, and

only the first control action is implemented in the solved

optimal control sequence. It adopts the model of non-

minimization description, and the method is robust and

stable. Therefore, the MPC method is selected to control the

motion of the parallel platform in this system [19].

There are many methods for parameter optimization [20],

among which Differential Evolution (DE) and its improved

algorithms are often used for parameter optimization of MPC

[21,22]. Adaptive Differential Evolution (ADE) [23,24] is an

improved DE algorithm that uses an adaptive strategy to

adjust the parameters of the differential evolution algorithm

to improve its performance. Due to its good optimization

effect, ADE is selected to complete the parameter

optimization of MPC in this paper [25].

3.1. PARALLEL PLATFORM MODEL PREDICTIVE

CONTROL

The main process of motion control using the MPC control

method consists of three parts: prediction model, rolling

optimization, and feedback correction. The block diagram of

the MPC control structure is shown in Fig. 2.

Online optimization
controller

Controlled object

Prediction model

Model Feedback
Correction

yref

u(k)

r(k)

x(k)

+

y(k)

+

+
-

yp(k+i|k)

+
+

+
-

Fig. 2 – MPC control structure block diagram.

Predictive models can be based on system state space

models, and the state X(k) of the system at time 𝑘 , the

current input U(k) and the calculated expected future input

U(k+i-1|k) to predict the future output y(k+i-1|k). U(k+i-

1|k) is the control time domain, and y(k+i|k) is the

prediction time domain. Each time the control quantity is

calculated, the lengths of the control and prediction time

domains remain unchanged, and the time axis moves by one

unit, forming a rolling calculation effect.

The online optimization controller sets the penalty

function and optimization conditions. The penalty function

must comprehensively consider the system output's process

error, steady-state error, and energy consumption. By

minimizing the penalty function, the optimal control effect

can be obtained. Because external noise and other factors

inevitably affect the controlled object, there will be a certain

deviation between the actual and expected output. Therefore,

the actual output of the controlled object needs to be

measured and fed back. The feedback result is used as the

parameter for calculating the optimal control quantity at the

next moment to complete the control closed loop.

For the model predictive controller, it is assumed that both

the length of the prediction time domain and the length of the

control time domain are N. Let the output Y(k) be equal to

the state X(k) and the reference output be Yr(𝑘) . The

output of step i is predicted to be Y(k+i/k) at time k. Then,

the error between the predicted output and the reference

output at the i-th moment is calculated by

 E(k+i|k)=Y(k+i|k) − Yr(𝑘 + 𝑖)

 =X(k+i|k) − Yr(𝑘 + 𝑖). (4)

3 Ruiyang Wang et al. 245

The set penalty function in the online optimization

controller includes process error, process energy

consumption, and steady-state error. The expression is

𝐽(𝐔) =∑ [𝐞T(𝑘 + 𝑖|𝑘)]𝐐𝐞(𝑘 + 𝑖|𝑘)
𝑁−1

𝑖=0

+ 𝐔T(𝑘 + 𝑖|𝑘)𝐑𝐔(𝑘 + 𝑖|𝑘) +

 𝐞T(𝑘 + 𝑁|𝑘)𝐏𝐞(𝑘 + 𝑁|𝑘). (5)

Among them, Q is a positive semi-definite matrix with the

same dimension as the state X, and it is a penalty coefficient

for the cumulative error of the process. R is a symmetric

positive definite matrix with the same dimension as U, and it

is a penalty coefficient for the energy consumption of the

process. P is a positive semi-definite matrix with the same

dimension as the state X, and it is a penalty coefficient for

the steady-state error.

The design goal of the parallel platform motion controller

is to solve the optimal control sequence U(k+i/k) so that the

penalty function reaches the minimum value. According to

the state, space eq. (2), the predicted state at time k+i is

expressed by

 X(k+i|k) = AiX(k|k)+∑ Ai-jBU(k+j-1|k)i
j=1 . (6)

Denote the predicted state sequence at time k as X̂(k) =
[X(k|k) X(k+1|k) ⋯ X(k+N|k)]T, the reference output

sequence as Yr = [Yr(k) Yr(k+1) ⋯ Yr(k+N)]T , and

the current and future control action sequence as

Û(k)=[U(k|k) U(k+1|k) ⋯ U(k+N-1|k)]T . The state-

space equations for X̂(k) and Û(k) are then expressed by,

 X̂(k)= [

I

A
⋮

AN

]X(k)+

[

0

B
AB

⋮
AN-1B

0

B

⋯

…

⋱

0

B]

Û(k). (7)

Equation (7) is abbreviated as,

 X̂(k)=A̅X(k)+B̅Û(k). (8)

Substitute eq. (8) into eq. (5). Get the system penalty

function expression,

𝐽 = [�̅�𝐗(𝑘) + �̅��̂�(𝑘) − 𝐘𝑟]
T
�̅�[�̅�𝐗(𝑘) + �̅��̂�(𝑘) − 𝐘𝑟]+

+Û
T
(𝑘)R̅Û(𝑘). (9)

There are N Qs along the diagonal of Q̅ and the last one

is P. There are N Rs along the diagonal R̅. They are,

{

 Q̅= [

Q ⋯
⋮ ⋱ ⋮

⋯ P

] ,

R̅= [
R

 ⋱

 R

] .

 (10)

By solving the quadratic programming problem of eq. (9),

the model control sequence Û(k) can be obtained. Under

the unconstrained condition of model predictive control

sequence Û(k). Equation (11) can be obtained by taking the

derivative concerning Û(k):

∂J

∂Û(k)
=2B̅

T
Q̅[A̅X(k)+B̅Û(k)-Yr]+2R̅Û(k). (11)

Setting eq. (11) to zero, the minimum value of J under

the action of the control sequence Û(k) can be obtained. In

the model predictive controller, A, B, P, Q are semi-

positive definite matrices and R is positive definite. So,

B̅
T

Q̅B̅+R̅ is positive definite so that the control sequence

can be expressed as

 Û(k) = − (B̅
T

Q̅B̅+R̅)
-1

B̅
T

Q̅(A̅X(k) − Yr). (12)

3.2. OPTIMIZATION OF MPC CONTROL

PARAMETERS BASED ON DIFFERENTIAL

EVOLUTION ALGORITHM

In MPC, parameters such as penalty coefficients P, Q, R

the forecast time domain N length needs to be set. To solve

the problem that the manual method is tedious and difficult

to achieve a better control effect, this paper established an

evaluation function for MPC control parameter optimization.

This function uses a real-coded differential evolution

algorithm to perform a metaheuristic search in the parameter

space to complete parameter optimization, which makes the

MPC achieve a better control effect.

The DE algorithm uses the difference vectors of different

individuals in the parameter space to make them move.

Finally, a solution vector that better matches the evaluation

function is found. The algorithm flow is shown in Fig. 3.

Start

Population initialization

Assessing individuals before
and after crossover

Mutation

Crossover

Is it better than
 the original?

keep new individuals in the
population

Keep the original individual in
the population

Stop condition
reached?

End

Output the best individual
parameters

No

No

Yes

Yes

Fig. 3 – Flow chart of differential evolution algorithm.

In Fig. 3, population initialization needs to set the number

and dimension of individuals. In metaheuristic search,

selecting the number of individuals must consider the

parameter optimization effect and computing time. This

system is mainly used to optimize the selection of MPC

parameters through the DE algorithm. The parameters the

MPC needs to determine are P, Q, R, and N. Among them,

the dimension of penalty coefficient P and Q is 2, R is 1, and

the dimension of time domain length N is 1. So, the

246 Six degrees of freedom parallel platform – Part 1 4

dimension of a single individual in the population is 6.

Initialization also needs to set the individual search range to

meet the semi-positive definite or positive definite

conditions of each parameter of MPC. N can only take

positive integers. The initialized population individuals are

randomly set in the parameter space in a uniform distribution

manner. This distribution method can prevent the initial

individuals from gathering in a specific area, enhance the

exploration ability of the algorithm, and improve the

optimization effect.

The mutation operation of the DE algorithm is

fundamentally different from that of the genetic algorithm.

In the DE algorithm, using different mutation algorithms will

produce different optimization strategies. Record the i-th

individual in the population as XI, and use the DE/best/1

mutation strategy to mutate. The algorithm for generating

new individuals is,

 XI
’=xbest+F(xr1–xr2). (13)

Among them, xbest is the best individual in the

population. Xr1 and xr2 are two individuals randomly

selected in the population. F is the variation scaling factor,

and its value is a decimal between 0 and 1.

The crossover operation of the DE algorithm is realized by

using the roulette wheel method. Generate a random number

for each dimension of the individual. If the random number

is greater than the crossover factor, the value of the

corresponding dimension variation individual xI
’ is

retained, otherwise the value of the original individual xI
 is

retained.

The purpose of tuning the MPC control parameters is to

achieve the optimal control effect with the minimum

calculation cost and energy. For this, it is necessary to

establish a loss function to objectively evaluate the

performance of the original individuals in the population and

the new individuals generated by the crossover operation.

The model uses 4 parameters to be optimized to construct the

parameter space, and the parameter vector is

p
i
=[P Q R N]T . The calculation amount of MPC is

mainly affected by the time domain length N. The

constructed loss function should include the time domain

length N to improve the system's real-time performance. The

loss function of constructing population individuals is

 Fcost=∑ {[X(k) − Yr(k)]
T[X(k) − Yr(k)]+UT(k)U(k)}n

k=1 +N2. (14)

Among them, X(k) is the system state. Yr(k) is the

reference trajectory obtained by using the trajectory planning

method. Both X(k) and Yr(k) have dimensions 2 and

consist of displacement and velocity. Equation (14) consists

of three parts: the cumulative error square value, the

cumulative energy consumption square value, and the time

domain length square value during the entire movement

process from the start point to the endpoint. Therefore, the

loss function in eq. (14) can comprehensively evaluate the

individuals in the population from the three aspects of

control performance, energy consumption, and calculation

cost. In the optimal selection process of the DE algorithm,

the original individuals of the population and the new

individuals generated by the crossover are evaluated using

eq. (14) respectively. The individual with a smaller Fcost

value is kept in the population, and the other one is

eliminated. After reaching the stopping condition, output the

corresponding parameter value of the best individual. The

output values are used as the optimal control parameters of

the MPC.

4. PHYSICAL TEST

To verify the real-time control performance of the

controller designed in this paper, we first use C++ language

to implement the MPC algorithm in the upper computer and

do a physical test to observe the control effect of the

controller.

The MPC algorithm, the reference trajectory vector Yr

involved in the calculation is composed of two parts: the

reference displacement and the reference velocity.

Therefore, the closed-loop control of the position cannot be

independently performed like the PI controller. To

implement the MPC algorithm in the upper computer of the

parallel platform control center, two functional modules of

trajectory planning, and motion control need to be

completed. Among them, the trajectory planning is

completed immediately when the UI receives the user target

location information. Store the corresponding reference

displacement and reference speed in the memory through an

array. Motion control is done in a 100 mS timer. The running

process of the upper computer is shown in Fig. 4:

Start

Parameter initialization

Platform reset

Run key
pressed?

Trapezoidal trajectory
planning

Turn on the 100mS track
tracking timer

End

100mS timer

Kinematics positive
solution and calculation

of real-time speed

Calculation platform
speed control amount

CAN sends the reference
speed of the robotic arm

to each driver

End

Convert Platform Velocity
to Manipulator Velocity
Using Jacobian Matrix

Use MPC to calculate the
predictive control

quantity, and take U(k) as
the actual control

quantity

Yes

No

Fig. 4 – Flowchart of upper computer MPC algorithm.

As seen from Fig. 4, this progress must perform parameter

initialization and reset the platform. Then, if the run key is

pressed, the trapezoidal trajectory planning starts, and finally

the 100 ms trajectory tracking timer is turned on. The

position closed-loop period of the upper computer is 100 mS.

In the 100 ms timer, the real-time pose of the parallel

platform is first calculated using the MPR-NR kinematics

forward solution algorithm. Then use the MPC control law

to calculate the output U(k) of the MPC. Since the time

domain length of the control system is N = 3, there are 3

calculated control quantities. However, only the control

quantity U(k) at this moment is taken out as the actual

control quantity, and the forecast control quantity U(k+i) is

5 Ruiyang Wang et al. 247

not output. The calculated output U(k) is the acceleration

control function of the parallel platform. Each servo driver

can only complete the speed closed loop, so the conversion

from acceleration to speed is completed by

 Vr(k) = V(k-1) + U(k)*t/2, (15)

where t = 0.1 seconds. The trapezoidal trajectory planning

algorithm is a uniformly variable speed motion and eq. (15)

calculates the average speed of the parallel platform between

k-1 time and k-time. Therefore, acceleration control can be

equivalent to speed control. Then, the acceleration control of

the platform can be equivalent to speed control. It is then

mapped to the reference velocity of each manipulator

through the Jacobian matrix. Finally, the reference velocity

is sent to each robot arm through the CAN bus to complete

the control of the workspace of the parallel platform. The

image of using the MPC algorithm to control the parallel

platform is shown in Fig. 5.

Fig. 5 –The target attitude parameters and servo tracking image of the
host computer in the control center.

Fig. 6 – PI controller physical test image.

Figure 5 shows that the actual running attitude and the

reference trajectory attitude completely coincide. MPC can

complete the trajectory tracking task as expected. For the

same attitude target, the attitude image using the PI controller

for motion control is shown in Fig. 6.

It can be seen from Fig. 6 that the PI controller can also

control the parallel platform to move in the direction of the

expected trajectory. However, there is a certain error

between the real-time trajectory image and the reference

trajectory. During the entire control cycle of trajectory

tracking, the two control methods are recorded separately,

the absolute cumulative error between the actual pose of the

parallel platform and the reference pose.

The obtained cumulative absolute error data of the two

control methods are shown in Table 1.

Table 1

Cumulative absolute error in trajectory tracking period

Control

Method
∑|e(α)| ∑|e(β)| ∑|e(γ)|

PI 9.36 19.20 24.74

MPC 6.64 11.03 9.06

Control

Method
∑|e(x)| ∑|e(y)| ∑|e(z)|

PI 66.99 95.54 81.95

MPC 21.95 31.23 31.54

The first three columns in Table 1 are the cumulative

absolute errors of the angles in the three rotation directions

around the axis, and the unit is °. The last three columns are

the cumulative absolute errors of the displacements of the

three spatial coordinates in mm. It can be seen from Table 1

that the cumulative absolute error of the MPC controller in

the entire trajectory tracking period is much smaller than that

of the PI controller. It is consistent with theoretical

expectations and simulation results.

5. DISCUSSION AND CONCLUSION

In this part, the state space equation of the parallel

platform is established from modern control theory.

Aiming at the trajectory tracking of the parallel platform

workspace, an MPC is designed to complete the solution of

the control law. This paper constructs a loss function for

optimizing MPC parameters based on the swarm intelligence

optimization idea to obtain better control effects. It uses the

ADE algorithm to optimize the MPC parameters. Then, we

successfully deployed the MPC to the control center of the

upper computer using C++. Finally, the physical objects of

the parallel platform are controlled, and a good control effect

is obtained, which verifies the practicability of the model.

ACKNOWLEDGEMENTS

Supported by Sichuan Science and Technology Program

(2021YFQ0003, 2023YFSY0026, 2023YFH0004).

AUTHOR CONTRIBUTIONS

Conceptualization: Qiuxiang Gu, XiaoBing Chen and

Wenfeng Zheng; methodology: Jiawei Tian and Lirong Yin;

software, Xiaolu Li, Qiuxiang Gu and Siyu Lu; formal

analysis: Jiawei Tian, Xiaolu Li and Zhengtong Yin; writing

original draft preparation: Ruiyang Wang, Siyu Lu,

Zhengtong Yin and Lirong Yin; writing-review and editing:

Ruiyang Wang, Wenfeng Zheng and Lirong Yin; funding

acquisition Wenfeng Zheng. All authors have read and

agreed to the published version of the manuscript.

Received on 3 April 2023

248 Six degrees of freedom parallel platform – Part 1 6

REFERENCES

1. B. Monsarrat, C. M. Gosselin, Singularity analysis of a three-leg six-

degree-of-freedom parallel platform mechanism based on

Grassmann line geometry, The International Journal of Robotics
Research, 20, 4, pp. 312–328 (2001).

2. K.E. Zanganeh, R. Sinatra, J. Angeles, Kinematics and dynamics of a

six-degree-of-freedom parallel manipulator with revolute legs,
Robotica, 15, 4, pp. 385–394 (1997).

3. J. Fu, F. Gao, Y. Pan, H. Du, Forward kinematics solutions of a special

six-degree-of-freedom parallel manipulator with three limbs,
Advances in Mechanical Engineering, 7, 5, p. 1687814015582118

(2015).

4. D. Zlatanov, M. Dai, R. Fenton, B. Benhabib, Mechanical design and
kinematic analysis of a three-legged six degree-of-freedom parallel

manipulator, International Design Engineering Technical

Conferences and Computers and Information in Engineering
Conference, American Society of Mechanical Engineers, 9396,

pp. 529–536 (1992).

5. M. Liu, Q. Gu, B. Yang, Z. Yin, S. Liu, L. Yin, W. Zheng, W,
Kinematics model optimization algorithm for six degrees of freedom

parallel platform, Applied Sciences, 13, 5, pp. 3082 (2023).

6. Gu, Q. et l., A novel architecture of a six degrees of freedom parallel
platform, Electronics, 12, 8, pp. 1774 (2023).

7. C. Chen, H. Pham, Trajectory planning in parallel kinematic

manipulators using a constrained multi-objective evolutionary
algorithm, Nonlinear Dynamics, 67, 2, pp. 1669–1681 (2011).

8. C.T. Chen, T.T. Liao, A hybrid strategy for the time-and energy-efficient

trajectory planning of parallel platform manipulators, Robotics and
Computer-Integrated Manufacturing, 27, 1, pp. 72–81 (2011).

9. J.R.G. Martínez, J.R. Reséndiz, M.Á.M. Prado, E.E.C. Miguel, Assessment

of jerk performance s-curve and trapezoidal velocity profiles, XIII

International Engineering Congress (CONIIN), IEEE, pp. 1–7 (2017).

10. M. Boussoffara, I.B.C. Ahmed, Z. Hajaiej, Sliding mode controller

design: stability analysis and tracking control for flexible joint

manipulator, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 66,

3, pp.161–167 (2021).

11. Y. Zuo, J. Mei, C. Jiang, X. Yuan, S. Xie, C.H. Lee, Linear active

disturbance rejection controllers for PMSM speed regulation

system considering the speed filter, IEEE Transactions on Power

Electronics, 36, 12, pp. 14579–14592 (2021).

12. M.S. Ayas, E. Sahin, I.H. Altas, High order differential feedback

controller design and implementation for a Stewart platform,

Journal of Vibration and Control, 26, 11–12, pp. 976–988 (2020).

13. J. Xu, Q. Wang, Q. Lin, Parallel robot with fuzzy neural network
sliding mode control, Advances in Mechanical Engineering, 10,

10, p. 23 (2018).

14. J. Zhao, D. Wu, H. Gu, Performance Evaluation of Stewart-Gough
Flight Simulator Based on L 1 Adaptive Control, Applied Sciences,

11, 7, p. 3288 (2021).

15. Z. Bingul, O. Karahan, Real-time trajectory tracking control of Stewart
platform using fractional order fuzzy PID controller optimized by

particle swarm algorithm, Industrial Robot: The International
Journal of Robotics Research and Application, 2021.

16. H. Tourajizadeh, S. Manteghi, Design and optimal control of dual-stage

Stewart platform using feedback-linearized quadratic regulator,
Advanced Robotics, 30, 20, pp. 1305–1321 (2016).

17. Z. Bubnicki, Modern control theory, Springer, Berlin, 2005, pp.

17–37.

18. N. Kacimi, A. Idir, S. Grouni, M.S. Boucherit, A new combined method

for tracking the global maximum power point of photovoltaic

systems, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 67, 3,
pp. 349–354 (2022).

19. B. Kouvaritakis, M. Cannon, Model Predictive Control, Springer,

Switzerland, 2016, pp. 122–164.
20. M. Abdelwanis, R.A.G.B. El-Sehiemy, Efficient parameter estimation

procedure using sunflower optimization algorithm for six-phase

induction motor, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg.,
67, 3, pp. 259–264 (2020).

21. K.V. Price, Differential Evolution, in Handbook of optimization,

Springer, Berlin, 2013, pp. 187–214.
22. M. Pant, H. Zaheer, L. Garcia-Hernandez, A. Abraham, Differential

Evolution: A review of more than two decades of research, Engineering

Applications of Artificial Intelligence, 90, p. 103479 (2020).
23. C.A. Chen, T.C. Chiang, Adaptive differential evolution: A visual

comparison, 2015 IEEE Congress on Evolutionary Computation

(CEC), 2017, IEEE, pp. 401–408.
24. X. Yao, Y. Liu, G. Lin, Evolutionary programming made faster, IEEE

Transactions on Evolutionary Computation, 3, 2, pp. 82–102

(1999).
25. I. Farda, A. Thammano, A self-adaptive differential evolution algorithm

for solving optimization problems, International Conference on

Computing and Information Technology, Cham: Springer
International Publishing, 2022, pp. 68–76.

