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There are two main approaches to motion control on parallel platforms: joint space control and workspace control. Joint space 

control is an easy-to-implement semi-closed-loop strategy, but its control effect could be better. The workspace control is to obtain 
the real-time position of the parallel platform through the forward solution and close the speed and position loop of the parallel 

platform in the workspace. This paper uses a model predictive controller (MPC) to control the parallel platform with workspace 

control as the research goal. The loss function is constructed based on the swarm intelligence optimization idea, and the adaptive 

difference algorithm is used to optimize the parameters of MPC. This part details the research background and the algorithm 
design process. Then, the MPC algorithm is implemented on the upper computer using C++, and the physical test is implemented. 

The test results show that the controller has a good control effect on the physical platform. 

1. INTRODUCTION 

Six-degree-of-freedom (6-DOF) parallel robots are widely 
used in motion simulation, high-precision pose adjustment, and 
CNC machining systems [1–6]. Motion control includes 
trajectory planning, trajectory tracking, and other related 
content. Aiming at trajectory, some scholars have proposed a 
multi-objective constrained evolutionary algorithm [7] and a 
trajectory planning method based on time and energy 
optimization [8]. In addition, there are relatively simple 
trajectory planning methods such as spline interpolation, 
velocity trapezoidal curve, and velocity S-curve [9]. Trajectory 
tracking [10] mainly includes two technical routes of joint space 
control and workspace control, and each technical route has a 
variety of control strategies that can be used. Y. Zuo et al. 
proposed a linear active disturbance rejection controller for the 
PMSM speed control system considering the speed filter [11]. 
In addition, various control methods, such as high-order 
differential feedback control, fuzzy neural network sliding 
mode control, and L1 adaptive control [12–16], have been 
applied to the 6-DOF parallel platform control. 

This paper presented a control model for a 6-DOF parallel 
robot. We first established the state-space equation for the 
motion of the parallel platform in the workspace based on 
modern control theory. At the same time, to reduce the 
influence of external noise on the control system, which 
leads to inaccurate modeling, this paper also designed a 
model predictive controller (MPC) to control the parallel 
platform. Then, based on the idea of swarm intelligence 
optimization, the loss function of the MPC parameter 
optimization was constructed. Then, the MPC algorithm was 
implemented on the upper computer of the control center 
using C++ language, and the physical test was completed. 
The physical test results show that the parallel platform 
achieves good real-time control results. Finally, the Adaptive 
Differential Evolution algorithm optimized the model's 
predictive control parameters. In addition, this paper also 
carried out simulation experiments on MATLAB to compare 
the MPC algorithm with the PI controller. 

2. STATE SPACE MODELING 

This paper established a control model for the controlled 

parallel platform according to modern control theory [17] to 

complete the design of the motion controller of the parallel 

platform. In this study, the motion of the parallel platform in 

the workspace is decomposed into two parts: the translation 

of the moving platform's center of mass and the rotation 

around the center of mass. 

The time under physical conditions changes continuously, 

while the digital control system can only complete the 

motion control under the discrete time state. Therefore, when 

establishing the control model of the controlled object, it is 

first necessary to discretize its motion state. Assuming that 

the discrete time step is ts  according to Newton's second 

law when the center of mass of the parallel platform moves 

in translation at a uniform speed in the workspace, the 

relationship between the displacement, velocity, and 

acceleration of the center of mass of the platform is: 

 {
S(k+1)=s(k)+v(k)ts+

1

2
a(k)ts

2,

v(k+1)=v(k)+a(k)ts.              
 (1) 

Let the system control function U(k) = a(k)  state 

variable X(k) = [s(𝑘)v(𝑘)]T. Writing eq. (1) as a state space 

expression yield 

 

{
 
 
 
 

 
 
 
 

X(k+1) = AX(k)+BU(k),

Y(k)=CX(k),          

A= [
1 ts
0 1

] ,  

B= [
1

2
ts

2

ts
] ,    

C= [
1 0

0 1
] .   

 (2) 

Next, we need to determine the controllability of the above 

model. The controllability matrix of the parallel platform 

system is: 
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 [B AB]= [
1

2
ts

2 3

2
ts

2

ts ts
]. (3) 

Equation (3) shows that the matrix is full rank when ts≠0. 

Therefore, the parallel platform system is fully controllable. 

According to the relevant conclusions of rigid body 

mechanics, the rotation motion of the parallel platform 

around the center of mass belongs to the uniform rotation of 

a rigid body around a fixed axis. It has the same 

mathematical expression as the translational motion of the 

center of mass. Therefore, the state-space model developed 

in terms of the uniform variable linear motion of the centroid 

of the parallel platform is also applicable to the uniform 

variable rotation around the centroid. 

3. DESIGN OF MOTION CONTROLLER  

FOR PARALLEL PLATFORM 

The 6-DOF platform used in this study is shown in Fig. 1. 

 
Fig. 1 – Schematic diagram of a six-degree-of-freedom parallel platform. 

For the 6-DOF parallel platform, when modeling the state 

space of the parallel platform, factors such as the friction 

force of the joint joints of each manipulator are not modeled. 

Therefore, when designing the controller, it is necessary to 

adopt a more robust control method to make the system 

achieve a better control effect. MPC [18,19] is a special kind 

of control. Its current control action is obtained at each 

sampling instant by solving a finite-time domain open-loop 

optimal control problem. The current state of the process is 

used as the initial state of the optimal control problem, and 

only the first control action is implemented in the solved 

optimal control sequence. It adopts the model of non-

minimization description, and the method is robust and 

stable. Therefore, the MPC method is selected to control the 

motion of the parallel platform in this system [19].  

There are many methods for parameter optimization [20], 

among which Differential Evolution (DE) and its improved 

algorithms are often used for parameter optimization of MPC 

[21,22]. Adaptive Differential Evolution (ADE) [23,24] is an 

improved DE algorithm that uses an adaptive strategy to 

adjust the parameters of the differential evolution algorithm 

to improve its performance. Due to its good optimization 

effect, ADE is selected to complete the parameter 

optimization of MPC in this paper [25]. 

3.1. PARALLEL PLATFORM MODEL PREDICTIVE 

CONTROL 

The main process of motion control using the MPC control 

method consists of three parts: prediction model, rolling 

optimization, and feedback correction. The block diagram of 

the MPC control structure is shown in Fig. 2. 

Online optimization 
controller

Controlled object
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Model Feedback 
Correction

yref

u(k)

r(k)

x(k)

+

y(k)

+

+
-

yp(k+i|k)

+
+

+
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Fig. 2 – MPC control structure block diagram. 

Predictive models can be based on system state space 

models, and the state X(k) of the system at time 𝑘 , the 

current input U(k) and the calculated expected future input 

U(k+i-1|k) to predict the future output y(k+i-1|k). U(k+i-

1|k) is the control time domain, and y(k+i|k)  is the 

prediction time domain. Each time the control quantity is 

calculated, the lengths of the control and prediction time 

domains remain unchanged, and the time axis moves by one 

unit, forming a rolling calculation effect. 

The online optimization controller sets the penalty 

function and optimization conditions. The penalty function 

must comprehensively consider the system output's process 

error, steady-state error, and energy consumption. By 

minimizing the penalty function, the optimal control effect 

can be obtained. Because external noise and other factors 

inevitably affect the controlled object, there will be a certain 

deviation between the actual and expected output. Therefore, 

the actual output of the controlled object needs to be 

measured and fed back. The feedback result is used as the 

parameter for calculating the optimal control quantity at the 

next moment to complete the control closed loop. 

For the model predictive controller, it is assumed that both 

the length of the prediction time domain and the length of the 

control time domain are N. Let the output Y(k) be equal to 

the state X(k)  and the reference output be Yr(𝑘) . The 

output of step i is predicted to be Y(k+i/k) at time k. Then, 

the error between the predicted output and the reference 

output at the i-th moment is calculated by 

 E(k+i|k)=Y(k+i|k) − Yr(𝑘 + 𝑖) 

 =X(k+i|k) − Yr(𝑘 + 𝑖). (4) 
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The set penalty function in the online optimization 

controller includes process error, process energy 

consumption, and steady-state error. The expression is  

𝐽(𝐔) =∑ [𝐞T(𝑘 + 𝑖|𝑘)]𝐐𝐞(𝑘 + 𝑖|𝑘)
𝑁−1

𝑖=0

+ 𝐔T(𝑘 + 𝑖|𝑘)𝐑𝐔(𝑘 + 𝑖|𝑘) + 

 𝐞T(𝑘 + 𝑁|𝑘)𝐏𝐞(𝑘 + 𝑁|𝑘). (5) 

Among them, Q is a positive semi-definite matrix with the 

same dimension as the state X, and it is a penalty coefficient 

for the cumulative error of the process. R is a symmetric 

positive definite matrix with the same dimension as U, and it 

is a penalty coefficient for the energy consumption of the 

process. P is a positive semi-definite matrix with the same 

dimension as the state X, and it is a penalty coefficient for 

the steady-state error. 

The design goal of the parallel platform motion controller 

is to solve the optimal control sequence U(k+i/k) so that the 

penalty function reaches the minimum value. According to 

the state, space eq. (2), the predicted state at time k+i is 

expressed by  

 X(k+i|k) = AiX(k|k)+∑ Ai-jBU(k+j-1|k)i
j=1 . (6) 

Denote the predicted state sequence at time k as X̂(k) = 
[X(k|k) X(k+1|k) ⋯ X(k+N|k)]T, the reference output 

sequence as Yr = [Yr(k) Yr(k+1) ⋯ Yr(k+N)]T , and 

the current and future control action sequence as 

Û(k)=[U(k|k) U(k+1|k) ⋯ U(k+N-1|k)]T . The state-

space equations for X̂(k) and Û(k) are then expressed by, 

 X̂(k)= [

I

A
⋮

AN

]X(k)+

[
 
 
 
 

0

B
AB

⋮
AN-1B

0

 
B

 

⋯

…

  

⋱
 

0

  

 

B]
 
 
 
 

Û(k). (7) 

Equation (7) is abbreviated as, 

 X̂(k)=A̅X(k)+B̅Û(k). (8) 

Substitute eq. (8) into eq. (5). Get the system penalty 

function expression, 

𝐽 = [�̅�𝐗(𝑘) + �̅��̂�(𝑘) − 𝐘𝑟]
T
�̅�[�̅�𝐗(𝑘) + �̅��̂�(𝑘) − 𝐘𝑟]+ 

+Û
T
(𝑘)R̅Û(𝑘).            (9) 

There are N Qs along the diagonal of Q̅ and the last one 

is P. There are N Rs along the diagonal R̅. They are, 

 

{
 
 

 
 Q̅= [

Q ⋯
⋮ ⋱ ⋮

⋯ P

] ,

R̅= [
R   

 ⋱  

  R

]  .

 (10) 

By solving the quadratic programming problem of eq. (9), 

the model control sequence Û(k) can be obtained. Under 

the unconstrained condition of model predictive control 

sequence Û(k). Equation (11) can be obtained by taking the 

derivative concerning Û(k): 

 
∂J

∂Û(k)
=2B̅

T
Q̅[A̅X(k)+B̅Û(k)-Yr]+2R̅Û(k). (11) 

Setting eq. (11) to zero, the minimum value of J under 

the action of the control sequence Û(k) can be obtained. In 

the model predictive controller, A, B, P, Q are semi-

positive definite matrices and R  is positive definite. So, 

B̅
T

Q̅B̅+R̅ is positive definite so that the control sequence 

can be expressed as 

 Û(k) = − (B̅
T

Q̅B̅+R̅)
-1

B̅
T

Q̅(A̅X(k) − Yr). (12) 

3.2. OPTIMIZATION OF MPC CONTROL 

PARAMETERS BASED ON DIFFERENTIAL 

EVOLUTION ALGORITHM 

In MPC, parameters such as penalty coefficients P, Q, R 

the forecast time domain N length needs to be set. To solve 

the problem that the manual method is tedious and difficult 

to achieve a better control effect, this paper established an 

evaluation function for MPC control parameter optimization. 

This function uses a real-coded differential evolution 

algorithm to perform a metaheuristic search in the parameter 

space to complete parameter optimization, which makes the 

MPC achieve a better control effect. 

The DE algorithm uses the difference vectors of different 

individuals in the parameter space to make them move. 

Finally, a solution vector that better matches the evaluation 

function is found. The algorithm flow is shown in Fig. 3. 

Start

Population initialization

Assessing individuals before 
and after crossover

Mutation

Crossover

Is it better than
 the original?

keep new individuals in the 
population

Keep the original individual in 
the population

Stop condition 
reached?

End

Output the best individual 
parameters

No

No

Yes

Yes

 

Fig. 3 – Flow chart of differential evolution algorithm. 

In Fig. 3, population initialization needs to set the number 

and dimension of individuals. In metaheuristic search, 

selecting the number of individuals must consider the 

parameter optimization effect and computing time. This 

system is mainly used to optimize the selection of MPC 

parameters through the DE algorithm. The parameters the 

MPC needs to determine are P, Q, R, and N. Among them, 

the dimension of penalty coefficient P and Q is 2, R is 1, and 

the dimension of time domain length N is 1. So, the 
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dimension of a single individual in the population is 6. 

Initialization also needs to set the individual search range to 

meet the semi-positive definite or positive definite 

conditions of each parameter of MPC. N can only take 

positive integers. The initialized population individuals are 

randomly set in the parameter space in a uniform distribution 

manner. This distribution method can prevent the initial 

individuals from gathering in a specific area, enhance the 

exploration ability of the algorithm, and improve the 

optimization effect. 

The mutation operation of the DE algorithm is 

fundamentally different from that of the genetic algorithm. 

In the DE algorithm, using different mutation algorithms will 

produce different optimization strategies. Record the  i-th 

individual in the population as XI, and use the DE/best/1 

mutation strategy to mutate. The algorithm for generating 

new individuals is, 

 XI
’=xbest+F(xr1–xr2). (13) 

Among them, xbest  is the best individual in the 

population. Xr1  and xr2  are two individuals randomly 

selected in the population. F is the variation scaling factor, 

and its value is a decimal between 0 and 1. 

The crossover operation of the DE algorithm is realized by 

using the roulette wheel method. Generate a random number 

for each dimension of the individual. If the random number 

is greater than the crossover factor, the value of the 

corresponding dimension variation individual xI
’  is 

retained, otherwise the value of the original individual xI
  is 

retained. 

The purpose of tuning the MPC control parameters is to 

achieve the optimal control effect with the minimum 

calculation cost and energy. For this, it is necessary to 

establish a loss function to objectively evaluate the 

performance of the original individuals in the population and 

the new individuals generated by the crossover operation. 

The model uses 4 parameters to be optimized to construct the 

parameter space, and the parameter vector is 

p
i
=[P Q R N]T . The calculation amount of MPC is 

mainly affected by the time domain length N. The 

constructed loss function should include the time domain 

length N to improve the system's real-time performance. The 

loss function of constructing population individuals is 

 Fcost=∑ {[X(k) − Yr(k)]
T[X(k) − Yr(k)]+UT(k)U(k)}n

k=1 +N2. (14) 

Among them, X(k)  is the system state. Yr(k)  is the 

reference trajectory obtained by using the trajectory planning 

method. Both X(k) and Yr(k)  have dimensions 2 and 

consist of displacement and velocity. Equation (14) consists 

of three parts: the cumulative error square value, the 

cumulative energy consumption square value, and the time 

domain length square value during the entire movement 

process from the start point to the endpoint. Therefore, the 

loss function in eq. (14) can comprehensively evaluate the 

individuals in the population from the three aspects of 

control performance, energy consumption, and calculation 

cost. In the optimal selection process of the DE algorithm, 

the original individuals of the population and the new 

individuals generated by the crossover are evaluated using 

eq. (14) respectively. The individual with a smaller Fcost 

value is kept in the population, and the other one is 

eliminated. After reaching the stopping condition, output the 

corresponding parameter value of the best individual. The 

output values are used as the optimal control parameters of 

the MPC. 

4. PHYSICAL TEST 

To verify the real-time control performance of the 

controller designed in this paper, we first use C++ language 

to implement the MPC algorithm in the upper computer and 

do a physical test to observe the control effect of the 

controller. 

The MPC algorithm, the reference trajectory vector Yr 

involved in the calculation is composed of two parts: the 

reference displacement and the reference velocity. 

Therefore, the closed-loop control of the position cannot be 

independently performed like the PI controller. To 

implement the MPC algorithm in the upper computer of the 

parallel platform control center, two functional modules of 

trajectory planning, and motion control need to be 

completed. Among them, the trajectory planning is 

completed immediately when the UI receives the user target 

location information. Store the corresponding reference 

displacement and reference speed in the memory through an 

array. Motion control is done in a 100 mS timer. The running 

process of the upper computer is shown in Fig. 4: 

Start

Parameter initialization

Platform reset

Run key 
pressed?

Trapezoidal trajectory 
planning

Turn on the 100mS track 
tracking timer

End

100mS timer

Kinematics positive 
solution and calculation 

of real-time speed

Calculation platform 
speed control amount

CAN sends the reference 
speed of the robotic arm 

to each driver

End

Convert Platform Velocity 
to Manipulator Velocity 
Using Jacobian Matrix

Use MPC to calculate the 
predictive control 

quantity, and take U(k) as 
the actual control 

quantity

Yes

No

 

Fig. 4 – Flowchart of upper computer MPC algorithm. 

As seen from Fig. 4, this progress must perform parameter 

initialization and reset the platform. Then, if the run key is 

pressed, the trapezoidal trajectory planning starts, and finally 

the 100 ms trajectory tracking timer is turned on. The 

position closed-loop period of the upper computer is 100 mS. 

In the 100 ms timer, the real-time pose of the parallel 

platform is first calculated using the MPR-NR kinematics 

forward solution algorithm. Then use the MPC control law 

to calculate the output U(k) of the MPC. Since the time 

domain length of the control system is N = 3, there are 3 

calculated control quantities. However, only the control 

quantity  U(k)  at this moment is taken out as the actual 

control quantity, and the forecast control quantity U(k+i) is 
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not output. The calculated output U(k) is the acceleration 

control function of the parallel platform. Each servo driver 

can only complete the speed closed loop, so the conversion 

from acceleration to speed is completed by 

 Vr(k) = V(k-1) + U(k)*t/2, (15) 

where t = 0.1 seconds. The trapezoidal trajectory planning 

algorithm is a uniformly variable speed motion and eq. (15) 

calculates the average speed of the parallel platform between 

k-1 time and k-time. Therefore, acceleration control can be 

equivalent to speed control. Then, the acceleration control of 

the platform can be equivalent to speed control. It is then 

mapped to the reference velocity of each manipulator 

through the Jacobian matrix. Finally, the reference velocity 

is sent to each robot arm through the CAN bus to complete 

the control of the workspace of the parallel platform. The 

image of using the MPC algorithm to control the parallel 

platform is shown in Fig. 5. 

 

Fig. 5 –The target attitude parameters and servo tracking image of the 
host computer in the control center. 

 

Fig. 6 – PI controller physical test image. 

Figure 5 shows that the actual running attitude and the 

reference trajectory attitude completely coincide. MPC can 

complete the trajectory tracking task as expected. For the 

same attitude target, the attitude image using the PI controller 

for motion control is shown in Fig. 6. 

It can be seen from Fig. 6 that the PI controller can also 

control the parallel platform to move in the direction of the 

expected trajectory. However, there is a certain error 

between the real-time trajectory image and the reference 

trajectory. During the entire control cycle of trajectory 

tracking, the two control methods are recorded separately, 

the absolute cumulative error between the actual pose of the 

parallel platform and the reference pose.  

The obtained cumulative absolute error data of the two 

control methods are shown in Table 1. 

Table 1 

Cumulative absolute error in trajectory tracking period 

Control 

Method 
∑|e(α)| ∑|e(β)| ∑|e(γ)| 

PI 9.36 19.20 24.74 

MPC 6.64 11.03 9.06 

Control 

Method 
∑|e(x)| ∑|e(y)| ∑|e(z)| 

PI 66.99 95.54 81.95 

MPC 21.95 31.23 31.54 

The first three columns in Table 1 are the cumulative 

absolute errors of the angles in the three rotation directions 

around the axis, and the unit is °. The last three columns are 

the cumulative absolute errors of the displacements of the 

three spatial coordinates in mm. It can be seen from Table 1 

that the cumulative absolute error of the MPC controller in 

the entire trajectory tracking period is much smaller than that 

of the PI controller. It is consistent with theoretical 

expectations and simulation results. 

5. DISCUSSION AND CONCLUSION 

In this part, the state space equation of the parallel 

platform is established from modern control theory.  

Aiming at the trajectory tracking of the parallel platform 

workspace, an MPC is designed to complete the solution of 

the control law. This paper constructs a loss function for 

optimizing MPC parameters based on the swarm intelligence 

optimization idea to obtain better control effects. It uses the 

ADE algorithm to optimize the MPC parameters. Then, we 

successfully deployed the MPC to the control center of the 

upper computer using C++. Finally, the physical objects of 

the parallel platform are controlled, and a good control effect 

is obtained, which verifies the practicability of the model. 

ACKNOWLEDGEMENTS 

Supported by Sichuan Science and Technology Program 

(2021YFQ0003, 2023YFSY0026, 2023YFH0004). 

AUTHOR CONTRIBUTIONS 

Conceptualization: Qiuxiang Gu, XiaoBing Chen and 

Wenfeng Zheng; methodology: Jiawei Tian and Lirong Yin; 

software, Xiaolu Li, Qiuxiang Gu and Siyu Lu; formal 

analysis: Jiawei Tian, Xiaolu Li and Zhengtong Yin; writing 

original draft preparation: Ruiyang Wang, Siyu Lu, 

Zhengtong Yin and Lirong Yin; writing-review and editing: 

Ruiyang Wang, Wenfeng Zheng and Lirong Yin; funding 

acquisition Wenfeng Zheng. All authors have read and 

agreed to the published version of the manuscript. 

Received on 3 April 2023 



248 Six degrees of freedom parallel platform – Part 1 6 

 

REFERENCES 

1. B. Monsarrat, C. M. Gosselin, Singularity analysis of a three-leg six-

degree-of-freedom parallel platform mechanism based on 

Grassmann line geometry, The International Journal of Robotics 
Research, 20, 4, pp. 312–328 (2001). 

2. K.E. Zanganeh, R. Sinatra, J. Angeles, Kinematics and dynamics of a 

six-degree-of-freedom parallel manipulator with revolute legs, 
Robotica, 15, 4, pp. 385–394 (1997). 

3. J. Fu, F. Gao, Y. Pan, H. Du, Forward kinematics solutions of a special 

six-degree-of-freedom parallel manipulator with three limbs, 
Advances in Mechanical Engineering, 7, 5, p. 1687814015582118 

(2015). 

4. D. Zlatanov, M. Dai, R. Fenton, B. Benhabib, Mechanical design and 
kinematic analysis of a three-legged six degree-of-freedom parallel 

manipulator, International Design Engineering Technical 

Conferences and Computers and Information in Engineering 
Conference, American Society of Mechanical Engineers, 9396, 

pp. 529–536 (1992). 

5. M. Liu, Q. Gu, B. Yang, Z. Yin, S. Liu, L. Yin, W. Zheng, W, 
Kinematics model optimization algorithm for six degrees of freedom 

parallel platform, Applied Sciences, 13, 5, pp. 3082 (2023). 

6. Gu, Q. et l., A novel architecture of a six degrees of freedom parallel 
platform, Electronics, 12, 8, pp. 1774 (2023). 

7. C. Chen, H. Pham, Trajectory planning in parallel kinematic 

manipulators using a constrained multi-objective evolutionary 
algorithm, Nonlinear Dynamics, 67, 2, pp. 1669–1681 (2011). 

8. C.T. Chen, T.T. Liao, A hybrid strategy for the time-and energy-efficient 

trajectory planning of parallel platform manipulators, Robotics and 
Computer-Integrated Manufacturing, 27, 1, pp. 72–81 (2011). 

9. J.R.G. Martínez, J.R. Reséndiz, M.Á.M. Prado, E.E.C. Miguel, Assessment 

of jerk performance s-curve and trapezoidal velocity profiles, XIII 

International Engineering Congress (CONIIN), IEEE, pp. 1–7 (2017).  

10. M. Boussoffara, I.B.C. Ahmed, Z. Hajaiej, Sliding mode controller 

design: stability analysis and tracking control for flexible joint 

manipulator, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 66, 

3, pp.161–167 (2021). 

11. Y. Zuo, J. Mei, C. Jiang, X. Yuan, S. Xie, C.H. Lee, Linear active 

disturbance rejection controllers for PMSM speed regulation 

system considering the speed filter, IEEE Transactions on Power 

Electronics, 36, 12, pp. 14579–14592 (2021). 

12. M.S. Ayas, E. Sahin, I.H. Altas, High order differential feedback 

controller design and implementation for a Stewart platform, 

Journal of Vibration and Control, 26, 11–12, pp. 976–988 (2020). 

13. J. Xu, Q. Wang, Q. Lin, Parallel robot with fuzzy neural network 
sliding mode control, Advances in Mechanical Engineering, 10, 

10, p. 23 (2018). 

14. J. Zhao, D. Wu, H. Gu, Performance Evaluation of Stewart-Gough 
Flight Simulator Based on L 1 Adaptive Control, Applied Sciences, 

11, 7, p. 3288 (2021). 

15. Z. Bingul, O. Karahan, Real-time trajectory tracking control of Stewart 
platform using fractional order fuzzy PID controller optimized by 

particle swarm algorithm, Industrial Robot: The International 
Journal of Robotics Research and Application, 2021. 

16. H. Tourajizadeh, S. Manteghi, Design and optimal control of dual-stage 

Stewart platform using feedback-linearized quadratic regulator, 
Advanced Robotics, 30, 20, pp. 1305–1321 (2016). 

17. Z. Bubnicki, Modern control theory, Springer, Berlin, 2005, pp. 

17–37. 

18. N. Kacimi, A. Idir, S. Grouni, M.S. Boucherit, A new combined method 

for tracking the global maximum power point of photovoltaic 

systems, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 67, 3, 
pp. 349–354 (2022). 

19. B. Kouvaritakis, M. Cannon, Model Predictive Control, Springer, 

Switzerland, 2016, pp. 122–164. 
20. M. Abdelwanis, R.A.G.B. El-Sehiemy, Efficient parameter estimation 

procedure using sunflower optimization algorithm for six-phase 

induction motor, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 
67, 3, pp. 259–264 (2020). 

21. K.V. Price, Differential Evolution, in Handbook of optimization, 

Springer, Berlin, 2013, pp. 187–214. 
22. M. Pant, H. Zaheer, L. Garcia-Hernandez, A. Abraham, Differential 

Evolution: A review of more than two decades of research, Engineering 

Applications of Artificial Intelligence, 90, p. 103479 (2020). 
23. C.A. Chen, T.C. Chiang, Adaptive differential evolution: A visual 

comparison, 2015 IEEE Congress on Evolutionary Computation 

(CEC), 2017, IEEE, pp. 401–408. 
24. X. Yao, Y. Liu, G. Lin, Evolutionary programming made faster, IEEE 

Transactions on Evolutionary Computation, 3, 2, pp. 82–102 

(1999). 
25. I. Farda, A. Thammano, A self-adaptive differential evolution algorithm 

for solving optimization problems, International Conference on 

Computing and Information Technology, Cham: Springer 
International Publishing, 2022, pp. 68–76.

 


