
Rev. Roum. Sci. Techn.– Électrotechn. et Énerg.
Vol. 69, 2, pp. 243–248, Bucarest, 2024

1 School of Automation, University of Electronic Science and Technology of China, Chengdu 610054 China.
E-mail: Ruiyang.wang@std.uestc.edu.cn, guqiuxiang@alu.uestc.edu.cn, jravis.tian@std.uestc.edu.cn, siyu.lu@std.uestc.edu.cn,
winfirms@uestc.edu.cn (Corresponding Author)
2 College of Resource and Environment Engineering, Guizhou University, Guiyang 550025, China.
E-mail: ztyin@gzu.edu.cn (Corresponding Author)
3 School of Geographical Sciences, Southwest University, Chongqing, 400715, China. E-mail: xliswu@swu.edu.cn
4 Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge 70803 LA, USA. E-mail: xchen87@lsu.edu
5 Department of Geography and Anthropology, Louisiana State University, Baton Rouge 70803 LA, USA. E-mail: Lyin5@lsu.edu

 DOI: 10.59277/RRST-EE.2024.69.2.21

PARALLEL PLATFORM CONTROLLER BASED ON ADAPTIVE
DIFFERENCE ALGORITHM – PART 1

RUIYANG WANG1, QIUXIANG GU1, SIYU LU1, JIAWEI TIAN1, ZHENGTONG YIN2, *, XIAOLU LI3,
XIAOBING CHEN4, LIRONG YIN5, WENFENG ZHENG1 *

Keywords: Workspace control; Model predictive controller (MPC); Adaptive difference algorithm; Parallel platform control.

There are two main approaches to motion control on parallel platforms: joint space control and workspace control. Joint space
control is an easy-to-implement semi-closed-loop strategy, but its control effect could be better. The workspace control is to obtain
the real-time position of the parallel platform through the forward solution and close the speed and position loop of the parallel
platform in the workspace. This paper uses a model predictive controller (MPC) to control the parallel platform with workspace
control as the research goal. The loss function is constructed based on the swarm intelligence optimization idea, and the adaptive
difference algorithm is used to optimize the parameters of MPC. This part details the research background and the algorithm
design process. Then, the MPC algorithm is implemented on the upper computer using C++, and the physical test is implemented.
The test results show that the controller has a good control effect on the physical platform.

1. INTRODUCTION
Six-degree-of-freedom (6-DOF) parallel robots are widely

used in motion simulation, high-precision pose adjustment, and
CNC machining systems [1–6]. Motion control includes
trajectory planning, trajectory tracking, and other related
content. Aiming at trajectory, some scholars have proposed a
multi-objective constrained evolutionary algorithm [7] and a
trajectory planning method based on time and energy
optimization [8]. In addition, there are relatively simple
trajectory planning methods such as spline interpolation,
velocity trapezoidal curve, and velocity S-curve [9]. Trajectory
tracking [10] mainly includes two technical routes of joint space
control and workspace control, and each technical route has a
variety of control strategies that can be used. Y. Zuo et al.
proposed a linear active disturbance rejection controller for the
PMSM speed control system considering the speed filter [11].
In addition, various control methods, such as high-order
differential feedback control, fuzzy neural network sliding
mode control, and L1 adaptive control [12–16], have been
applied to the 6-DOF parallel platform control.

This paper presented a control model for a 6-DOF parallel
robot. We first established the state-space equation for the
motion of the parallel platform in the workspace based on
modern control theory. At the same time, to reduce the
influence of external noise on the control system, which
leads to inaccurate modeling, this paper also designed a
model predictive controller (MPC) to control the parallel
platform. Then, based on the idea of swarm intelligence
optimization, the loss function of the MPC parameter
optimization was constructed. Then, the MPC algorithm was
implemented on the upper computer of the control center
using C++ language, and the physical test was completed.
The physical test results show that the parallel platform
achieves good real-time control results. Finally, the Adaptive
Differential Evolution algorithm optimized the model's
predictive control parameters. In addition, this paper also
carried out simulation experiments on MATLAB to compare

the MPC algorithm with the PI controller.

2. STATE SPACE MODELING
This paper established a control model for the controlled

parallel platform according to modern control theory [17] to
complete the design of the motion controller of the parallel
platform. In this study, the motion of the parallel platform in
the workspace is decomposed into two parts: the translation
of the moving platform's center of mass and the rotation
around the center of mass.

The time under physical conditions changes continuously,
while the digital control system can only complete the
motion control under the discrete time state. Therefore, when
establishing the control model of the controlled object, it is
first necessary to discretize its motion state. Assuming that
the discrete time step is ts according to Newton's second
law when the center of mass of the parallel platform moves
in translation at a uniform speed in the workspace, the
relationship between the displacement, velocity, and
acceleration of the center of mass of the platform is:

 !S(k+1)=s(k)+v(k)ts+
1
2

a(k)ts2,
v(k+1)=v(k)+a(k)ts.

 (1)

Let the system control function U(k)	=	a(k) state
variable X(k)	=	[s(𝑘)v(𝑘)]! . Writing eq. (1) as a state
space expression yield

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

X(k+1)	=	AX(k)+BU(k),
Y(k)=CX(k),

A= 21 ts
0 1

3 ,

B= 4
1
2

ts2

ts
5 ,

C= 21 0
0 13 .

 (2)

Next, we need to determine the controllability of the above

244 Six degrees of freedom parallel platform – Part 1 2

model. The controllability matrix of the parallel platform
system is:

 [B AB]= 4
1
2

ts2
3
2

ts2

ts ts
5. (3)

Equation (3) shows that the matrix is full rank when ts≠0.
Therefore, the parallel platform system is fully controllable.

According to the relevant conclusions of rigid body
mechanics, the rotation motion of the parallel platform
around the center of mass belongs to the uniform rotation of
a rigid body around a fixed axis. It has the same
mathematical expression as the translational motion of the
center of mass. Therefore, the state-space model developed
in terms of the uniform variable linear motion of the centroid
of the parallel platform is also applicable to the uniform
variable rotation around the centroid.

3. DESIGN OF MOTION CONTROLLER FOR
PARALLEL PLATFORM

The 6-DOF platform used in this study is shown in Fig. 1.

Fig. 1 – Schematic diagram of a six-degree-of-freedom parallel platform.

For the 6-DOF parallel platform, when modeling the state
space of the parallel platform, factors such as the friction
force of the joint joints of each manipulator are not modeled.
Therefore, when designing the controller, it is necessary to
adopt a more robust control method to make the system
achieve a better control effect. MPC [18,19] is a special kind
of control. Its current control action is obtained at each
sampling instant by solving a finite-time domain open-loop
optimal control problem. The current state of the process is
used as the initial state of the optimal control problem, and
only the first control action is implemented in the solved
optimal control sequence. It adopts the model of non-
minimization description, and the method is robust and
stable. Therefore, the MPC method is selected to control the
motion of the parallel platform in this system [19].

There are many methods for parameter optimization [20],
among which Differential Evolution (DE) and its improved
algorithms are often used for parameter optimization of MPC
[21,22]. Adaptive Differential Evolution (ADE) [23,24] is an
improved DE algorithm that uses an adaptive strategy to
adjust the parameters of the differential evolution algorithm
to improve its performance. Due to its good optimization
effect, ADE is selected to complete the parameter
optimization of MPC in this paper [25].

3.1 PARALLEL PLATFORM MODEL PREDICTIVE
CONTROL

The main process of motion control using the MPC control
method consists of three parts: prediction model, rolling
optimization, and feedback correction. The block diagram of
the MPC control structure is shown in Fig. 2.

Fig. 2 – MPC control structure block diagram.

Predictive models can be based on system state space
models, and the state X(k) of the system at time 𝑘 , the
current input U(k) and the calculated expected future input
U(k+i-1|k) to predict the future output y(k+i-1|k). U(k+i-
1|k) is the control time domain, and y(k+i|k) is the
prediction time domain. Each time the control quantity is
calculated, the lengths of the control and prediction time
domains remain unchanged, and the time axis moves by one
unit, forming a rolling calculation effect.

The online optimization controller sets the penalty
function and optimization conditions. The penalty function
must comprehensively consider the system output's process
error, steady-state error, and energy consumption. By
minimizing the penalty function, the optimal control effect

can be obtained. Because external noise and other factors
inevitably affect the controlled object, there will be a certain
deviation between the actual and expected output. Therefore,
the actual output of the controlled object needs to be
measured and fed back. The feedback result is used as the
parameter for calculating the optimal control quantity at the
next moment to complete the control closed loop.

For the model predictive controller, it is assumed that both
the length of the prediction time domain and the length of the
control time domain are N. Let the output Y(k) be equal to
the state X(k) and the reference output be Yr(𝑘) . The
output of step i is predicted to be Y(k+i/k) at time k. Then,
the error between the predicted output and the reference
output at the i-th moment is calculated by

Online optimization
controller Controlled object

Prediction model

Model Feedback
Correction

yref

u(k)

r(k)

x(k)

+

y(k)

+

+
-

yp(k+i|k)

+
+

+
-

5 Ruiyang Wang, et al. 245

 E(k+i|k)=Y(k+i|k) −Yr(𝑘 + 𝑖)

 =X(k+i|k) −Yr(𝑘 + 𝑖). (4)

The set penalty function in the online optimization
controller includes process error, process energy
consumption, and steady-state error. The expression is

𝐽(𝐔) => [𝐞!(𝑘 + 𝑖|𝑘)]𝐐𝐞(𝑘 + 𝑖|𝑘)
"#$

%&'
+𝐔!(𝑘 + 𝑖|𝑘)𝐑𝐔(𝑘 + 𝑖|𝑘) +

 𝐞T(𝑘 + 𝑁|𝑘)𝐏𝐞(𝑘 + 𝑁|𝑘). (5)
Among them, Q is a positive semi-definite matrix with the

same dimension as the state X, and it is a penalty coefficient
for the cumulative error of the process. R is a symmetric
positive definite matrix with the same dimension as U, and it
is a penalty coefficient for the energy consumption of the
process. P is a positive semi-definite matrix with the same
dimension as the state X, and it is a penalty coefficient for
the steady-state error.

The design goal of the parallel platform motion controller
is to solve the optimal control sequence U(k+i/k) so that the
penalty function reaches the minimum value. According to
the state, space eq. (2), the predicted state at time k+i is
expressed by

 X(k+i|k)	=	AiX(k|k)+∑ Ai-jBU(k+j-1|k)i
j=1 . (6)

Denote the predicted state sequence at time k as XE(k)	=	
[X(k|k) X(k+1|k) ⋯ X(k+N|k)]T, the reference output
sequence as Yr	=	[Yr(k) Yr(k+1) ⋯ Yr(k+N)]T , and
the current and future control action sequence as
UE(k)=[U(k|k) U(k+1|k) ⋯ U(k+N-1|k)]T . The state-
space equations for XE(k) and UE(k) are then expressed by,

 XE(k)= F
I
A
⋮

AN
GX(k)+

⎣
⎢
⎢
⎢
⎡

0
B

AB
⋮

AN-1B

0

B

⋯

…

⋱

0

B⎦
⎥
⎥
⎥
⎤

UE(k). (7)

Equation (7) is abbreviated as,

 XE(k)=ANX(k)+BNUE(k). (8)

Substitute eq. (8) into eq. (5). Get the system penalty
function expression,

𝐽 = O𝐀N𝐗(𝑘) + 𝐁N𝐔E(𝑘) − 𝐘*T
!𝐐NO𝐀N𝐗(𝑘) + 𝐁N𝐔E(𝑘) − 𝐘*T+

+UET(𝑘)RNUE(𝑘). (9)

There are N Qs along the diagonal of QN and the last one
is P. There are N Rs along the diagonal RN . They are,

⎩
⎪
⎨

⎪
⎧QN= U

Q ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ P

W ,

RN= U
R
 ⋱
 R

W	 .

 (10)

By solving the quadratic programming problem of eq. (9),
the model control sequence UE(k) can be obtained. Under
the unconstrained condition of model predictive control
sequence UE(k). Equation (11) can be obtained by taking the
derivative concerning UE(k):

 ∂J
∂U+(k)

=2BNTQNOANX(k)+BNUE(k)-YrT+2RNUE(k). (11)

Setting eq. (11) to zero, the minimum value of J under
the action of the control sequence UE(k) can be obtained. In
the model predictive controller, A, B, P, Q	 are semi-
positive definite matrices and R is positive definite. So,
BNTQNBN+RN is positive definite so that the control sequence
can be expressed as

 UE(k)	=− XBNTQNBN+RNY
-1

BNTQN(ANX(k) −Yr). (12)

3.2 OPTIMIZATION OF MPC CONTROL
PARAMETERS BASED ON DIFFERENTIAL

EVOLUTION ALGORITHM
In MPC, parameters such as penalty coefficients P, Q, R

the forecast time domain N length needs to be set. To solve
the problem that the manual method is tedious and difficult
to achieve a better control effect, this paper established an
evaluation function for MPC control parameter optimization.
This function uses a real-coded differential evolution
algorithm to perform a metaheuristic search in the parameter
space to complete parameter optimization, which makes the
MPC achieve a better control effect.

The DE algorithm uses the difference vectors of different
individuals in the parameter space to make them move.
Finally, a solution vector that better matches the evaluation
function is found. The algorithm flow is shown in Fig. 3.

Fig. 3 – Flow chart of differential evolution algorithm.

In Fig. 3, population initialization needs to set the number
and dimension of individuals. In metaheuristic search,
selecting the number of individuals must consider the
parameter optimization effect and computing time. This
system is mainly used to optimize the selection of MPC
parameters through the DE algorithm. The parameters the

Start

Population initialization

Assessing individuals before
and after crossover

Mutation

Crossover

Is it better than
 the original?

keep new individuals in the
population

Keep the original individual in
the population

Stop condition
reached?

End

Output the best individual
parameters

No

No

Yes

Yes

246 Six degrees of freedom parallel platform – Part 1 2

MPC needs to determine are P, Q, R, and N. Among them,
the dimension of penalty coefficient P and Q is 2, R is 1, and
the dimension of time domain length N is 1. So, the
dimension of a single individual in the population is 6.
Initialization also needs to set the individual search range to
meet the semi-positive definite or positive definite
conditions of each parameter of MPC. N can only take
positive integers. The initialized population individuals are
randomly set in the parameter space in a uniform distribution
manner. This distribution method can prevent the initial
individuals from gathering in a specific area, enhance the
exploration ability of the algorithm, and improve the
optimization effect.

The mutation operation of the DE algorithm is
fundamentally different from that of the genetic algorithm.
In the DE algorithm, using different mutation algorithms will
produce different optimization strategies. Record the i-th
individual in the population as XI, and use the DE/best/1
mutation strategy to mutate. The algorithm for generating
new individuals is,

 XI’=xbest+F(xr1-xr2). (13)

Among them, xbest is the best individual in the
population. Xr1 and xr2 are two individuals randomly
selected in the population. F is the variation scaling factor,
and its value is a decimal between 0 and 1.

The crossover operation of the DE algorithm is realized by
using the roulette wheel method. Generate a random number
for each dimension of the individual. If the random number
is greater than the crossover factor, the value of the
corresponding dimension variation individual xI’ is
retained, otherwise the value of the original individual xI is
retained.

The purpose of tuning the MPC control parameters is to
achieve the optimal control effect with the minimum
calculation cost and energy. For this, it is necessary to
establish a loss function to objectively evaluate the
performance of the original individuals in the population and
the new individuals generated by the crossover operation.
The model uses 4 parameters to be optimized to construct the
parameter space, and the parameter vector is
pi=[P Q R N]T . The calculation amount of MPC is
mainly affected by the time domain length N. The
constructed loss function should include the time domain
length N to improve the system's real-time performance. The
loss function of constructing population individuals is

 Fcost=∑ "[X(k) − Yr(k)]T[X(k) − Yr(k)]+UT(k)U(k)(n
k=1 +N2. (14)

Among them, X(k) is the system state. Yr(k) is the
reference trajectory obtained by using the trajectory planning
method. Both X(k) and Yr(k) have dimensions 2 and
consist of displacement and velocity. Equation (14) consists
of three parts: the cumulative error square value, the
cumulative energy consumption square value, and the time
domain length square value during the entire movement
process from the start point to the endpoint. Therefore, the
loss function in eq. (14) can comprehensively evaluate the
individuals in the population from the three aspects of
control performance, energy consumption, and calculation
cost. In the optimal selection process of the DE algorithm,
the original individuals of the population and the new
individuals generated by the crossover are evaluated using

eq. (14) respectively. The individual with a smaller Fcost
value is kept in the population, and the other one is
eliminated. After reaching the stopping condition, output the
corresponding parameter value of the best individual. The
output values are used as the optimal control parameters of
the MPC.

4. PHYSICAL TEST
To verify the real-time control performance of the

controller designed in this paper, we first use C++ language
to implement the MPC algorithm in the upper computer and
do a physical test to observe the control effect of the
controller.

The MPC algorithm, the reference trajectory vector Yr
involved in the calculation is composed of two parts: the
reference displacement and the reference velocity.
Therefore, the closed-loop control of the position cannot be
independently performed like the PI controller. To
implement the MPC algorithm in the upper computer of the
parallel platform control center, two functional modules of
trajectory planning, and motion control need to be
completed. Among them, the trajectory planning is
completed immediately when the UI receives the user target
location information. Store the corresponding reference
displacement and reference speed in the memory through an
array. Motion control is done in a 100 mS timer. The running
process of the upper computer is shown in Fig. 4:

Fig. 4 – Flowchart of upper computer MPC algorithm.

As seen from Fig. 4, this progress must perform parameter
initialization and reset the platform. Then, if the run key is
pressed, the trapezoidal trajectory planning starts, and finally
the 100 ms trajectory tracking timer is turned on. The
position closed-loop period of the upper computer is 100 mS.
In the 100 ms timer, the real-time pose of the parallel
platform is first calculated using the MPR-NR kinematics
forward solution algorithm. Then use the MPC control law
to calculate the output U(k) of the MPC. Since the time
domain length of the control system is N = 3, there are 3
calculated control quantities. However, only the control

Start

Parameter initialization

Platform reset

Run key
pressed?

Trapezoidal trajectory
planning

Turn on the 100mS track
tracking timer

End

100mS timer

Kinematics positive
solution and calculation

of real-time speed

Calculation platform
speed control amount

CAN sends the reference
speed of the robotic arm

to each driver

End

Convert Platform Velocity
to Manipulator Velocity
Using Jacobian Matrix

Use MPC to calculate the
predictive control

quantity, and take U(k) as
the actual control

quantity

Yes

No

5 Ruiyang Wang, et al. 247

quantity 	U(k) at this moment is taken out as the actual
control quantity, and the forecast control quantity U(k+i) is
not output. The calculated output U(k) is the acceleration
control function of the parallel platform. Each servo driver
can only complete the speed closed loop, so the conversion
from acceleration to speed is completed by

 Vr(k)	=	V(k-1)	+	U(k)*t/2 (15)

where t	=	0.1 seconds. The trapezoidal trajectory planning
algorithm is a uniformly variable speed motion and eq. (15)
calculates the average speed of the parallel platform between
k-1 time and k-time. Therefore, acceleration control can be
equivalent to speed control. Then, the acceleration control of
the platform can be equivalent to speed control. It is then
mapped to the reference velocity of each manipulator
through the Jacobian matrix. Finally, the reference velocity
is sent to each robot arm through the CAN bus to complete
the control of the workspace of the parallel platform. The
image of using the MPC algorithm to control the parallel
platform is shown in Fig. 5.

Fig. 5 –The target attitude parameters and servo tracking image of the

host computer in the control center.

Fig. 6 – PI controller physical test image.

Figure 5 shows that the actual running attitude and the
reference trajectory attitude completely coincide. MPC can
complete the trajectory tracking task as expected. For the

same attitude target, the attitude image using the PI controller
for motion control is shown in Fig. 6.

It can be seen from Fig. 6 that the PI controller can also
control the parallel platform to move in the direction of the
expected trajectory. However, there is a certain error
between the real-time trajectory image and the reference
trajectory. During the entire control cycle of trajectory
tracking, the two control methods are recorded separately,
the absolute cumulative error between the actual pose of the
parallel platform and the reference pose.

The obtained cumulative absolute error data of the two
control methods are shown in Table 1.

Table 1
Cumulative absolute error in trajectory tracking period.

Control
Method !|e(α)| !|e(β)| !|e(γ)|

PI 9.36 19.20 24.74
MPC 6.64 11.03 9.06

Control
Method !|e(x)| !|e(y)| !|e(z)|

PI 66.99 95.54 81.95
MPC 21.95 31.23 31.54

The first three columns in Table 1 are the cumulative
absolute errors of the angles in the three rotation directions
around the axis, and the unit is °. The last three columns are
the cumulative absolute errors of the displacements of the
three spatial coordinates in mm. It can be seen from Table 1
that the cumulative absolute error of the MPC controller in
the entire trajectory tracking period is much smaller than that
of the PI controller. It is consistent with theoretical
expectations and simulation results.

5. DISCUSSION AND CONCLUSION

In this part, the state space equation of the parallel
platform is established from modern control theory.
Aiming at the trajectory tracking of the parallel platform
workspace, an MPC is designed to complete the solution of
the control law. This paper constructs a loss function for
optimizing MPC parameters based on the swarm intelligence
optimization idea to obtain better control effects. It uses the
ADE algorithm to optimize the MPC parameters. Then, we
successfully deployed the MPC to the control center of the
upper computer using C++. Finally, the physical objects of
the parallel platform are controlled, and a good control effect
is obtained, which verifies the practicability of the model.

ACKNOWLEDG(E)MENT(S)
Supported by Sichuan Science and Technology Program

(2021YFQ0003, 2023YFSY0026, 2023YFH0004).

AUTHOR CONTRIBUTIONS
Conceptualization, Qiuxiang Gu, XiaoBing Chen and

Wenfeng Zheng; methodology, Jiawei Tian and Lirong Yin;
software, Xiaolu Li, Qiuxiang Gu and Siyu Lu; formal
analysis, Jiawei Tian, Xiaolu Li and Zhengtong Yin;
writing—original draft preparation, Ruiyang Wang, Siyu Lu,
Zhengtong Yin and Lirong Yin; writing—review and
editing, Ruiyang Wang, Wenfeng Zheng and Lirong Yin;
funding acquisition, Wenfeng Zheng. All authors have read

248 Six degrees of freedom parallel platform – Part 1 2

and agreed to the published version of the manuscript.

Received on 3 April 2023

REFERENCES
1. B. Monsarrat, C. M. Gosselin, Singularity analysis of a three-leg six-

degree-of-freedom parallel platform mechanism based on Grassmann
line geometry, The International Journal of Robotics Research, 20, 4,
pp. 312–328 (2001).

2. K.E. Zanganeh, R. Sinatra, J. Angeles, Kinematics and dynamics of a
six-degree-of-freedom parallel manipulator with revolute legs,
Robotica, 15, 4, pp. 385–394 (1997).

3. J. Fu, F. Gao, Y. Pan, H. Du, Forward kinematics solutions of a special
six-degree-of-freedom parallel manipulator with three limbs,
Advances in Mechanical Engineering, 7, 5, p. 1687814015582118
(2015).

4. D. Zlatanov, M. Dai, R. Fenton, B. Benhabib, Mechanical design and
kinematic analysis of a three-legged six degree-of-freedom parallel
manipulator, International Design Engineering Technical
Conferences and Computers and Information in Engineering
Conference, American Society of Mechanical Engineers, 9396, pp.
529–536 (1992).

5. M. Liu, Q. Gu, B. Yang, Z. Yin, S. Liu, L. Yin, W. Zheng, W,
Kinematics model optimization algorithm for six degrees of freedom
parallel platform, Applied Sciences, 13, 5, pp. 3082 (2023).

6. Gu, Q. et l., A novel architecture of a six degrees of freedom parallel
platform, Electronics, 12, 8, pp. 1774 (2023).

7. C. Chen, H. Pham, Trajectory planning in parallel kinematic
manipulators using a constrained multi-objective evolutionary
algorithm, Nonlinear Dynamics, 67, 2, pp. 1669–1681 (2011).

8. C.T. Chen, T.T. Liao, A hybrid strategy for the time-and energy-
efficient trajectory planning of parallel platform manipulators,
Robotics and Computer-Integrated Manufacturing, 27, 1, pp. 72–81
(2011).

9. J.R.G. Martínez, J.R. Reséndiz, M.Á.M. Prado, E.E.C. Miguel,
Assessment of jerk performance s-curve and trapezoidal velocity
profiles, XIII International Engineering Congress (CONIIN), IEEE,
pp. 1–7 (2017).

10. M. Boussoffara, I.B.C. Ahmed, Z. Hajaiej, Sliding mode controller
design: stability analysis and tracking control for flexible joint
manipulator, Revue Roumaine Des Sciences Techniques—Série
Électrotechnique et Énergétique, 66, 3, pp.161–167 (2021).

11. Y. Zuo, J. Mei, C. Jiang, X. Yuan, S. Xie, C.H. Lee, Linear active
disturbance rejection controllers for PMSM speed regulation system

considering the speed filter, IEEE Transactions on Power Electronics,
36, 12, pp. 14579–14592 (2021).

12. M.S. Ayas, E. Sahin, I.H. Altas, High order differential feedback
controller design and implementation for a Stewart platform, Journal
of Vibration and Control, 26, 11-12, pp. 976–988 (2020).

13. J. Xu, Q. Wang, Q. Lin, Parallel robot with fuzzy neural network
sliding mode control, Advances in Mechanical Engineering, 10, 10, p.
1687814018801261 (2018).

14. J. Zhao, D. Wu, H. Gu, Performance Evaluation of Stewart-Gough
Flight Simulator Based on L 1 Adaptive Control, Applied Sciences,
11, 7, p. 3288 (2021).

15. Z. Bingul, O. Karahan, Real-time trajectory tracking control of
Stewart platform using fractional order fuzzy PID controller optimized
by particle swarm algorithm, Industrial Robot: The International
Journal of Robotics Research and Application (2021).

16. H. Tourajizadeh, S. Manteghi, Design and optimal control of dual-
stage Stewart platform using feedback-linearized quadratic regulator,
Advanced Robotics, 30, 20, pp. 1305–1321 (2016).

17. Z. Bubnicki, Modern control theory. Springer, Berlin, pp. 17–37
(2005).

18. N. Kacimi, A. Idir, S. Grouni, M.S. Boucherit, A new combined
method for tracking the global maximum power point of photovoltaic
systems, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 67, 3, pp.
349–354 (2022).

19. B. Kouvaritakis, M. Cannon, Model Predictive Control, Springer,
Switzerland, pp. 122–164 (2016).

20. M. Abdelwanis, R.A.G.B. El-Sehiemy, Efficient parameter estimation
procedure using sunflower optimization algorithm for six-phase
induction motor, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg.,
67, 3, pp. 259–264 (2020).

21. K.V. Price, Differential Evolution, in Handbook of optimization:
Springer, Berlin, pp. 187–214 (2013).

22. M. Pant, H. Zaheer, L. Garcia-Hernandez, A. Abraham, Differential
Evolution: A review of more than two decades of research,
Engineering Applications of Artificial Intelligence, 90, p. 103479
(2020).

23. C.A. Chen, T.C. Chiang, Adaptive differential evolution: A visual
comparison, 2015 IEEE Congress on Evolutionary Computation
(CEC), 2017, IEEE, pp. 401–408 (2017).

24. X. Yao, Y. Liu, G. Lin, Evolutionary programming made faster, IEEE
Transactions on Evolutionary Computation, 3, 2, pp. 82–102 (1999).

25. I. Farda, A. Thammano, A self-adaptive differential evolution
algorithm for solving optimization problems, International Conference
on Computing and Information Technology, Cham: Springer
International Publishing, pp. 68–76 (2022).

