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There are two main approaches to motion control on parallel platforms: joint space control and workspace control. Joint space 
control is an easy-to-implement semi-closed-loop strategy, but its control effect could be better. The workspace control is to obtain 
the real-time position of the parallel platform through the forward solution and close the speed and position loop of the parallel 
platform in the workspace. This paper uses a model predictive controller (MPC) to control the parallel platform with workspace 
control as the research goal. The loss function is constructed based on the swarm intelligence optimization idea, and the adaptive 
difference algorithm is used to optimize the parameters of MPC. This part details the research background and the algorithm 
design process. Then, the MPC algorithm is implemented on the upper computer using C++, and the physical test is implemented. 
The test results show that the controller has a good control effect on the physical platform. 

1. INTRODUCTION 
Six-degree-of-freedom (6-DOF) parallel robots are widely 

used in motion simulation, high-precision pose adjustment, and 
CNC machining systems [1–6]. Motion control includes 
trajectory planning, trajectory tracking, and other related 
content. Aiming at trajectory, some scholars have proposed a 
multi-objective constrained evolutionary algorithm [7] and a 
trajectory planning method based on time and energy 
optimization [8]. In addition, there are relatively simple 
trajectory planning methods such as spline interpolation, 
velocity trapezoidal curve, and velocity S-curve [9]. Trajectory 
tracking [10] mainly includes two technical routes of joint space 
control and workspace control, and each technical route has a 
variety of control strategies that can be used. Y. Zuo et al. 
proposed a linear active disturbance rejection controller for the 
PMSM speed control system considering the speed filter [11]. 
In addition, various control methods, such as high-order 
differential feedback control, fuzzy neural network sliding 
mode control, and L1 adaptive control [12–16], have been 
applied to the 6-DOF parallel platform control. 

This paper presented a control model for a 6-DOF parallel 
robot. We first established the state-space equation for the 
motion of the parallel platform in the workspace based on 
modern control theory. At the same time, to reduce the 
influence of external noise on the control system, which 
leads to inaccurate modeling, this paper also designed a 
model predictive controller (MPC) to control the parallel 
platform. Then, based on the idea of swarm intelligence 
optimization, the loss function of the MPC parameter 
optimization was constructed. Then, the MPC algorithm was 
implemented on the upper computer of the control center 
using C++ language, and the physical test was completed. 
The physical test results show that the parallel platform 
achieves good real-time control results. Finally, the Adaptive 
Differential Evolution algorithm optimized the model's 
predictive control parameters. In addition, this paper also 
carried out simulation experiments on MATLAB to compare 

the MPC algorithm with the PI controller. 

2. STATE SPACE MODELING 
This paper established a control model for the controlled 

parallel platform according to modern control theory [17] to 
complete the design of the motion controller of the parallel 
platform. In this study, the motion of the parallel platform in 
the workspace is decomposed into two parts: the translation 
of the moving platform's center of mass and the rotation 
around the center of mass. 

The time under physical conditions changes continuously, 
while the digital control system can only complete the 
motion control under the discrete time state. Therefore, when 
establishing the control model of the controlled object, it is 
first necessary to discretize its motion state. Assuming that 
the discrete time step is ts  according to Newton's second 
law when the center of mass of the parallel platform moves 
in translation at a uniform speed in the workspace, the 
relationship between the displacement, velocity, and 
acceleration of the center of mass of the platform is: 

 !S(k+1)=s(k)+v(k)ts+
1
2

a(k)ts2,
v(k+1)=v(k)+a(k)ts.              

 (1) 

Let the system control function U(k)	=	a(k)  state 
variable X(k)	=	[s(𝑘)v(𝑘)]! . Writing eq. (1) as a state 
space expression yield 

 

⎩
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⎪
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⎧

X(k+1)	=	AX(k)+BU(k),
Y(k)=CX(k),          

A= 21 ts
0 1

3 ,  

B= 4
1
2

ts2

ts
5 ,    

C= 21 0
0 13 .   

 (2) 

Next, we need to determine the controllability of the above 
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model. The controllability matrix of the parallel platform 
system is: 

 [B AB]= 4
1
2

ts2
3
2

ts2

ts ts
5. (3) 

Equation (3) shows that the matrix is full rank when ts≠0. 
Therefore, the parallel platform system is fully controllable. 

According to the relevant conclusions of rigid body 
mechanics, the rotation motion of the parallel platform 
around the center of mass belongs to the uniform rotation of 
a rigid body around a fixed axis. It has the same 
mathematical expression as the translational motion of the 
center of mass. Therefore, the state-space model developed 
in terms of the uniform variable linear motion of the centroid 
of the parallel platform is also applicable to the uniform 
variable rotation around the centroid. 

3. DESIGN OF MOTION CONTROLLER FOR 
PARALLEL PLATFORM 

The 6-DOF platform used in this study is shown in Fig. 1. 

 

Fig. 1 – Schematic diagram of a six-degree-of-freedom parallel platform. 

For the 6-DOF parallel platform, when modeling the state 
space of the parallel platform, factors such as the friction 
force of the joint joints of each manipulator are not modeled. 
Therefore, when designing the controller, it is necessary to 
adopt a more robust control method to make the system 
achieve a better control effect. MPC [18,19] is a special kind 
of control. Its current control action is obtained at each 
sampling instant by solving a finite-time domain open-loop 
optimal control problem. The current state of the process is 
used as the initial state of the optimal control problem, and 
only the first control action is implemented in the solved 
optimal control sequence. It adopts the model of non-
minimization description, and the method is robust and 
stable. Therefore, the MPC method is selected to control the 
motion of the parallel platform in this system [19].  

There are many methods for parameter optimization [20], 
among which Differential Evolution (DE) and its improved 
algorithms are often used for parameter optimization of MPC 
[21,22]. Adaptive Differential Evolution (ADE) [23,24] is an 
improved DE algorithm that uses an adaptive strategy to 
adjust the parameters of the differential evolution algorithm 
to improve its performance. Due to its good optimization 
effect, ADE is selected to complete the parameter 
optimization of MPC in this paper [25]. 

3.1 PARALLEL PLATFORM MODEL PREDICTIVE 
CONTROL 

The main process of motion control using the MPC control 
method consists of three parts: prediction model, rolling 
optimization, and feedback correction. The block diagram of 
the MPC control structure is shown in Fig. 2. 

 
Fig. 2 – MPC control structure block diagram. 

Predictive models can be based on system state space 
models, and the state X(k) of the system at time 𝑘 , the 
current input U(k) and the calculated expected future input 
U(k+i-1|k) to predict the future output y(k+i-1|k). U(k+i-
1|k) is the control time domain, and y(k+i|k)  is the 
prediction time domain. Each time the control quantity is 
calculated, the lengths of the control and prediction time 
domains remain unchanged, and the time axis moves by one 
unit, forming a rolling calculation effect. 

The online optimization controller sets the penalty 
function and optimization conditions. The penalty function 
must comprehensively consider the system output's process 
error, steady-state error, and energy consumption. By 
minimizing the penalty function, the optimal control effect 

can be obtained. Because external noise and other factors 
inevitably affect the controlled object, there will be a certain 
deviation between the actual and expected output. Therefore, 
the actual output of the controlled object needs to be 
measured and fed back. The feedback result is used as the 
parameter for calculating the optimal control quantity at the 
next moment to complete the control closed loop. 

For the model predictive controller, it is assumed that both 
the length of the prediction time domain and the length of the 
control time domain are N. Let the output Y(k) be equal to 
the state X(k)  and the reference output be Yr(𝑘) . The 
output of step i is predicted to be Y(k+i/k) at time k. Then, 
the error between the predicted output and the reference 
output at the i-th moment is calculated by 
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 E(k+i|k)=Y(k+i|k) −Yr(𝑘 + 𝑖) 

 =X(k+i|k) −Yr(𝑘 + 𝑖). (4) 

The set penalty function in the online optimization 
controller includes process error, process energy 
consumption, and steady-state error. The expression is  

𝐽(𝐔) => [𝐞!(𝑘 + 𝑖|𝑘)]𝐐𝐞(𝑘 + 𝑖|𝑘)
"#$

%&'
+𝐔!(𝑘 + 𝑖|𝑘)𝐑𝐔(𝑘 + 𝑖|𝑘) + 

 𝐞T(𝑘 + 𝑁|𝑘)𝐏𝐞(𝑘 + 𝑁|𝑘). (5) 
Among them, Q is a positive semi-definite matrix with the 

same dimension as the state X, and it is a penalty coefficient 
for the cumulative error of the process. R is a symmetric 
positive definite matrix with the same dimension as U, and it 
is a penalty coefficient for the energy consumption of the 
process. P is a positive semi-definite matrix with the same 
dimension as the state X, and it is a penalty coefficient for 
the steady-state error. 

The design goal of the parallel platform motion controller 
is to solve the optimal control sequence U(k+i/k) so that the 
penalty function reaches the minimum value. According to 
the state, space eq. (2), the predicted state at time k+i is 
expressed by  

 X(k+i|k)	=	AiX(k|k)+∑ Ai-jBU(k+j-1|k)i
j=1 . (6) 

Denote the predicted state sequence at time k as XE(k)	=	
[X(k|k) X(k+1|k) ⋯ X(k+N|k)]T, the reference output 
sequence as Yr	=	[Yr(k) Yr(k+1) ⋯ Yr(k+N)]T , and 
the current and future control action sequence as 
UE(k)=[U(k|k) U(k+1|k) ⋯ U(k+N-1|k)]T . The state-
space equations for XE(k) and UE(k) are then expressed by, 

 XE(k)= F
I
A
⋮

AN
GX(k)+

⎣
⎢
⎢
⎢
⎡

0
B

AB
⋮

AN-1B

0
 
B
 
⋯

…
  
⋱
 

0
  
 
B⎦
⎥
⎥
⎥
⎤

UE(k). (7) 

Equation (7) is abbreviated as, 

 XE(k)=ANX(k)+BNUE(k). (8) 

Substitute eq. (8) into eq. (5). Get the system penalty 
function expression, 

𝐽 = O𝐀N𝐗(𝑘) + 𝐁N𝐔E(𝑘) − 𝐘*T
!𝐐NO𝐀N𝐗(𝑘) + 𝐁N𝐔E(𝑘) − 𝐘*T+ 

+UET(𝑘)RNUE(𝑘).            (9) 

There are N Qs along the diagonal of QN  and the last one 
is P. There are N Rs along the diagonal RN . They are, 

 

⎩
⎪
⎨

⎪
⎧QN= U

Q ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ P

W ,

RN= U
R   
 ⋱  
  R

W	 .

 (10) 

By solving the quadratic programming problem of eq. (9), 
the model control sequence UE(k) can be obtained. Under 
the unconstrained condition of model predictive control 
sequence UE(k). Equation (11) can be obtained by taking the 
derivative concerning UE(k): 

 ∂J
∂U+(k)

=2BNTQNOANX(k)+BNUE(k)-YrT+2RNUE(k). (11) 

Setting eq. (11) to zero, the minimum value of J under 
the action of the control sequence UE(k) can be obtained. In 
the model predictive controller, A, B, P, Q	 are semi-
positive definite matrices and R  is positive definite. So, 
BNTQNBN+RN  is positive definite so that the control sequence 
can be expressed as 

 UE(k)	=− XBNTQNBN+RNY
-1

BNTQN(ANX(k) −Yr). (12) 

3.2 OPTIMIZATION OF MPC CONTROL 
PARAMETERS BASED ON DIFFERENTIAL 

EVOLUTION ALGORITHM 
In MPC, parameters such as penalty coefficients P, Q, R 

the forecast time domain N length needs to be set. To solve 
the problem that the manual method is tedious and difficult 
to achieve a better control effect, this paper established an 
evaluation function for MPC control parameter optimization. 
This function uses a real-coded differential evolution 
algorithm to perform a metaheuristic search in the parameter 
space to complete parameter optimization, which makes the 
MPC achieve a better control effect. 

The DE algorithm uses the difference vectors of different 
individuals in the parameter space to make them move. 
Finally, a solution vector that better matches the evaluation 
function is found. The algorithm flow is shown in Fig. 3. 

 
Fig. 3 – Flow chart of differential evolution algorithm. 

In Fig. 3, population initialization needs to set the number 
and dimension of individuals. In metaheuristic search, 
selecting the number of individuals must consider the 
parameter optimization effect and computing time. This 
system is mainly used to optimize the selection of MPC 
parameters through the DE algorithm. The parameters the 
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MPC needs to determine are P, Q, R, and N. Among them, 
the dimension of penalty coefficient P and Q is 2, R is 1, and 
the dimension of time domain length N is 1. So, the 
dimension of a single individual in the population is 6. 
Initialization also needs to set the individual search range to 
meet the semi-positive definite or positive definite 
conditions of each parameter of MPC. N can only take 
positive integers. The initialized population individuals are 
randomly set in the parameter space in a uniform distribution 
manner. This distribution method can prevent the initial 
individuals from gathering in a specific area, enhance the 
exploration ability of the algorithm, and improve the 
optimization effect. 

The mutation operation of the DE algorithm is 
fundamentally different from that of the genetic algorithm. 
In the DE algorithm, using different mutation algorithms will 
produce different optimization strategies. Record the  i-th 
individual in the population as XI, and use the DE/best/1 
mutation strategy to mutate. The algorithm for generating 
new individuals is, 

 XI’=xbest+F(xr1-xr2). (13) 

Among them, xbest  is the best individual in the 
population. Xr1  and xr2  are two individuals randomly 
selected in the population. F is the variation scaling factor, 
and its value is a decimal between 0 and 1. 

The crossover operation of the DE algorithm is realized by 
using the roulette wheel method. Generate a random number 
for each dimension of the individual. If the random number 
is greater than the crossover factor, the value of the 
corresponding dimension variation individual xI’  is 
retained, otherwise the value of the original individual xI  is 
retained. 

The purpose of tuning the MPC control parameters is to 
achieve the optimal control effect with the minimum 
calculation cost and energy. For this, it is necessary to 
establish a loss function to objectively evaluate the 
performance of the original individuals in the population and 
the new individuals generated by the crossover operation. 
The model uses 4 parameters to be optimized to construct the 
parameter space, and the parameter vector is 
pi=[P Q R N]T . The calculation amount of MPC is 
mainly affected by the time domain length N. The 
constructed loss function should include the time domain 
length N to improve the system's real-time performance. The 
loss function of constructing population individuals is 

 Fcost=∑ "[X(k) − Yr(k)]T[X(k) − Yr(k)]+UT(k)U(k)(n
k=1 +N2. (14) 

Among them, X(k)  is the system state. Yr(k)  is the 
reference trajectory obtained by using the trajectory planning 
method. Both X(k) and Yr(k)  have dimensions 2 and 
consist of displacement and velocity. Equation (14) consists 
of three parts: the cumulative error square value, the 
cumulative energy consumption square value, and the time 
domain length square value during the entire movement 
process from the start point to the endpoint. Therefore, the 
loss function in eq. (14) can comprehensively evaluate the 
individuals in the population from the three aspects of 
control performance, energy consumption, and calculation 
cost. In the optimal selection process of the DE algorithm, 
the original individuals of the population and the new 
individuals generated by the crossover are evaluated using 

eq. (14) respectively. The individual with a smaller Fcost 
value is kept in the population, and the other one is 
eliminated. After reaching the stopping condition, output the 
corresponding parameter value of the best individual. The 
output values are used as the optimal control parameters of 
the MPC. 

4. PHYSICAL TEST 
To verify the real-time control performance of the 

controller designed in this paper, we first use C++ language 
to implement the MPC algorithm in the upper computer and 
do a physical test to observe the control effect of the 
controller. 

The MPC algorithm, the reference trajectory vector Yr 
involved in the calculation is composed of two parts: the 
reference displacement and the reference velocity. 
Therefore, the closed-loop control of the position cannot be 
independently performed like the PI controller. To 
implement the MPC algorithm in the upper computer of the 
parallel platform control center, two functional modules of 
trajectory planning, and motion control need to be 
completed. Among them, the trajectory planning is 
completed immediately when the UI receives the user target 
location information. Store the corresponding reference 
displacement and reference speed in the memory through an 
array. Motion control is done in a 100 mS timer. The running 
process of the upper computer is shown in Fig. 4: 

 
Fig. 4 – Flowchart of upper computer MPC algorithm. 

As seen from Fig. 4, this progress must perform parameter 
initialization and reset the platform. Then, if the run key is 
pressed, the trapezoidal trajectory planning starts, and finally 
the 100 ms trajectory tracking timer is turned on. The 
position closed-loop period of the upper computer is 100 mS. 
In the 100 ms timer, the real-time pose of the parallel 
platform is first calculated using the MPR-NR kinematics 
forward solution algorithm. Then use the MPC control law 
to calculate the output U(k) of the MPC. Since the time 
domain length of the control system is N = 3, there are 3 
calculated control quantities. However, only the control 
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quantity 	U(k)  at this moment is taken out as the actual 
control quantity, and the forecast control quantity U(k+i) is 
not output. The calculated output U(k) is the acceleration 
control function of the parallel platform. Each servo driver 
can only complete the speed closed loop, so the conversion 
from acceleration to speed is completed by 

 Vr(k)	=	V(k-1)	+	U(k)*t/2 (15) 

where t	=	0.1 seconds. The trapezoidal trajectory planning 
algorithm is a uniformly variable speed motion and eq. (15) 
calculates the average speed of the parallel platform between 
k-1 time and k-time. Therefore, acceleration control can be 
equivalent to speed control. Then, the acceleration control of 
the platform can be equivalent to speed control. It is then 
mapped to the reference velocity of each manipulator 
through the Jacobian matrix. Finally, the reference velocity 
is sent to each robot arm through the CAN bus to complete 
the control of the workspace of the parallel platform. The 
image of using the MPC algorithm to control the parallel 
platform is shown in Fig. 5. 

 
Fig. 5 –The target attitude parameters and servo tracking image of the 

host computer in the control center. 

 
Fig. 6 – PI controller physical test image. 

Figure 5 shows that the actual running attitude and the 
reference trajectory attitude completely coincide. MPC can 
complete the trajectory tracking task as expected. For the 

same attitude target, the attitude image using the PI controller 
for motion control is shown in Fig. 6. 

It can be seen from Fig. 6 that the PI controller can also 
control the parallel platform to move in the direction of the 
expected trajectory. However, there is a certain error 
between the real-time trajectory image and the reference 
trajectory. During the entire control cycle of trajectory 
tracking, the two control methods are recorded separately, 
the absolute cumulative error between the actual pose of the 
parallel platform and the reference pose.  

The obtained cumulative absolute error data of the two 
control methods are shown in Table 1. 

Table 1 
Cumulative absolute error in trajectory tracking period. 

Control 
Method !|e(α)| !|e(β)| !|e(γ)| 

PI 9.36 19.20 24.74 
MPC 6.64 11.03 9.06 

Control 
Method !|e(x)| !|e(y)| !|e(z)| 

PI 66.99 95.54 81.95 
MPC 21.95 31.23 31.54 

The first three columns in Table 1 are the cumulative 
absolute errors of the angles in the three rotation directions 
around the axis, and the unit is °. The last three columns are 
the cumulative absolute errors of the displacements of the 
three spatial coordinates in mm. It can be seen from Table 1 
that the cumulative absolute error of the MPC controller in 
the entire trajectory tracking period is much smaller than that 
of the PI controller. It is consistent with theoretical 
expectations and simulation results. 

5. DISCUSSION AND CONCLUSION 

In this part, the state space equation of the parallel 
platform is established from modern control theory.  
Aiming at the trajectory tracking of the parallel platform 
workspace, an MPC is designed to complete the solution of 
the control law. This paper constructs a loss function for 
optimizing MPC parameters based on the swarm intelligence 
optimization idea to obtain better control effects. It uses the 
ADE algorithm to optimize the MPC parameters. Then, we 
successfully deployed the MPC to the control center of the 
upper computer using C++. Finally, the physical objects of 
the parallel platform are controlled, and a good control effect 
is obtained, which verifies the practicability of the model. 
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