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The wind turbine is rapidly becoming one of the world's most significant renewable energy sources. Wind turbines must be massive 

to increase amounts of electrical energy. The blades of a wind turbine are commonly made of fiber materials due to their low cost and 

low weight properties. However, blades are affected by gusts of wind, poor climate factors, uncertain wind loads, lightning storms, 

and gravity loads, resulting in a surface crack of the blade. As a result, it is important to monitor the state of each wind turbine and 

its location fault condition. In this research, a cuckoo-optimized modular neural network (COMNN) is proposed for detecting and 

classifying a crack in the blades of a wind turbine. The method is created using a piezoelectric accelerometer to calculate the blade 

vibration response when it is energized. Cuckoo optimization is applied to initialize and adjust the weight vector of the Modular 

Neural Network. The experimental result shows the COMNN accurately detects and classifies faults in an acceptable time. The 

proposed approaches classify the fault type with an accuracy 98.1 % higher than the existing techniques, such as convolutional neural 

networks (CNN), recurrent neural networks (RNN), and artificial neural network ANN + support vector machine (SVM) algorithms.

1. INTRODUCTION 

Wind energy is one of the world's most significant energy 
sources. Its use has expanded significantly because of the 
current environmental problem and efforts to reduce 
environmental damage. Given its dependability and minimal 
vulnerability to climate change, it has become one of the finest 
alternative sources for the near future. It is critical in the energy 
industry, and all research indicates that the pattern will 
continue. Wind progress during the previous 18 years indicates 
that its significance will not diminish to rise in the future. Large 
and changing loads and extreme weather are typical with wind 
turbines (WT) [1]. As a result, the functional inability of WTs 
exceeds 4 % of their lifetime. For a wind farm, operation and 
costs can range from 20 % to 30 % of electricity cost, and a 
wind turbine can reach 40 % towards the end of its life. A high 
level of maintenance is required to ensure secure, expensive, 
and dependable power generation. This is especially important 
for wind farms off the coast, when wind turbines cannot be 
accessible because of poor weather [2,3].  

In recent years, condition and structural health monitoring 
have been used to detect wind turbine defects [4]. The SHM 
approaches are founded on the concept that a variation in a 
structure’s dynamic features will capture a change in its 
mechanical characteristics [5].  

Sandwich materials, such as composite skins and a 
lightweight, isotropic core, are commonly used to make wind 
turbine blades. These materials were chosen due to the 
necessity to make blades with complex architecture, light 
density, and appropriate dynamic qualities [6]. It has a strong 
fatigue resistance, minimal thermal expansion, and thermal 
conductivity. Furthermore, increasing the blade size causes 
new challenges linked to loads and strains. Sandwich 
structures are made up of two outer skins that cover a 
lightweight inner material. This design has a high degree of 
stiffness and is relatively light. The core is thicker and has a 
lower density than the outer skins. The main purpose is to 
keep the skin from moving around.  

Fault monitoring methods are separated into traditional and 

large-scale fault location strategies in practical application [7]. 

The majority of past research on fault location has used 

traditional approaches. Conventional methods use single-end, 

double-end, and multi-end power line data to locate the 

problem and monitor fault [8]. Traditional approaches in a 

large-scale power system require a minimum of one 

measuring at the end of the line device, but installing 

measurement equipment such as PMU at the end line is not 

cost-effective. Furthermore, if measuring instruments fail, 

which is unavoidable, conventional fault location methods 

make estimating problem location nearly impossible. As a 

result, it appears that wide-area measurement is more realistic 

in power systems. Wide-area monitoring systems are not 

useful in error detection of traditional systems due to the low 

sampling frequency of the measuring instruments. However, 

introducing wide-area measuring instruments, especially 

PMUs, has alleviated this difficulty by capturing the power 

system's dynamic behavior with a high sample frequency.  

As a result, a novel cuckoo-optimized modular neural 

network is proposed in this research for the detection and 

classification of wind turbine blade cracks. Cuckoo 

optimization is applied to initialize and adjust the weight 

vector of the modular neural network. Experimental results 

show that COMNN accurately detects and classifies faults 

within an acceptable time. The proposed approaches classify 

the fault type with an accuracy of 98.1 %, which is higher 

than the existing methods such as convolutional neural 

network (CNN), recurrent neural networks (RNN), and 

artificial neural network (ANN) + support vector machine 

(SVM) algorithm.  

The rest of the paper is formatted in this method. Section 2 

contains a review of the research used as a reference. Section 

3 discusses the proposed hierarchical framework. The 

proposed approach’s graphical outputs, performance 

evaluation, and accuracy are discussed in section 4. The 

conclusion is found in section 5. 

2. LITERATURE SURVEY 

This part shows how several studies have been conducted 

throughout the years to classify faults in wind turbines. This 
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paper reviews and provides an overview of current 

developments in fault detection. 

Zare et al. [9] presented the autonomous data-based defect 

detection algorithm developed using a multilayer deep neural 

network. The simulation result showed that the introduced 

method could robustly classify the fault and has high accuracy.  

Cho et al. [10] presented the Kalman filter that determines 

the valve spool and the pitch angle location with readings 

from the sensors system, and a neural network was used for 

fault diagnosis. The fault diagnostic technique is based on a 

supervised training artificial neural network technology 

capable of detecting a specified fault type. The result showed 

that the introduced method has high accuracy for fault.  

Guo et al. [11] developed the fault detection technique for 

wind turbine gearboxes with coupling faults. The RI-

MPCNN diagnoses all types of fault conditions components 

in the wind turbine gearbox. Results showed that the 

introduced technique increases accuracy and accurately 

detects the faults in wind turbines.  

Nithya et al. [12] found the fault in the wind turbine 

system using an artificial neural network (ANN). Increased 

mechanical element degradation, a significant function of 

asset reduction, and an increase in the expense of regular 

maintenance can all result from system faults. Differences in 

blade angle and pitch mismatch are two possible flaws in a 

wind turbine system. The result showed that the introduced 

method directly improves a system issue.  

Jiang et al. [13] developed an MSCNN structure where 

adaptive fault detection of WT gearbox in diverse 

operational situations has been developed. In terms of feature 

learning, the ability to withstand noise, and performance in 

classification, the MSCNN greatly outperforms the 

traditional CNN in the evaluations.  

Liu et al. [14] presented a fault detection approach using 

generative adversarial nets with synthetic fault data (GANs). 

GAN was developed to address the fault results revealed 

caused by small real-world fault sample data. The result 

indicated that the method was effective in their performance 

because of the SCADA data.  

Xiang et al. [15] presented a convolutional neural network 

used to find flaws in a wind turbine (CNN). A wind turbine 

real-time monitoring system is utilized to create a CNN 

architecture that extracts dynamic changes in data. The 

findings showed that the suggested method has a higher 

systematic evaluation index, reduces false positives, and 

significantly supports decision-makers.  

Miao et al. [16] presented the improved maximum 

correlated kurtosis deconvolution and eliminated various 

sounds in the encoder signal. Real experimental cases 

validated the encoder signal as an alternate tool for defect 

diagnosis of wind turbine gear.  

Wang et al. [17] presented a selection that is a variable 

approach based on principal component analysis with 

numerous criteria for selection for selecting a collection of fault 

signals while retaining the original dataset's data variation. 

Results showed that the model has a high forecast accuracy and 

the ability to identify and estimate the severity of the issue. 

Agasthian et al. [18] presented cuckoo search optimization 

(CSO) as the application of a support vector machine (SVM) 

in a wind turbine to lower operating costs and enhance 

accuracy. According to the results, the CSO model based on 

the SVM algorithm achieved precise defect identification. 

From the above literature review, different traditional 

networks detect cracks in the blades of a wind turbine. Still, 

they have some drawbacks, such as reduced efficiency, lost 

energy production, and less accuracy and specificity. The 

proposed work uses MNN to detect a crack in the blades of 

a wind turbine, but it needs more accuracy. So, the proposed 

cuckoo-optimized modular neural network is used to identify 

cracks in wind turbines. Experiments show that this method 

effectively detected the faults and improved the accuracy. 

3. PROPOSED METHODOLOGY 

Wind energy is the quickest renewable source in the 

world. Because of the current generation of wind turbines' 

large size and remote locations, operational accessibility of 

wind turbines is becoming more and more crucial. Figure 1 

displays the proposed COMNN for detecting and classifying 

the crack on wind turbine blades. This research aims to 

propose a COMNN for fault detecting and classifying the 

cracks on wind turbine blades. 

 

 

Fig. 1 – Proposed method for cuckoo-optimized modular neural. 

3.1. DATASET DESCRIPTION 

This work's data collection, which included 725 high-

resolution camera images of blades, was gathered from wind 

farms in eastern China [19], as shown in Fig 2. During 

maintenance, four defects are inspected: edge erosion, 

coating flaws, fiber defects, and cracks. These four 

categories of defects comprise five classes in the data set, 

including the healthy state. Expert annotations on each faulty 

region's location and classification are ground realities. 

 

 

Fig. 2 – Sample images of cracked wind blade images. 

3.2. DESIGNED MNN FOR WIND TURBINE FAULT 

DETECTION AND CLASSIFICATION 

A modular neural network (MNN) is a DNN with learning 

that has a separate sequence of intermediary components that 

comprise a module that operates under a specific design. This 

intermediate receives Individual network module output as 

input, which aids in the computation of the final output, which 

is resolved using a tangential activation function. MNN 

aspires to shrink a big network into a smaller, more 

manageable one. It improves efficiency by connecting units in 

a way that grows exponentially when more separate networks 

are added. While this complicates the network, it increases 

computing productivity by minimizing computational time on 
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specific activities allocated to divided modules, and tasks are 

done in parallel with module rearrangement to improve system 

adaptability and flexibility. 

The design of the proposed Modular Neural Network. 

Recurrent neural networks with random connections make 

up an expert and gating network. The number of expert 

networks defines the gating network's output units, and the 

signals of at least one of these output units must be nonzero 

and equal to one. We employ the "SoftMax" activation 

function to meet these requirements; precisely, the activation 

of the gating network, denoted ℎ𝑖, is 

ℎ𝑖 =
e𝑤𝑖

𝑡⁄

∑ e
𝑤𝑗

𝑡⁄𝑥
𝑗=1

 ,                                 (1) 

where 𝑤𝑖  stands for the weighting factor of unit i inputs, t for 

temperature, and x for the number of expert networks. P is 

the entire system's output vector  

P = ∑ ℎ𝑖𝑃𝑖
𝑥
𝑖=1 . (2) 

The i-th expert network is denoted by 𝑃𝑖 . Using the 

backpropagation technique, the expert and gating networks are 

modified together during learning to optimize the cost function. 

ln N= ln ∑
ℎ𝑖

σ𝑜

𝑥
𝑖=1 ‖𝑃∗ − 𝑃𝑖

2‖. (3) 

The architecture's purpose is to simulate the dispersion of 

training patterns. The log-likelihood function is used to 

achieve this by using gradient ascent. We show that this 

derivation is given by using the chain rule (1). 

𝜕ln𝑁

𝜕𝑤𝑖
= 𝑠𝑖 − ℎ𝑖. (4) 

The likelihood a network of experts creates the target 

vector is given by 𝑠𝑖: 

𝑠i =

ℎi
σo

‖𝑃∗−𝑃𝑖
2‖

∑
hi
σo

𝑥
𝑖=1 ‖𝑃∗−𝑃𝑖

2‖
 . (5) 

Consider the log probability gradient about the output of 

the ith expert network. In 𝐿 is differentiated about 𝑃𝑖  to give 

𝜕ln𝑁

𝜕𝑃𝑖
=

𝑆𝑖

σ𝑖
2 (𝑃∗ − 𝑃𝑖). (6) 

Finally, we calculate the log probability gradient about σ𝑖
2 

the i-th expert network's variance. In N is differentiated to 

produce 
𝜕ln𝑁

𝜕σ𝑖
2 =

𝑆𝑖

2σ𝑖
4 (‖𝑃∗ − 𝑃𝑖‖ − σ𝑖

2).               (7) 

This expression means that the parameter σ𝑖
2 is weighted 

by the likelihood a posteriori and adjusted toward the sample 

variance ‖𝑃∗ − 𝑃𝑖‖.  

3.3. CUCKOO SEARCH OPTIMIZATION 

The CSO is applied to initialize and adjust the MNN 

weight vector. Due to its unusual lifestyle and aggressive 

reproduction method known as brood parasitism, CSA was 

inspired by a bird species known as cuckoo birds [19]. CSA 

is boosted by Lévy flights, which provide more capability 

than the existing method, rather than random walks like other 

algorithms [20].  

In mathematics, Lévy flights characterize the random 

process. The performance of the levy flight is provided while 

creating a new solution 𝑚(𝑛+1).  

𝑚𝑖
(𝑛+1)

= 𝑚𝑖
𝑛 + β ∙ levy(π), (8) 

where β is a positive step with a size that changes depending 

on the optimization model, and n is the current gene ratio. 

Lévy distribution can be conceptualized as 

levy ~e =  𝑛−π (0< π < 4). (9) 

The Levy flight combines Levy distribution and the step 

value stated in (7). Setting the parameter values is another 

significant benefit of the CSO method. As a result, we need 

to adjust the crucial parameters 𝑃𝑎, and n. The outcome 

shows the convergence rate is unaffected by the parameters 

utilized. This means that CSA does not require fine-tuning. 

4. RESULT AND DISCUSSION 

This part demonstrates and evaluates the COMNN 

technique. The test was performed using MX-POWER in a 

50 W, 14 V variable wind turbine. The proposal is evaluated 

using simulated signals. Table 1 lists the characteristics of a 

wind turbine. Vibration signals are gathered using an 

accelerometer of the piezoelectric variety.  

Regarding defect detection, its frequency sensitivity is 

strong [21,22]. As a result, accelerometers are commonly 

used in health monitoring. A 500 g uniaxial accelerometer 

with a 100 mV/g sensitivity and a resonance frequency of 

roughly 40 Hz was utilized in this experiment. Using the 

COMNN technique, the piezoelectric accelerometer was 

installed on the turbine close to the wind turbine hub to 

record the vibration data displayed in Table 1. 

Table 1 
Characteristics of a wind turbine 

Model  FP-50W-14V 

Rated power 50 W 
Rated rotating rate 900 rpm 

Cut in wind speed 3.6 m/s 

Rated voltage 14 V 
Cut out wind speed  51 m/s 

Start-up wind speed 2.9 m/s 

Rated wind speed 13.6 m/s 
Rotor diameter  1058 mm 

Blade materials Carbon fiber  

 

 

(a) 
 

 

(b) 

Fig. 3 – a) Healthy blade; b) cracked blade. 
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The wind turbine is positioned on a fixed steel platform. 

The wind tunnel has a speed range of 5 to 15 m/s and is used 

to turn on the turbine. The wind speed was adjusted 

continually to imitate the real world's wind conditions. 

Figure 3 shows the healthy and cracked blade. The time-

variant cracked blade generates a vibrational response with 

the frequency content varying with time. In this paper, 

COMNN is used for crack detection in wind turbines. 

The piezoelectric accelerometer is used to collect the 

vibration signals. The subsequent issues were replicated on 

a single blade, with the remaining blades remaining in 

superior shape, and the corresponding vibration signals were 

documented. Their corresponding vibration signals are 

shown in Fig. 4. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4 – Vibration signal of the blade (a) good signal (b) fault signal for 

blade root crack (c) fault signal for a blade's mid-span crack (d) fault 
signal for blade tip crack. 

The vibration signals of a wind turbine blade produced at 

900 rpm from different crack situations are shown in Fig. 5. 

A blade in good condition, a blade with a root crack fault, a 

blade with a mid-span crack fault, and a blade with a tip 

crack fault are all displayed on the vibration signal plot 

(sample number vs amplitude). This results a rudimentary 

notion of the magnitude of obtained vibration signal changes 

time in relation to simulated fault. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5 – Frequency response function of the blade; a) overall range; b) low 
frequency range; c) mid-frequency range; d) high frequency range. 

The frequency response curve in the f = 2 500–6 500 Hz 

range is typically flat at most frequencies, as shown in Fig. 5a. 

The modulation bandwidths emerge because of the frequency 

response function's peaks changing and the value of the 

frequency response changing at the pump rate, according to 

the sideband estimations from the method, which depend on 

the principle of opening and closing cracks. 

Figure 5b contains many peaks and a slope that is 

frequency-dependent. It is challenging to disentangle the 

relationship between the curvature of a healthy blade and that 

of a damaged one. 

Figure 5c has fewer peaks at first. Furthermore, the curves 

are flat for most of this range. As a result, finding a side band 

with a modulated signal would be challenging. 

Figure 5d displays the frequency response curve in a 

frequency range suitable for frequency probing selection. 

The frequency strongly influences the frequency response 

characteristics, and there is a significant variation in the 
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curves of the healthy and injured blades. According to this 

result, the probing frequency should be carefully selected to 

achieve nonlinear modulation efficiently. 

4.1. EVALUATION METRICS 

The results are analyzed using the confusion matrix, which 

has four primary parameters: True Positive (TP), True 

Negative (TN), False Positive (FP), and False Negative (FN). 

The confusion matrix has been used to investigate accuracy 

(Ac) and specificity (Sp) metrics. These metrics are as 

follows: 

Accuracy= 
TP+TN

TP+FP+TN+TF
, (10) 

Specificity = 
TN

FP+TN
. (11) 

Ac denotes the COMNN accuracy and additional fault 

detection techniques, whereas specificity denotes the 

correct/incorrect classification proportion. It is indeed 

important to note that these measurements can help with fault 

detection evaluation. 

 

Fig. 6 – Comparison of faulty detection of the proposed method with 
existing method. 

Table 2 
Comparison of the proposed method with existing method 

Techniques  Accuracy % Specificity %  

CNN+LSTM  95.1 95 
GANs  92.3 92.2 

ANN  93.5 93.3 

Proposed COMNN 98.1 98 

 

The performance of the concurrent techniques (i.e., CNN, 

RNN, and ANN+LSTM) using the same simulation 

parameter of our research work. Table 2 illustrates that 

traditional networks such as CNN, RNN, and ANN+LSTM 

have less accuracy and specificity than the COMNN method. 

The COMNN technique maintains 98.1% and 98 % accuracy 

and specificity. Figure 6 shows the COMNN approach 

improves the overall accuracy by 3 %, 5.8 %, and 4.6%, and 

specificity of 3 %, 5.8 %, and 4.7 % better than CNN, RNN, 

and ANN+LSTM, respectively. From the above comparison, 

the COMNN model has higher accuracy and specificity than 

existing models. 

5. CONCLUSION  

Wind turbines are critical components in the extraction of 

wind energy. This paper presents a piezoelectric 

accelerometer-based classification of vibration signals for 

evaluating wind turbine crack detection and classification 

using a cuckoo-optimized modular neural network 

(COMNN). It describes three wind turbine faults: blade root 

crack, blade mid-span, and blade tip crack. The proposed 

approach is compared with several traditional techniques, 

such as CNN, RNN, and ANN +SVM algorithms. The 

proposed method effectively detects blade cracks in the wind 

turbine. As well as the proposed approach proved to be 

superior in classifying the faults. The result showed that the 

COMNN has 98.1 % accuracy and high specificity. We aim 

to enhance the generality of the proposed method and 

develop it in the future in the presence of limited visibility. 
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