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Speed squirrel cage motor control is an area of research that has been in evidence for some time. In this paper, a nonlinear 
controller is presented for the squirrel cage motor drives, based on a combination between input-output feedback linearization 
control (IOLC) technique and sliding mode control (SMC) to create a new control which is sliding input-output linearization 
(SIOLC) control of squirrel cage motors, where the sliding mode control is used for controlling the speed of squirrel cage motor 
and the input-output linearization control applied for two input witch are flux and current. To test the robustness and performance 
of sliding input-output linearization control (SIOLC) we created a variety of internal and external parameters of the motor. The 
simulation results are done using Matlab/Simulink, which shows the robustness of the sliding input-output linearization control of 
squirrel cage motor responses. 

1. INTRODUCTION 
Squirrel cage motor is one of most machines used in variable 
speed applications because it has certain advantages, such as 
ease of manufacture and maintenance. It is also appreciated 
for its reliability and robustness. However, the simplicity of 
its mechanical structure is accompanied by a high 
complexity in the mathematical model (multi-variable and 
non-linear). 

Due to the significant influence of nonlinearities on 
squirrel cage motor system dynamics, linear control 
techniques are quite good, and they may not meet the system 
specifications, mainly in the case of variable speed 
applications. Among the nonlinear techniques that ensure 
high performance and global decoupling between the outputs 
to control whatever the path profile imposed for the machine, 
one can mention the input-output linearization technique, 
and the other is the sliding mode technique [3, 5, 8]. 

The input-output linearization control is an analytical 
design approach that aims to reduce the original nonlinear 
problem to a simpler linear control problem. The nonlinear 
control system is designed using a two-step procedure [3, 4]. 

Firstly, a nonlinear process model synthesizes a nonlinear 
state feedback controller that linearizes the map between a 
newly manipulated input and the controlled output. In the 
second step, a linear pole placement controller is designed 
for the feedback linearized system. 

The basic principle of sliding mode control consists of 
moving the system's state trajectory toward a predetermined 
sliding or switching surface and maintaining it around this latter 
with an appropriate switching logic. The design of a sliding 
mode controller has two steps: the definition of the adequate 
switching surface and the development of the control law 
(equivalent command and discontinuous command). The 
sliding mode control can offer good properties, such as 
insensitivity to parameter variations [9–11].  

This article discusses a combination of two nonlinear 
controls: input-output linearization control and sliding mode 
control of squirrel cage motors.  

2. MATHEMATICAL MODEL OF SQUIRREL 
CAGE MOTOR 

The dynamic model of the squirrel cage motor is given 

below (dq rotating) wish rewritten in rotation reference 
frame [13]: 

!"
!#
= $!

%
− &

%
𝑇' −

&
%
𝑓Ω,                        (1) 

!("#
!#

= −λ	𝐼)! +𝑤)𝐼)* +
+
,$
φ-* +𝑤-	𝐾φ-! +

&
./"

𝑉)!,  (2) 

!("%
!#

= −𝑤)𝐼)! − λ	𝐼)* −𝑤-	𝐾φ-! −
+
,$
φ-* +

&
./"

𝑉)*,  (3) 

!0&'
!#

= /(
1&
𝐼23 −

&
1&
φ43 + (𝑤2 −𝑤4)φ-*,       (4)	

  50&)
!#

= /(
1&
𝐼26 − (𝑤2 −𝑤4)φ43 −

&
1&
φ46 ,       (5) 

with: 𝜏4 =
/&
7&

, σ = 1 − /(*

/+		/&
, 𝑇! =

"	$!
%$"

"φ&'I() −φ&)I('&, 

σ: scattering Blondel coefficient. 

3. INPUT-OUTPUT LINEARIZATION CONTROL 
The choice of outputs is according to the objectives of 

control. The current is chosen as the first output, while the 
second output is the square of the rotor flux to track the 
purposed control trajectory [3, 4]. 
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The time derivative of the system output ℎ&(𝑥) can be 
expressed as: 
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The degree of ℎ&(𝑥)	is		𝑟& = 1.The time derivative of the 

system output ℎ9(𝑥) can be expressed as: 
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Note that for a controllable system, the total relative 
degree is defined as the sum of all the relative degrees; it 
must be less than or equal to the system order, r ≤ n, with n 
as the system order, and r is total relative degree [6, 7]. 

In the case of the squirrel cage motor system, it is easy to 
verify that the control can't appear for the first time in the 
first derivative of the outputs 𝑦9, so we derivative the outputs 
!:*
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 for the second time as presented in the following [6]:  
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The degree of ℎ9(𝑥)	is	𝑟9 = 2. The global relative degree 
is lower than the order n of the system r	=	 r1	+	r2	=	3	<	n	<5. 

The matrix defines a relation between the input (𝑉23 , 𝑉26	) 
and the output (𝑦&, 𝑦9) is given by the expression: 
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The nonlinear feedback provides to the system a linear 
input/output relation: 
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4. CURRENT AND FLUX LINEAR CONTROL 
The internal inputs (V1, V2) are defined: [5, 6] 
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The error of the track is given by flowing equation: 
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where the coefficients K11,	K21	,	K22 are chosen to satisfy 
asymptotic stability and excellent tracking [1] 
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From (41) and (42) the current and flux transfer function 
is given by the following equation: 
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In closed loops, the current transfer functions have first-
order dynamics, and flux transfer functions have second-
order dynamics. By identifying them to the canonical form: 
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4.1 SPEED SLIDING MODE CONTROL 
The motor speed 𝛺 should track a specific reference speed 
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Ω4IL in the presence of load torque [9–11]. The system is 
controlled so that the error 𝑒(𝑡) = Ω4IL − Ω and its rate of 
change always moves towards a sliding surface. We take n = 
1, the speed control manifold equations can be obtained as 
[11,12]: 
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Consider the Lyapunov function [15] 
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From the Lyunov theorem know that if 3Z		
3#
	is negative 

definite, the system trajectory will be driven and attracted 
toward the sliding surface and remain sliding on it until the 
origin is reached asymptotically [14]. 
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Figure 1 shows a combination between the sliding speed 
control and input-output linearization control (IOLC) of the 
squirrel cage motor that gives a new controller named sliding 
input-output linearization control (SIOLC). The output of the 
sliding speed controller delivers a reference current which 
will be an input for the internal input	𝑉& of the input-output 
linearization control of squirrel cage motors. The structure of 
the input-output linearization controller (IOLC) of the motor 
is composed of different controls; the first one is the 
nonlinear functions A(x) and D(x) which are drawn by using 
Lie derivatives. The second controls are the internal input. 
The final command is the decoupling matrix. 
 

 
Figure 2 shows the structure of SIOLC, composed of two 

controls: the speed sliding mode controller, which contains 
the equivalent control (Isq-eq), calculated using the surface 
theorem, the surface derivative, and the steady state sliding 
mode condition. The other is the discontinuous control or 
correction factor (Isqn), given by the nonlinear saturation 
function. The output of the speed sliding mode controller is 
the	𝐼264IL current, which is an input to the internal output V1 
of the input-output linearization control. 

The central goal of input-output linearization is to 
design a nonlinear control law, as assumed that the inner loop 
control is, in the most suitable case, precisely linearized the 

nonlinear system after appropriate state space modification 
of coordinates. The developer can then build an outer-loop-
control in the new coordinates to obtain a linear relationship 
between the output 𝑌&,	𝑌9 and the internal input 𝑉&,	𝑉9 and to 
satisfy the traditional control design specifications such as 
tracking and disturbance rejection. 

The internal inputs (𝑉&,	𝑉9) pass through the linearizing 
expressions, simultaneously decoupling the control 
variables. The original system will continue receiving the 
inputs Vds, Vqs which are handled by the linearizing block to 
comply with the linearity between inputs	𝑉&,	𝑉9 and 
outputs	𝑦&,𝑦9. 

 
Fig. 1 –  Sliding input-output linearization control of squirrel cage motor. 

Input-ouput linearization control
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5. SIMULATION RESULTS AND DISCUSSIONS 
In Fig. 3, the machine is applied with a load torque of 10 

Nm in a time interval [0.26, 0.75] s and [1.91, 2.3] s. The 
machine's rotation direction is reversed from 157 rad/s to -
100 rad/s in time 2.79 s. When the motor is started with the 
reference speed of 50 rad/s in the time interval [0.05, 1] s, in 
the input-output linearization control, the speed returns to its 
reference after overshooting during the transient regime. 
When the direction of rotation is reversed, the speed 
overshoots and then follows its reference in the steady state. 
The load torque application causes a slight decrease in speed, 
which is quickly rejected. 

 
Fig. 3 – Speed result of input-output linearization control (IOLC) and 

sliding input-output linearization control (SIOLC). 

The simulation results show that the sliding input-output 
linearization control (SIOLC) is robust to the variation of the 
reference speed since the speed follows the reference speed 
at start-up as well as the reversal of the direction of rotation, 
in a very satisfactory way, the application of load torque does 
not influence the speed response.  

 

In Fig. 4, the sliding input-output linearization control 
(SIOLC) ensures the robustness of this technique to high and 
low-speed variations as well as the application of load torque 
(𝑇'=10 Nm) in the time interval [0.26, 0.75] s and [0.91, 
2.3] s. Concerning the input-output linearization control 
(IOLC) can lead to a degradation of the expected 
performances, mainly regarding the tracking of the reference 
speed and the application of load torque. 

 
Fig. 4 –Error speed result of Input-output linearization control (IOLC) 

and sliding input-output linearization control (SIOLC). 

From the Figs. 5 and 6, SIOLC performs better and is more 
capable of forcing flux and torque to track its reference, 
which means the robustness of SIOLC is stronger than 
IOLC, which reduces the system's robustness. 

 
Fig. 5 –Flux result of Input-output linearization control (IOLC) and 

sliding input-output linearization control (SIOLC). 
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Fig. 6 – Torque result of Input-output linearization control (IOLC) and 
sliding input-output linearization control (SIOLC). 

5.1 ROBUSTNESS TESTS 
The results confirm the performances obtained by SIOLC 

via the variation of the rotor resistance (Rr) in the time 
interval [1.5, 2] s and inertia moment (J) in the time interval 
[1.5, 2.4] s. Figs 7 and 8 illustrate the dynamic response of 
the rotor speed and speed error of SIOLC and IOLC. SIOLC 
shows that the speed follows its reference with remarkable 
accuracy against rotor resistance (Rr) variations at high and 
low speeds compared to IOLC, which shows an oscillation 
and overshoot on speed and error speed response.  

From Figs 9 and 10, SIOLC shows that the torque and flux 
response is not influenced by the variation of the rotor 
resistance compared to IOLC, where the torque response 
contains ripples as well as noticing a minimization of the flux 
amplitude during the minimization of the rotor resistance 
value. 

 
Fig. 7 – Speed result of Input-output linearization control (IOLC) and 
sliding input-output linearization control (SIOLC) with Rr variation. 

 
Fig. 8 –Error speed result of Input-output linearization control (IOLC) 

and sliding input-output linearization control (SIOLC) with Rr 
variation. 

 
Fig. 9 – Torque result of Input-output linearization control (IOLC) and 

sliding input-output linearization control (SIOLC) with Rr variation 

 
Fig. 10 –Flux result of Input-output linearization control (IOLC) and 
sliding input-output linearization control (SIOLC) with Rr variation. 

From Figs 11 and 12, SIOLC shows that the speed and 
torque response is not influenced by the variation of the 
inertia moment (J) compared to IOLC where the speed and 
flux response contains ripples during variation of J.  

 
Fig. 11 – Speed result of input-output linearization control (IOLC) and 

sliding input-output linearization control (SIOLC) with J variation. 

 
Fig. 12 –Torque result of Input-output linearization control (IOLC) and 

sliding input-output linearization control (SIOLC) with J variation. 

7. CONCLUSION 
In this paper, we present a study on the combination of two 

nonlinear controls, the sliding mode control, and the input-
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output linearization control, to have a control named the sliding 
input-output linearization control. The performance analysis of 
the SIOLC strategy includes the rotor resistance and load torque 
variations. We validated this method by simulations on a 
nonlinear model of the squirrel cage motor. The obtained 
simulation showed that the SIOLC has excellent robustness to 
parametric uncertainty and disturbances. 
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