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This paper brings into the spotlight the theory of catastrophes and its application for analyzing the equilibrium positions of dynamic 
electrical systems. A study model was adopted for a dc electric motor with series excitation operating in a transient regime. From the 
perspective of the theory of catastrophes, starting from the operating equations of the direct current electric motor with series 
excitation, the functions that describe its behavior in the phase space and the control space were obtained. Then the equilibrium points 
of the chosen model were determined. Also, for a clearer understanding of the results obtained, the evolution of this behavior in the 
phase space and the control space was highlighted graphically using MATLAB software.

1. INTRODUCTION 
Starting from the daily observations, namely, that, in 

everything around us, we are dealing with permanent 
transformations of forms, starting with their generation and 
continuing with their development and destruction, the 
theory of catastrophes was initially born as a study dedicated 
to this issue. 

At the same time, with the development of this concept, 
an essential interest was given to analyzing the singular 
points of a surface from the perspective of practical purposes. 
Thus, the name "catastrophe theory" appeared as a reflection 
of any phenomenological discontinuity. To study these 
discontinuities, René Thom proposed using the topological 
theory of dynamical systems developed by Henry Poincaré. 
E. C. Zeeman further developed the theory, and later Hector 
J. Sussmann, Raphael S. Zahler and T. Poston, and I. 
Stewart, respectively, continued to study this problem and its 
applications [1–9]. The evolution of the parameters 
determines the functioning of dynamic systems in the control 
space, whose values can cause slow changes, respectively, 
fast catastrophic changes, for different critical values. They 
correspond to bifurcation points in dynamic systems. The 
system thus loses its stability and suddenly jumps to another 
state. An edifying example of understanding these 
catastrophic developments is the classic “Zeeman 
catastrophe device”. 

With the development of observation and measurement 
tools and computing technology, new areas of applicability 
and specific methods of solving have been identified. As 
expected, many authors have approached various topics in 
electrical engineering utilizing the catastrophe theory [15–
30] as a promising tool enabling novel and useful theoretical 
and practical interpretations. 

In practical applications, the behavior of a dynamic system 
can present a continuous or discontinuous evolution. In this 
last situation, it turns out that the study of a surface's 
discontinuities (of singular points) sometimes determines a 
special meaning. For the analysis of the phenomena that may 
appear, the critical points of a function are calculated (for 
which the first-order differential is zero), which allows 
highlighting its character as a Morse function (the second-
order differential calculated at the critical points is non-
degenerate). The importance of Morse functions lies in their 
structural stability, which means that if a disturbance is added 
to such a function, the function does not change in structure. 

In the operation of electric machines, we encounter 
situations characterized by an unexpected evolution of the 
state parameters that can lead to the catastrophic destruction of 
the working machine. Stability and control aspects have been 
addressed over time, and many analyses and proposed 
solutions have been put forward, such as those in the following 
reported contribution [31–35]. 

The article aims to study how the theory of catastrophes can 
be applied to the study of the dynamic stability corresponding 
to the operation of an electric motor. 

2. STUDY OF SINGULARITIES AND ANALYSIS OF 
EQUILIBRIUM POSITIONS WITHIN THE 

CATASTROPHES THEORY 
An important aspect of the theory of catastrophes is the 

types of singularities in one variable (fold catastrophe; cusp 
catastrophe; swallowtail catastrophe, butterfly catastrophe) 
and in two variables (elliptical umbilicus catastrophe; 
hyperbolic umbilicus catastrophe; parabolic umbilicus 
catastrophe), whose analysis allowed the assessment of the 
stability of the equilibrium positions, as well as the structural 
stability (universal relevances). 

Thus, for elementary catastrophes, the study is performed 
in the phase space, whose coordinates are the variables x (or 
x and y) and the parameters a, b, c … as well as in the control 
space, whose coordinates are a, b, c … . 

The significance of universal relevances is, in general, a 
potential V(x, a, b, c …) or V(x, y, a, b, c …), and the study 
of catastrophes is performed by determining the set of 
equilibrium positions corresponding to this potential, which, 
written for a single variable, is: 

 ∂V/∂x = 0. (1) 

Next, the set of singularities is obtained by eliminating 
variable x in the following equations: 

∂V/∂x = 0,		 ∂𝑉!/∂𝑥! = 0 (2) 

According to the theory, a section through the surface of 
the phase space (Fig. 1) highlights the branch ABC and the 
segments AE and DB represents the sudden transitions from 
half branch to another. 

Thus, a relation of form is obtained f (a, b, c …) = 0, which 
in the control space represents a surface. The existence and 
stability of equilibrium positions are assessed according to the 
position of the point coordinates (a, b, c …) from the control 
space as projected to the control surface [10]. 
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It is observed that the operating point jumps, on the 
characteristic obtained, from point A directly to point E, 
without passing through the portion A0E, respectively. If the 
characteristic is traversed in the opposite direction, the 
operating point jumps from point D directly to point B, 
without passing through the D0B portion. If these rapid 
transitions are made with significant changes in process 
parameters, they can lead to catastrophic events in operation. 

 
Fig. 1 – Section through the surface of the phase space. 

Therefore, we can study the dynamic behavior of a system 
by investigating if, in its operation, there are these sudden 
transitions and, if so, by determining the coordinates of the 
equilibrium points. The impact of these transitions at the 
system level must also be evaluated. We can do all this 
starting from a system of equations that describes the 
dynamic functioning of the system, the search for the 
potential as a function, and its equilibrium points. 

3. THE MODEL USED AND ITS ANALYTICAL 
DESCRIPTION 

The model in question is that of a dc motor with series 
excitation. The series motors are robust and easily withstand 
overloads, torque shocks, and ample supply voltage drops, 
mainly used in electric traction and heavy electrical duty. 

During the dc machine's operation, the rotor's winding 
sections are successively in contact with the brushes of the 
collector blades. When the induced electromotive voltages 
appear in the short-circuited sections, currents will run in 
these circuit segments. This commutation between two 
collector blades leads to the initiation of an electric arc, a 
phenomenon called the switching of the direct current 
machine. These "sparks" at the collector lead to rapid 
damage of the brushes and slats, a phenomenon which must 
be avoided. The windings of the auxiliary poles, together 
with the compensation windings carried by the main poles, 
constitute the series excitation of the machine, which has the 
role of compensating the magnetic reaction field of the rotor, 
fixing the physical neutral axis, and radically improving the 
switching of the dc machine. The considered a scheme 
without field rheostat so that the series excitation winding, 
arranged on the main poles of the machine, is traversed by 
the entire rotor current and creates the main magnetic 
inductor field to which it is added the reaction field from the 
inductor. In this way, the induced electromotive voltage is 
load dependent [11]. 

The equivalent circuit characterizes the model chosen for 
the in transient operation regime in Fig. 2, for which the 
stability of the equilibrium positions determined after the 
irregular change of the mechanical load is analyzed, from the 
perspective of catastrophe theory. 

 
Fig. 2 – The studied model. 

The notations used in the scheme of the chosen model are 
the following: 
• U – motor supply voltage; 
• RA – inductor winding resistance (rotor); 
• LA – inductance of the inductor winding; 
• RE – excitation winding resistance; 
• LE – excitation winding inductance; 
• LEA = LAE – mutual inductance of the coupling 

existing between the inductor and the excitation 
windings. 

• iA(t) – instantaneous value of the induced current; 
• iE(t) = iA(t) – instantaneous value of the excitation 

current (the two windings are connected in series); 
• m(t) – instantaneous value of the torque developed at 

the motor shaft; 
• mr(t) – instantaneous value of the torque applied to the 

motor shaft by the load. 
The transient regime equations for the considered model 

are [12,13]: 

⎩
⎨

⎧U	=	[RA+	RE+	LEAΩ(t)]	iA(t)	+	(LA+	LE) diA(t)
dt

m(t)	=	LEA	iA2 (t)
m(t)-mr(t)	=	JRed

dΩ(t)
dt

, (3) 

or 

,
(LA+LE)

diA(t)
dt
	=	U -– LEAΩ(t)	iA(t)	– (RA+	RE)	iA(t)

JRed
dΩ(t)

dt
=	LEA	iA2 (t)	– mr (t)

, (4) 

where JRed is the total moment of inertia of the reduced drive 
system at the motor shaft and Ω(t) angular velocity of the shaft. 

Next, we will consider for simplicity reasons: 
L	=	LA+	LE, 

 R	=	RA+	RE, (5) 

     mr (t)	=	k	Ω(t), 

where k is a proportionality constant, accounting for a 
resistant torque proportional to the rotor’s speed. 

The system of eq. (4) will be written as: 

,
L diA(t)

dt
=U –	LEAΩ(t)iA(t)	–	R	iA(t)

JRed
dΩ(t)

dt
=LEA𝑖"!(t)– k	Ω(t)		.

               (6) 

Assuming a small perturbation field, which produces, in turn, 
a very small additional current i1A(t), equations (6) become: 

,
L diA(t)

dt
	=	U	–	LEA	Ω(t)	[iA(t)	+	i1A(t)]	–	R	iA(t)

JRed
dΩ(t)

dt
	=	LEAiA(t)	[iA(t)	+	i1A(t)]	–	k	Ω(t) ,

 (7) 

with which the equilibrium positions are rewritten as: 

e(t) =LEAΩ(t)

RA

iE(t)=iA(t) LA

U

RE

LE
+

-

m(t)

mr(t)
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/0	=	U	–	LEA	Ω(t)	[iA(t)	+	i1A(t)]	–	R	iA(t)
0	=	LEAiA(t)	[iA(t)	+	i1A(t)]	–	k	Ω(t).        (8) 

To determine the current function iA(t), the angular velocity 
Ω(t) is eliminated  between the equations of system (8). 

We thus obtain the single equation: 
 LEA

2iA(t)	[iA(t)	+	i1A(t)]2+k	R	iA(t)	– k	U	=	0 (9) 

or using notations: 
	u	=	iA(t)	0	LEA, 

ξ	=	i1A(t)	0	LEA, 

ν	= k	R
LEA

, (10) 

γ	=	k	U1
1

LEA
, 

equation (9) has the form 
 u3+	2ξu2	+	(ξ2+	ν)u – γ	=	0. (11) 

Using the variable change 

 u	=	x	– 2
3

ξ, (12) 

equation (11) is written: 

 x3–	( 1
3

ξ2–	ν)	x	–	( 2
27

ξ3+ 2
3

ξ	ν	+	γ)	=	0, (13) 

respectively 
 x3	–	ax	–	b	=	0, (14) 
where: 

 a	= 1
3

ξ2– ν, (15) 

 b	=	 2
27
	ξ3+ 2

3
	ξ	ν	+	γ.  

If we derive once again the relation (14), we obtain 
 3	x2–	a	=	0. (16) 

In according with (2), by removing variable x between 
equation (14) and its partial derivative (16) concerning x, the 
implicit equation is obtained, which is the semicubical 
parabola, symmetric to the axis Oa 

 4	a3–	27	b2=	0, (17) 

that is the so-called cusp catastrophe [14]. 

4. NUMERICAL STUDY AND ANALYSIS OF THE 
RESULTS 

For the numerical data proposed to be considered for our 
numerical example (see Table 1), it should be noted that for 
the actual values of the currents considered in the simulation, 
the magnetic cores are unsaturated so that the inductances 
mentioned above can be approximated as constant, regardless 
of current level through the two windings. 

Table 1 
Operating parameters for the chosen model 

Property Value 
U (V) 220 

RA (Ω) 0.8 
LA (H) 0.02 
RE (Ω) 0.4 
LE (H) 0.563 
LEA=LAE (H) 0.0796 
JRed (kg∙m2) 4.5 

iE(t)=iA(t) (A) 4 
Ω (rad/s) 676.07 

k (J∙s/rad) 0.066 

 
Using the Matlab software, figures show the phase space 

determined by equation (14) and the parameter space 
determined by equation (17), respectively. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3 – Phase space for different variable domains. 

Among the results obtained by representation in the phase 
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space, the phenomenology in Fig. 3 was interpreted, in the 
sense of the approached theory, resulting in the graphical 
variations in Figs. 4 and 5. 

Thus, Fig. 4 represents, for different parameter values (a = 
–2, a = –1, a = 1), the phase space sectioned with a vertical 
plane in the cuspidian surface. For these values, Fig. 5 was 
made in which the sections from the phase space were 
represented. These highlight the functional changes of the 
electric motor chosen for the study. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4 – Phase space with the coordinates of the interest points space for   
a= –2; a = –1; a = 1. 

 
(a) 

 
(b) 

 
(c) 

Fig. 5 – Sections in the representation of the phase space for a = –2;  
a = –1; a = 1. 

 
(a) 
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(b) 

 
(c) 

Fig. 6 – Section details in the phase space representation for a = – 2. 

 
(a) 

 
(b) 

Fig. 7 – Section details in the phase space representation for a = – 1 and  a = 1. 

 
Fig. 8 – Bifurcation in the parameter space. 

According to the theory, a section through the surface of 
the phase space (Fig. 6), represents the sudden transitions 
from a half branch to another, which, when ν is close to the 
unit, can be done for small parameter values b, respectively 
of the additional current i1A(t). 

Otherwise, the manifestation of some possible 
phenomenon is observed by solving equation (14) and 
analyzing its roots following the location inside or outside 
the surface delimited by the bifurcation in the space of the 
parameters in Fig. 8: 

- 3 real roots if the coordinate point (a, b) is inside a 
region; 

- only one real root if the coordinate point (a, b) is outside 
this surface; 

- a single real root and a real double root if the coordinate 
point (a, b) is located on the semi cubic parabola (cusp). 

In the case of the considered application, the above 
observations are illustrated in Fig. 8. 

5. CONCLUSIONS 
Currently, the theory of catastrophes is applied in both 

technical and economic or social scenarios, the results being 
remarkable so that its introduction in the study of the operation 
of electrical engineering equipment can only be beneficial. 

The study refers to the stability of DC motor operation 
under linearly increasing mechanical load. According to the 
catastrophe theory, equation (14) and its partial derivative 
concerning x, allows us to establish the set of singularities for 
the case of a single variable. After substituting for the variable 

 in the two relationships, we get an equation of form f(a,b, 
…) = 0. The function f defines a surface in the control space 
(parameters a and b). Depending on the position of the 
coordinate point (a, b, …) concerning this surface, one can 
determine the number of possible equilibrium positions for the 
considered dynamic system and the stability specific to these 
equilibrium positions. 

Functions can be structurally stable (e.g., f(x) = x2) or 
structurally unstable (e.g., f(x) = x3). The latter can be 
transformed into structurally stable functions if polynomial 
terms of degree less than n are conveniently added. 

For instance, according to the theory of catastrophes 
(theoretically illustrated in Fig. 1), the operation of the motor in 
the case of a = –2 puts in evidence the extremum points A and 
D, corresponding to the catastrophic transitions toward the new 
functioning points A’ and D’ respectively, as shown in Fig. 5a. 

That allows us to notice a transition from the functioning 
point A (characterized by b = 0.55 – placed at the interior of 
the surface delimited by the bifurcation in the phase space of 
Fig. 8) to the point A’ (b = 7.9 at the exterior domain described 
by the phase space bifurcation – Fig. 8). That means that the 
dynamic functionating is changing its coefficients and 
transforms such as from three real solutions it will remain one. 
Therefore, point A in the control space (determined by the 
parameters a= –2 and b=0.55), located inside the domain 
bounded by the bifurcation, corresponds to three stable 
equilibrium positions in the phase space. Each may transition 
to a single stable equilibrium position from the phase–space 
corresponding to point A' in the control space (determined by 
the parameters a= –2 and b=7.9), located outside the domain 
bounded by the bifurcation. 

Analogously, for the second transition, we will have a leap 
from functioning point D (characterized by b = 5.54 – placed 

x
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at the exterior of the surface delimited by the bifurcation in 
the phase space) to point D’ (b = – 1.9) – also placed at the 
exterior of the surface mentioned above), meaning that the 
dynamic functioning equation remains under a form 
exhibiting a single real-valued solution. 

Comparing the results obtained for a = –1 and a = 1 with 
the theoretical curve shown in Fig. 1, we conclude that we 
have no such extreme points, which leads to the conclusion 
that the electric motor has an operation without sudden and 
catastrophic transitions. 

The results obtained with the catastrophe theory can help 
analyze and predict the resulting transient regime and size the 
automation circuitry in case of successive, short-term power 
outages, which may lead to a catastrophic malfunction for the 
electric machine. 

In this sense, the authors intend to assess some other 
electrical machines under several faulty operating conditions 
as a follow-up to this paper. 
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