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The present work continues the previous article published in the International Journal of Energy (Elsevier, 2019). Our previous 
study aimed to develop a new, innovative method based on neural network algorithms to predict an instantaneous command. A new 
control strategy for photovoltaic systems was presented in [1]. This command is based on the neuronal network (NN) technique. To 
our knowledge, this technique has never been used in this field for that objective. The authors of this work used it to synthesize 
control laws for electronic power converters.  
It should be noted that the newly designed algorithm based on neural networks is expected to be more robust with a good 
performance concerning tracking speed and precision. Moreover, the present research work aims at providing a robust neural 
structure against noisy empirical data, thus allowing the prediction of a new command. Indeed, in the current work, we will 
examine the parameters affecting four MPPT controls in addition to the new neural network-based algorithm developed in [1]. 
 

1. INTRODUCTION 
Photovoltaic solar energy directly converts a portion of 

solar radiation into electrical energy. This energy 
conversion is carried out using a photovoltaic (PV) cell 
based on a physical phenomenon known as the photovoltaic 
effect of producing an electromotive force when the cell's 
surface is exposed to light. The generated voltage can vary 
depending on the materials used to manufacture the cell. 
The combination of several ones PV seriated/parallel results 
in a generator (GPV) that is a characteristic non-linear 
current-voltage with a maximum power point [1–3]. 

The characteristic I-V of the GPV depends on the lighting 
level and temperature of the cell and all aging. Moreover, the 
operating point of the GPV is directly dependent on the load 
it supplies. Therefore, a matching stage between GPV and 
the load to couple the two elements as perfectly as possible is 
presented to extract every moment the maximum power 
available with terminal GPV [1–4]. 

The perfect matching problem between a photovoltaic 
generator and a continuous load must be solved. A 
technological obstacle in this type of coupling is the problem 
of the transfer of maximum power from the photovoltaic 
generator (GPV) to the load, which often needs better 
adaptation. The operating point is sometimes far from the 
maximum (MPP) power. The literature provides many 
solutions on the control algorithm that searches for maximum 
power point when the GPV is coupled to a load through a 
static converter [5–15]. 

Static converters suitable for solar PV are often called 
“solar dc/dc converters” in the trade. They aim to adapt the 
electrical energy from photovoltaic panels to power 
alternative-fueled loads. 

Some regulators seek the optimum point of operation 
named MPP (maximum power point) corresponding to a 
voltage and an optimal PV panel current (appointed, 
respectively Iop and Vop) for that the tracking of the maximum 
power depends on several physical parameters [7,8]. 

Indeed, optimizing energy in a photovoltaic conversion 
chain is still a subject of study. Tracking the maximum 

power point is considered the most relevant solution to 
ensure the maximum power extraction that a photovoltaic 
generator can provide key elements of any PV system. 
Several methods of maximum power point tracking 
(MPPT) have been developed and presented. Many of them 
have proven themselves experimentally. The literature 
offers many solutions for the MPPT control algorithm.  

This article proposes a new MPPT command based on 
artificial neural networks (ANN). It is the first time this 
article's authors have suggested this command. To present this 
command, a quick analysis of the operation of three classic 
MPPT commands is given to understand the properties of the 
maximum power point generated by each. A study was made 
possible thanks to a rich experimental database describing the 
operation of these three different MPPT commands and the 
resulting ripple rate around their MPPs.  

Artificial Neural Networks (NN) offer several 
possibilities and solutions to problems related to modelling, 
identification, and control.  

Indeed, this work has developed a new configuration 
different from those already proposed for the old neural 
MPPT algorithms. We will test the robustness of all four 
MPPT commands against different acquisition system 
sampling frequencies. Finally, we use the better MPPT 
control with a better ripple rate and less loss.  

The tracking results of the Neuronal algorithm and the 
power yields are very satisfactory compared with those of 
the classical MPPT algorithms developed in this study. 

The sampling frequency is another parameter influencing 
the work of a dc/dc converter. Indeed, the sampling 
frequency is an essential parameter of tracking an MPP, 
particularly when determining photovoltaic system 
response time, the ripple, and mainly loss of power. 

In addition, this work is an analysis and comparative study 
between four MPPT techniques, including the new technical 
algorithm based on neural networks developed in [1] in all 
aspects begotten by changing the sampling frequency. 

A deduction on the best MPPT command that reaches the 
maximum power point with the most excellent execution 
speed is made, and that which generates the MPP with a 
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low ripple rate is detected. 

2. DIFFERENT ALGORITHMS OF COMMANDS 

2.1. ALGORITHM PERTURBATION AND 
OBSERVATION (P&O) 

The P&O algorithm is called “hill-climbing”. Both 
names refer to the same algorithm depending on how it is 
implemented. Hill-climbing consists of a perturbation on 
the duty cycle of the power converter and P&O, a 
perturbation in the operating voltage of the dc link between 
the PV array and the power converter. In the case of hill-
climbing, perturbing the duty cycle of the power converter 
implies modifying the voltage of the dc link between the 
PV array and the power converter, so both names refer to 
the same technique [21–30]. 

2.2. IMPROVEMENT OF PERTURBATION AND 
OBSERVATION (P&O) ALGORITHM 

To overcome the significant disadvantage of the 
deviation of the P&O method when searching the MPP, 
HANNES proposes an improved version of this algorithm 
during the rapid rise of insolation levels [31–36]. The latter 
introduced a new condition in the “Yes” branch of the 
condition in DPpv(k) > 0, the flowchart structure of the P&O 
algorithm [1–3]. 

If the sign DPpv(k) is positive during the last two previous 
cycles or if the direction of the disturbance was in the same 
direction in the last two cycles, then the direction of the next 
disturbance will be reversed concerning the previous 
direction without the need to hold taking power into account. 

All the possible combinations are counted in 16 possible 
combinations having as inputs DPpv(k), DPpv(k-1), DVref(k), 
DVref(k-1), and as resulting output for the direction of the 
next disturbance, the reference voltage DVref(k+1). 

Therefore, this improvement is quite the opposite of the 
simple P&O method, where the increase in the output power 
twice successively in the same direction of the disturbance 
can result from a deviation from the true MPP. While in the 
improved version, if the increase in output power is caused 
by the disturbance of the output voltage and not by an 
increase in the insolation, the value for P(k) will decrease 
immediately in the opposite direction proposed by the control 
and thus the return to the previous direction. 

If an increase in insolation causes an increase in power, the 
power will still increase even with this reversal of the 
disturbance. Therefore, the system will oscillate around its 
previous operating point until the increase in insolation ends. 

2.3. INCREMENTAL CONDUCTANCE 
The incremental conductance algorithm is because the 

slope of the curve power vs. voltage (current) of the PV 
module is zero at the MPP, positive (negative) on the left of 
it and negative (positive) on the right VP = 0 (IP = 0) at the 
MPP [1–5,9,35]. 

2.4. CONCEPTS OF NEURONAL COMMANDS 

2.4.1. ORDERING PROCESS BY BACKPROPAGATION 
We will try in what follows to develop a neural 

controller, free of any burden imposed by the PV system, 
which requires putting into play climate variables. And this 
is to improve quality control in all its perspectives, 
probably enhancing power efficiency [1,37]. 

Accordingly, the reasoning above, we structured the 

block diagram in Fig. 1, the overall operation of the system 
in the presence of the neural controller. Note that in the 
case of a resistive load, the feedback information on the 
voltage across the load (battery) is unnecessary for the 
neural controller. 
 

 
Fig. 1 – Structure of the control system by the neural network [1]. 

We chose a four-layer structure: an input layer, an output 
layer, and two hidden layers with 10 neurons, respectively, in the 
first and eight in the second. Another problem must be 
overcome by determination, not learning, done by trial and error. 

3. OPERATION IN STABLE ENVIRONMENTAL 
CONDITIONS 

For this series of simulations, the temperature parameter 
T and sunshine S are constantly maintained equal to 
standard test conditions, respectively T = 25 °C and S = 
1000 W/m². The main interest will be focused on the power 
ripple caused by oscillations around the PPM, and its 
dependence on the sampling frequency of various technical 
MPPT and the dc-dc chopper used [1–6]. 

3.1. THE METHOD OF P&O 
Figure 2 shows the panel output signal, the controller's 

duty ratio (d), and the operating voltage. The system is 
combined with a buck chopper [11–18]. 
 

 

Fig. 2 – MPPT simulation of the P&O method combined with a buck 
chopper under stable environmental conditions  

(T = 25 °C and S = 1000 W/m²). 

We note that the controller still adjusts the duty cycle d 
quickly to reach a stable power level. 

The simulation in Fig. 3 shows the actual case of the 
controller that can never achieve the optimal cycle report d 
but continues to oscillate around a limit value [1–3]. 

The amplitude of the control oscillation depends directly 
on the sample rate (as we shall see in Fig. 4), and the 
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constant increment given to the controller. The latter, when 
it is essential, enables rapid convergence to the appropriate 
controller PPM with an accuracy near, which gives rise to 
oscillations of the command around a specific value, which 
in turn generates oscillations of power in Fig. 3, which 
implies losses which are proportional to the value of the 
constant increment and vice versa [1–3]. 
 

 
Fig. 3– Detailed graph of the power signals, duty cycle, and the output 

voltage of the PV module generated by the P&O MPPT method, combined 
with a buck chopper, for a sampling frequency of 100 Hz. 

But for abrupt and rapid changes in operating conditions, 
it is necessary to increase the sampling frequency of the 
system so that the controller can appropriately bring the 
control output to the PPM as quickly as possible. Figure 4 
shows the effect of the high sampling rate on the different 
output signals, which appear from a specific value as a 
permanent wave. This is due to the dc-dc converter, which 
can no longer track rapid variations of the cyclic ratio. 
Output power continues to fall or grow despite reversing 
the direction of the disturbance. In this case, the tracking 
mechanism is disturbed by the false information about the 
direction of variation of the power caused by the response 
delay of the dc-dc converter. This defect considerably 
increases the output power ripple factor, which also 
depends on the type of dc-dc converter used [1]. 

Fig. 4 – Oscillation of the P&O MPPT in high sampling frequency method 
combined with a buck chopper at a sampling frequency of 1 kHz. 

Figure 4 shows this phenomenon for a sampling frequency 
of 1 kHz. It is seen that the increment is multiplied by a 
particular value, which multiplies the ripple rate of the power 

or the output voltage by the same factor [1]. 
This rate also depends on the capacitive components of 

the dc-dc converter and the converter type (buck, boost, and 
buck-boost). The value of the ripple factor is proportional 
to the input capacitors C1 and C2 output. To lower this rate, 
it is advantageous to reduce the capacity of the capacitors, 
which makes it necessary to increase the switching 
frequency of the PWM [1]. 

Other simulations are shown in Fig. 5 for a solar power 
supply system with the P&O MPPT method using a Buck-
Boost chopper to 100 Hz sampling frequency. In contrast, Fig. 
6 shows the response of power signals, the duty ratio, and the 
solar module's voltage at a sampling frequency of 1 kHz. 

 

Fig. 5 – Power signals, duty cycle, and voltage PV obtained by the P&O 
MPPT method applied on a Buck-Boost chopper 100 Hz. 

 
Fig. 6 – Oscillation of the output power, the duty cycle, and the PV voltage 

obtained by the P&O MPPT control combined with  
a buck-boost chopper 1 kHz. 

So, according to Figs. 5 and 6, the command output and the 
potential response must behave better. They are oscillatory as 
those obtained upon application of the buck chopper. 

The numerical control at high sample rates harms the PV 
system. This is seen in the amplitude of the ripple of the 
power signal, which is slightly increased by one step 
(Fig. 6) compared with that obtained at 100 Hz (Fig. 5).  

3.2. THE METHOD OF P&O IMPROVED 
The advantage of the method of P&O Improved lies in 

the fact that the control variable also oscillates about its 
operational point when the power signal rises. Accordingly, 
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the controller does not drift in a direction like the 
conventional method. This reduces the ripple generated at 
the system level and thus reduces power loss (Fig. 7). 

Regardless of the type of chopper used, the P&O MPPT 
improved method slightly reduces the amplitude of the power 
ripple at a steady state for sample rates well determined. 

 
Fig. 7 – The ripple generated at a sampling frequency of 200 Hz, by the 

P&O improved algorithm combined with a buck chopper. 

 
Fig. 8 – Ripple generated at a sampling frequency of 1 kHz, the improved 

P&O algorithm, combined with a buck chopper. 

3.3. CONDUCTANCE INCREMENTATION METHOD 
Figure 9 shows the power signal and the control variable 

of a system controlled by the MPPT conductance 
incrementation algorithm at a sampling frequency of 
100 Hz using a buck chopper. 

 
Fig. 9 – Simulation of power and control of the MPPT algorithm IncCond 

combined with a buck chopper at a sampling frequency of 100 Hz. 

The power signal's apparent oscillation shows that the 
PPM condition dI/dV = -I/V never happens. Satisfaction of 
this condition by no disturbance when the PPM is achieved 

would deflect the algorithm. 
The approximation of the values (dI and dV) and the high 

resolution of the sampling of the input MPPT controller 
prevent both satisfying the equation and the conditions dV = 
0 and dI = 0. 

Figure 10 shows the response of the conductance 
incrementing algorithm of the high-frequency oscillation 
phenomenon. This is an expected phenomenon; since this 
depends on the system response time varies depending on 
the type of chopper dc/dc used. 

 
Fig. 10 – Power and control signal simulated by IncCond algorithm 
combined with a buck chopper at a sampling frequency of 5 kHz. 

The information obtained with the simulations discussed 
so far shows that the increased ripple at higher sample rates 
MPPT causes a significantly higher power loss. 

3.4. THE METHOD OF NEURAL NETWORKS 
Figure 11 shows the system's response at T = 25 °C, S = 

1000 W/m², and a sampling frequency of 500 Hz. The 
sample rate does not affect the power loss in the case of a 
neural controller. This is seen in the power signal and that of 
the control, where the oscillation phenomenon, which often 
occurs in conventional controls at high sampling rates (due to 
the response time of the chopper), has not originated in 
neuronal control. This amounts to the independence of the 
neuronal control of the chopper used response time, unlike 
conventional controls where the controlled assessment often 
depends on a state variable (voltage, current, and power). 

 
Fig. 11 – Allure of the power and control output of neural Controller 

combined with a Buck-Boost chopper at 500 Hz. 

In practice, the time acquisition signals are tainted by 
interference or unwanted noise, so the measured signal is 
always flawed. In our case, we need three sensors, one for 
temperature and sunshine and the third for the battery 
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voltage. These measurement signals are injected directly 
into the neural controller, which requires us to establish a 
robust controller which always manages to estimate the 
appropriate command to the presence of noise. 

 
Fig. 12 – Noisy signals of the temperature and sunshine. 

 
Fig. 13 – Power signals and control system combined with a buck chopper 

at a sampling frequency of 100 Hz. 

We performed a robustness test, injecting the neural 
controller with two noisy instructions. The first is a signal 
representing the temperature at 25 °C [38], wherein a Gaussian 
noise of standard deviation 1 is superimposed on the latter, and 
the second instruction signal represents the sunlight to 
1000 W/m². A Gaussian measurement noise standard deviation 
of 12 is superimposed on the latter. In contrast, the third input 
representing the battery voltage is not noisy for practical 
considerations. Figure 12 shows the input/output signals noisy. 

Note from the simulation results shown in Figs. 12 and 
13 that the measurement noise superimposed on the signals 
injected neural controller directly affected the control 
output, which became noisy. Still, without it, it did not 
deviate from the actual command he had estimated. 
Therefore, the neural controller has the robustness to 
measure noise. The noisy command directly affected the 
power output with a very low amplitude, which can be 
estimated as negligible oscillations generated using 
conventional controls. 

4. CONCLUSION 
The main interest in this work is focused on the power 

ripple caused by oscillations around the MPP and its 
dependence on the sampling frequency of various 
techniques MPPT and the dc-dc converter used, where the 
sampling frequency limits the controller's speed. 

The simulations performed within this article have a 
purely practical dimension because the only way to evaluate 

the performance of a digital controller before establishing an 
actual prototype is to perform a simulation first. 

As a result, the simulations provide the best opportunity 
to evaluate the various MPPT techniques presented in this 
article and to analyze their behavior under the same 
operating conditions [36]. 

This comparative study between different MPPT 
research techniques [39] allows us to validate the most 
appropriate for a specific application. 

The simulation results clearly show that all the methods 
can detect the MPP when the temperature and the sunshine 
vary simultaneously. 

Indeed, the performances of the New intelligent control 
strategy by Neuronal control on the other MPPT commands 
presented in this article resides, on the one hand, by its 
speed in estimating the position of the MPP without 
oscillations, and on the other hand, by obtaining a 
maximum power without any oscillations and superior to 
that obtained by the other commands [36] in term of the 
sampling frequency, particularly when determining 
photovoltaic system response time, the ripple, and primarily 
loss of power. 

Received on 29 July 2022 
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