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Premature convergence is known as a serious failure mode for genetic algorithms (GAs). This paper presents a new dynamic 
selection based on power ranking by varying gradually the selection pressure versus generations, in order to maintain a trade-off 
between exploitation and exploration in genetic algorithm and avoid premature convergence. The proposed dynamic genetic 
selection algorithm’s performance was proven by identifying an induction machine’s (IM) parameters, both electrical and 
mechanical, using only the starting current and the corresponding phase voltage. A comparison is established between the proposed 
dynamic genetic selection algorithms with other genetic selections algorithms. The evaluation is carried out on IM’s (1.5 kW) 
parameters estimation by measured data. The matching in the transient and in steady state of computed currents with the measured 
ones confirms the accuracy of the identified parameters. The experimental results obtained indicate the superiority of the proposed 
dynamic genetic selection algorithm versus the other algorithms in terms of computing time and convergence speed.

1. INTRODUCTION 
Several works on induction machine (IM) parameters 

identification based on the output error method have been 
proposed in the literature [1–4]. These methods differ from 
each other by the nature of the input–output signals, the 
adopted IM model, and the used optimization method. 
Many evolutionary techniques optimization like genetic 
algorithm [5,6], particle swarm optimisation [7] and 
bacterial foraging [8], have been successfully applied to IM 
parameter identification. The most part of papers only 
estimated the electrical parameters [9–11]. Usually, the 
mechanical parameters are separately determined by the 
slowing-down method. In this paper, all of the parameters 
are estimated at the same time, by the minimization of the 
quadratic error between the experimental current of the IM 
and the computed one from the adopted model. Genetic 
algorithms (GAs) are used as minimization technique to 
identify the IM parameters vector.  

GAs are stochastic search and optimization techniques 
based on the principles of genetics and natural selection 
[12,13]. It is well known that, the premature convergence is a 
common problem in GAs [14] and their performance 
depends on the combination of the genetic operators 
(selection, crossover, mutation) and parameter settings. The 
selection operator deserves a special position in GA, because 
this determines the evolutionary search spaces. Many 
selection mechanisms have been proposed in the literature 
[15–17]. A selection is often recognized as the main cause of 
premature convergence. Baker [14] has introduced a ranking 
method for circumventing the problems of fitness 
proportionate selection methods [18] and avoids premature 
convergence. Furthermore, the selection should maintain the 
diversity in the population during the search. The diversity 
depends on the selection pressure (SP) which means a 
probability of the best individual being selected compared to 
the average probability of selection of all individuals. On one 
hand, higher SP causes a fast convergence with a risk of 
premature convergence. On the other hand, a lower SP leads 
to slower convergence. Baker [14] proposed the linear 
ranking selection to overcome premature convergence with 
bounded SP between 1 and 2. In order to increase the SP, a 
quadratic ranking selection is proposed in [19]. A trade-off to 

achieve a good search between the exploration and the 
exploitation of new and unknown areas is to make use of 
knowledge found at previously visited points to help find 
better ones. The dynamic control of SP maintains the balance 
between exploitation and exploration by using a quadratic 
dynamic selection, where the main limitation of this 
approach is the bounded SP between 1.4 and 2.9 [20]. This 
paper presents a new dynamic selection based on power 
ranking, allowing a progressive change of the SP versus 
generations. This provides an improvement of the SP 
variation range. A comparison of the proposed dynamic 
genetic selection algorithm with other genetic selections 
algorithms (linear ranking selection, nonlinear ranking 
selection, uniform ranking selection and tournament 
selection) is carried out for the estimation of an IM’s 
(1.5 kW) parameters by measured data.  

This paper is organized as follows. Section 2 describes 
the tournament, the linear-nonlinear-uniform ranking 
selections and the proposed selection based on dynamic 
power ranking. Those are coupled to the same crossover, 
mutation, and incorporated in different real-coded GAs, 
which are specified in Table 1.  

Table 1  
GAs with different selection methods 

GAs Coding Selection Crossover Mutation Elitism 
GAP Real- 

coded 
Proposed Continuous Non-

uniform 
Yes 

GAL Real- 
coded 

Linear 
ranking 

Continuous Non-
uniform 

Yes 

GANL Real-  
Coded 

Nonlinear 
ranking 

Continuous Non-
uniform 

Yes 

GAT Real- 
coded 

Tournament Continuous Non-
uniform 

Yes 

GAU Real- 
coded 

Uniform 
ranking 

Continuous Non-
uniform 

Yes 

Section 3 presents the induction machine model. 
Section 4 presents an identification method trough an 
output error method. The procedure is used to determine 
simultaneously the electrical and mechanical parameters of 
an induction machine from measurements of the starting 
current and the corresponding phase voltage. Section 5 
confirms the identification method by experimental results 
carried out to study the performance of GAs. Finally, 
Section 6 draws some conclusion. 
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2. GENETIC ALGORITHM 
The Genetic Algorithm optimization process starts with a 

random population composed of a large number of 
individuals to evolve under specified selection rules to a state 
that minimizes the objective function. Each individual 
represents an IM, which is characterized by the following 
parameters vector 

€ 

P = σ Tr  Ls Ts J B [ ]T  and a value of 
objective function, which represents the output quadratic 
error. The elements of the vector P are called genes. All 
genes are bounded in order to respect the space search. The 
new population is obtained iteratively applying the genetic 
operators (selection, crossover, mutation) and replacement 
strategy.  

The following steps describe the tournament, the linear-
nonlinear-uniform ranking selections and the proposed 
selection based on dynamic power ranking. Those are 
coupled to the same crossover, mutation, and incorporated in 
different real-coded GAs for IM parameters identification. 

2.1. TOURNAMENT SELECTION 
In the tournament selection [15,21] a set of k individuals 

are chosen randomly from population. These individuals 
are ranked according to their objective values, and the best 
individual is selected for reproduction. The whole operation 
is repeated times for the entire population. Therefore, the 
probability of each individual to be selected is given by the 
following expression: 

 

€ 

p (i ) =
CN − i
k−1

CN
k , if 1≤ i ≤ N − k +1,

0, if N − k + 2 ≤ i ≤ N ,

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 (1) 

where N is the population size and i is the rank of ith 
individual. 

In this paper, the particular case of the tournament of two 
individuals (k = 2), called a probabilistic binary tournament 
is used. Then, the eq. (1) reduces to the following equation: 

 

€ 

p(i) =
2
N

N − i( )
N −1( )

. (2) 

 2.2. LINEAR RANKING SELECTION 
The notion of linear ranking was introduced by Baker 

[14] to circumvent the problem of proportional selection. 
The linear ranking selection consists to sort the individuals 
in a decreasing order with respect to the value of their 
objective function following a linear distribution function 
for each generation. This distribution is used to map the rank 
of individuals in the sorted list as shown in eq. (3):  

 

€ 

fit i( ) = φ − 2 i −1( ) φ −1( ) N −1( )[ ] , (3) 

where φ represents the selection pressure (PS), and is a 
chosen parameter that controls the evolution of individuals 
with 

€ 

φ ∈ 1,2[ ] . 
The linear distribution function is illustrated in Fig. 1. 

Then the individuals are selected with a probability that is 
linearly proportional to the rank of the individuals in the 
population. 

 
Fig. 1 — Linear dirstribution function. 

The probability of selection p(i) for each individual is 
given by the following expression: 

 

€ 

p(i) =
fit i( )

fit m( )
m=1

N

∑
, (4) 

 

€ 

p i( ) = φ − i −1( ) 2φ − 2( ) N −1( )[ ] N . (5) 

2.3. NONLINEAR RANKING SELECTION 
Quadratic ranking is a case of nonlinear rankings. The 

fitness value attributes to each individual as a quadratic 
function of its rank i. The eq. (4) of the probability of 
selection is applied to each individual. After individuals 
sorting, the quadratic distribution function [19] is used to map 
the rank of individuals in the sorted list as shown in eq. (6): 

 

€ 

fit(i) = A i − N( )2 + B , (6) 

where 

€ 

A =
fitmax− fitmin

N −1( )2
 and 

€ 

B = fitmin . 

The quadratic distribution function is illustrated by Fig. 2. 

 

Fig. 2 — Quadratic distribution function. 

The probability of selection to each individual is given 
by the eq. (4). 

2.4. UNIFORM RANKING SELECTION 
The uniform ranking selection consists in choosing 

equiprobably the individuals of rank less than or equal to µ 
(µ ≤ N). Other individuals are excluded from the population 
and cannot participate in reproduction [18]. The probability 
of selection is expressed by: 
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€ 

p (i ) =

1
µ
, si 1≤ i ≤µ,

0, si µ < i ≤ N .

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
 (7) 

2.5. PROPOSED SELECTION 
In order to maintain the trade-off between exploration 

and exploitation, the SP is varied versus generations using a 
beam of power curves that are equidistant with respect to a 
vertical straight-line Δ. All beam curves pass through points 
P1, P2 and the intermediate point M of Δ between A and B 
as shown in Fig. 3. Additionally, the external curves of 
beam are characterized by the fixed SP (SP1 and SPnc) 
where nc represents the curves number of beams. 

 
Fig. 3 — Intersection on the external curves with a vertical straight line. 

The curves beam generation offer an interesting approach 
of changing the selective pressure (SP). Higher SP causes a 
fast convergence with a risk of premature convergence. A 
lower SP leads to slower convergence. SP is defined as: 

 

€ 

SPj =
N . fit α j ,1( )

fit α j ,i( )
r=1

N

∑
, (8) 

where the subscript j represents the jth curve of beam. 
However, each beam curve is given by:  

 

€ 

fit α j ,i( ) = 1− i −1
N −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

α j

+β , (9) 

where β is a constant. 
The coordinates of the points P1 and P2 are calculated 

from eq. (9), so that P1(1,1+β) and P2 (N,β). The external 
curves PS (PS1 and PSnc) are fixed; α1 and αnc are 
numerically calculated by the Newton-Raphson method 
[22] using the following equations: 

 

€ 

SP1 fit α1,i( )
i=1

N

∑ − N fit α1,1( ) = 0 (10) 

 

€ 

SPnc fit αnc ,i( )
i=1

N

∑ − N fit αnc ,1( ) = 0 (11) 

The curve beam intersects with the vertical straight-line 
Δ, which is expressed as:

 
 

€ 

Δ =
N
2

 (11) 

The external curves at points A (N/2, y1) and B (N/2, y2) 
are defined by the following expressions:  

 

€ 

y1 = fit α1,
N
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 1−

N
2
−1

N −1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

α1

+β , (12) 

 

€ 

y2 = fitnc αnc ,
N
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 1−

N
2
−1

N −1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

α nc

+β . (13) 

All beam power curves pass through the points P1, P2 and 
M located on a vertical straight line Δ between A and B 

with the coordinates 

€ 

N
2
, y j

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , where 

€ 

y j  is given by: 

 
  

€ 

y j = y1 +
y2 − y1
nc −1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ j −1( ),   1≤ j ≤ nc . (14) 

For each curve j, the corresponding  is numerically 
calculated by the Newton-Raphson method using the 
following equation:  

 

€ 

y1 +
y2 − y1
nc −1

j −1( ) − 1−
N
2
−1

N −1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

α j

−β = 0 . (15) 

The evolution of αj versus number j of the beam curves 
is illustrated in Fig. 4. 

 
Fig. 4 — Evolution αj versus number j of the beam curves. 

The calculated αj allow the generation of the equidistant 
curves beam related to the vertical straight line as shown in 
Fig. 5. Each beam curve is characterized by the αj 
parameter, which allows computing the corresponding  

by eq. (8). The evolution of  versus curves number of 
beams is shown in Fig. 6. 

First the ranking selection is to sort the individuals in a 
decreasing order with respect to the value of their objective 
function, for each generation. Then, a selection probability 

€ 

p α j ,i( )  is calculated for each individual, using a beam of 

power distributions 

€ 

fit α j ,i( )  versus their rank i as follow:  
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€ 

p α j ,i( ) =
fit α j ,i( )

fit α j ,m( )
m=1

N

∑
. (16) 

 
Fig. 5 — Power equidistant curve beam related to the vertical straight line 

for 25 values of the parameter αj. 

 
Fig. 6 — Evolution SPj versus number j of the beam curves. 

2.6. CROSSOVER 
Crossover consists to the mixing of information from both 

parents to create the children. The real and the continuous 
crossover are applied. The genes of child ‘a’ are chosen near 
those of the parents. The following equation is applied to 
each child’s gene born from "parent1" and "parent2" 

 

€ 

a = aparent1 + rand* aparent2 − aparent1( ) , (17) 

where rand is defined a random coefficient with a uniform 
distribution in the interval [-d, d+1], d ∈ ℜ. The crossover 
range is governed how far a crossover between two 
individuals may be from its original value. If the crossover 
range is rand, the original value is a, and the allowable 
weight limits are akmin and akmax. The crossover value is 
chosen from the range: 

 

€ 

anew ∈
max a − rand * akmax − akmin

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,akmin

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,

min a + rand * akmax − akmin
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,akmax

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

⎫ 

⎬ 

⎪ 
⎪ 

⎭ 

⎪ 
⎪ 

.(17) 

2.7. MUTATION 
The mutation operator [23] alters the parameters of selected 

individuals by a random change in predefined domains. Each 
gene is going to undergo an important modification during the 
first generation. The alteration rate will be decreased as long 
as the research progressively continues. For the  

generation, the mutated parameter 

€ 

ʹ a k  is given by: 

 

€ 

ʹ a k =
ak + akmax − ak( ) 1− rand (1− t /T )5( ) if pa < 0.5,

ak − ak − akmin( ) 1− rand (1− t /T )5( ) if pa > 0.5,

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

(19) 

where rand  [0,1] is selected according to a uniform 
distribution which determines indirectly the alteration 
amplitude. ak min and ak max stand for the lower and upper 
bounds of , and T is the generation index at which the 
mutation amplitude is canceled. 

2.8. ELITISM REPLACEMENT 
This elitism replacement copied the best individuals from 

the generation into successive one. The best child 
participated with the other child undergoing the genetic 
operations in the successive generation. This elitist model 
can accelerate the GA convergence.  

3. INDUCTION MACHINE MODEL 
Using the usual simplifying hypothesis, the saturation 

effect, core losses and skin effect are neglected, only first 
space harmonic is considered, and air gap is constant. In 
Park model, the dynamic equations of the IM [24] related to 
a reference linked to the stator are given by:  

 

€ 

dX1
dt

= A1X1 + A2U , (20) 

where A1 and A2 are respectively given by:  

 

€ 

A1 =

−
1
σTs

1− σ
σ

PoΩ
1− σ
σTr

1− σ
σ

PoΩ

−
1− σ
σ

PoΩ −
1
σTs

−
1− σ
σ

PoΩ
1− σ
σTr

1
σTs

−
1
σ
PoΩ −

1
σTr

−
1
σ
PoΩ

1
σ
PoΩ

1
σTs

1
σ
PoΩ −

1
σTr

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

,(21) 

 

€ 

A2 =

1
σLs

0

0 1
σLs

−
1
σLs

0

0 −
1
σLs

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

T

, (22) 

where σ is the leakage coefficient, Tr is the rotor time 
constant (s), Ts is the stator time constant (s), Po is the 
number of pole pairs and Ls is the stator inductance (H)  

 

€ 

X1 = Ids Iqs Idr
' Iqr

'[ ]
T

, (23) 
where 

 

€ 

Idr
' =

Idr
Lr
, Iqr

' =
Iqr
Lr
, U = VdsVqs[ ] T , (24) 

The mechanical equation is given by: 

 

€ 

J dW
dt

=Tem −Tl −Tres , (25) 

where Tl is the load torque and J is the rotor inertia [Kg.m2] 
Tem is the electromagnetic torque given by: 

 

€ 

Tem = 1−σ( )Ls IqsIdr' − IdsIqr'( ) , (26) 
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and Tres is the friction torque assumed to be: 

 

€ 

Tres = BΩ , (27) 

and B is the viscous friction coefficient (N.m.s/rad). So, the 
mechanical equation becomes: 

 

€ 

dΩ
dt

=
1
J
1−σ( )Ls IqsIdr' − IdsIqr'( ) − BΩJ  (28) 

The machine is governed by the nonlinear equations (20) 
and (28). So, the IM is completely characterized by the 
parameters vector 

€ 

P = σ Tr  Ls Ts J B [ ]T , which can be 
determined from the measurement of the starting current and 
the corresponding simple voltage applied to the machine. 

4. IDENTIFICATION METHOD 
The idea on which the method is based consists in 

simultaneously determining the electrical and mechanical 
parameters of a mathematical model of the IM. So, the 
model is able to match the input–output behavior of the IM. 
This can be achieved from the measurement of the current 
and the corresponding voltage applied to machine on 
transient from standstill to steady state. 

The identification method used in this paper is illustrated 
in Fig. 7. In order to estimate the vector of parameters 

€ 

P = σ Tr  Ls Ts J B [ ]T , the quadratic error Fo between the 
measured values Imi and the computed ones Ici from the 
model adopted at the same instants is minimized by the GA 

 

€ 

Fo = Imi
− Ici( )

2

i=1

n

∑ , (29) 

where n is the number of the measured values. 

 
Fig. 7 — Identification process. 

5. EXPERIMENTAL RESULTS 
The experimental data is obtained from transient test on a 

three-phase induction motor.  

 
(a)                            (b) 

Fig. 8 — (a) View of the experimental setup (b) Measurement setup. 

The start-up current and the corresponding phase voltage 
are simultaneously measured by a DSpace card. The 

experimental setup is shown in Fig. 8. Test is carried out on 
a three-phase induction machine with the following 
characteristics: Motor M: 4 poles, 220/380V, 1.5 kW. The 
curves in Fig. 9 represent respectively the measured voltage 
and the current of no-load starting of the IM. 

 
(a)                            (b) 

Fig. 9 — (a) Voltage measured; (b) current measured. 

The estimated parameters obtained using the measured 
data are given by Table 2. It can be noticed that the 
experimental results confirm well the fast convergence 
about the GAP compared to the other GAs. 

Table 2 
Results of estimated parameters 

Parameters GAP GAL GANL GAU GAT 

 0.069 0.0689 0.0691 0.069 0.069 
Tr (ms) 135.43 135.9 135.4 135.61 135.57 
Ls (mH) 190 190.6 190 190.02 190.17 
Ts (ms) 87.35 87.6 87.4 87.45 87.4 
J (Kg.m2) 0.035 0.0353 0.0353 0.0353 0.0353 
B 
(Nm.s/rad) 

0.009 0.0099 0.0099 0.0099 0.0099 

Number of 
iterations 

227 1211 406 1027 548 

Computing 
time (s) 

3474.9 55459.45 
 

18820.63 
 

16604.03 10012.44 

The computed current is obtained by estimated 
parameters. Figure 10 shows the superposition of the 
calculated current with the measured one both in transient 
and steady state. 

 

 

Measured current   
Calculated current ----
--- 
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Fig. 10 — Superposition of the measured current and calculated one with 

the estimated parameters to motor M (a) by GAP (b) by GAL (c) by 
GANL (d) by GAU (e) GAT. 

In order to show the convergence process related on 
GAP, GAL, GANL, GAU and GAT, Fig. 11 illustrates the 
evolution of each parameter versus number of iterations for 
motor M. It can be observed in the evolution of parameters 
that the faster convergence of GAP over the other GAs. 

 
(a)                                                (b) 

 
(c)                                                 (d) 

 

(e)                                                   (f) 

Fig. 11 — Parameters evolution of M: (a) leakage coefficient, (b) Tr, (c) 
Ls, (d) Ts, (e) J, and (f) B. 

6. CONCLUSION 
The proposed dynamic selection based on power ranking 

is presented and compared to the linear-nonlinear-uniform 
ranking and binary tournament selections in genetic 
algorithms. Using only the starting current and the 
corresponding phase voltage, the electrical and mechanical 
parameters are estimated simultaneously by GAs. The 
parameters are estimated by the method of output error 
based on the minimization of the quadratic error between 
the current acquired experimentally from the induction 
machine and the computed values from the adopted model. 
The matching in the transient and in steady state of 
computed currents with the measured ones confirms the 
accuracy of the identified parameters. The experimental 
results indicate that the superiority of the GAP versus GAL, 
GANL, GAU, and GAT in terms of computing time and 
convergence speed. Therefore, the proposed method can be 
used as a more efficient and reliable alternative algorithm 
for parameter identification problems. 

Received on March 4, 2021 
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