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The Hănțilă method has proven its effectiveness in solving three-phase circuits with nonlinear elements and presents several 
advantages compared to other methods. It is a fixed-point method, and the solution is obtained by constructing a Picard-Banach 
sequence with assured convergence. Sometimes the contraction factor of the sequence construction operator is very close to 1, and 
thus, convergence is slow. To develop the method and increase its efficiency, we propose and analyze several procedures to 
accelerate the calculation algorithm.

1. INTRODUCTION 
The development of power electronics equipment 

connected to the three-phase network is a source of distorting 
effects that can have undesirable consequences on the power 
system operation [1–3]. In this context, identifying efficient 
calculation and modeling methods of three-phase circuits 
with non-linear elements is very important. 

The usefulness of the Hănțilă method [4–9] for solving 
three-phase circuits with nonlinear elements was analyzed in 
[10], including the case of nonlinear elements with 
controlled switching (thyristors) [11]. The method has 
demonstrated its efficiency in all the analyzed cases. It 
presents several advantages [10–12], as follows: 
convergence is always ensured, the possibility of solving the 
circuit on a single phase, the possibility of solving circuits 
with nonlinear elements with switched characteristics, the 
possibility of solving circuits with different values of circuit 
elements on harmonics or sequences (for example generators 
with different reactances on sequences), the easy 
highlighting of power transfer on harmonics, the possibility 
of adopting a large number of harmonics, a fact practically 
impossible in the case of other methods. 

Essentially, the Hănțilă method is a fixed-point method. 
The nonlinearity is treated by constructing a Picard-Banach 
sequence with assured convergence. The solution consists of 
“linearizing” the circuit by replacing the nonlinear elements 
with generators with controlled sources and fixed internal 
resistances. There are two dual ways of applying the method: 
voltage correction of the controlled source or current 
correction [4–12]. Briefly, in the voltage correction case, the 
solution algorithm (detailed in [12]) can be summarized as: 

 

e(n)→
F

E(n)→
h

U(n)→
F–1

u(n)→
g

e(n + 1),  (1) 
 

where u is the voltage on the nonlinear element, e is the value 
of the controlled source, F and F–1 are the direct and inverse 
Fourier transforms, (n) the iteration number, h is the linear 
diagonal operator ensuring the connection with the linear 
part of the circuit in the frequency domain, and g provides 
the correction according with the nonlinear characteristic in 
the time domain. 

Sometimes the contraction factor of the sequence 
construction operator is very close to 1, and convergence is 
slow. An important development direction of the method is to 
increase the calculation speed. This can be done by: 
identifying algorithms that are more efficient in both speed 

and accuracy for computing forward, inverse Fourier 
transforms, including non-uniform sampling in the time 
domain, and by developing speed-up procedures [11,12]. 

In [12], we analyzed several procedures for accelerating 
the algorithm specific to the application of the method: the 
optimal choice of the calculation resistance/conductance, the 
use of overrelaxation, and the correction of the controlled 
source in voltage or in current. 

The present work is devoted to developing this analysis 
for the following acceleration procedures: harmonic 
selection, hybrid voltage/current correction procedure, use of 
“less harsh” nonlinear characteristics with better contraction 
factors, the use of modified values for the linear circuit 
elements, respectively correcting the nonlinear characteristic 
by including other elements existing in the circuit or being 
extracted from the equivalent impedance connected to the 
terminals of the nonlinear element. 

2. FASTER COMPUTATION OF AN 
INTERMEDIATE RESULT 

This class of acceleration procedures is based on the 
property of Picard-Banach sequences to converge to the 
solution starting from any initial value and on the possibility 
to faster calculating in a first stage an approximate result, but 
close enough to the fixed point, and to use this result as an 
input value for the final calculation with the desired 
parameters and accuracy. 

Several procedures can be developed to reduce the time and 
the amount of calculation data, depending on the 
characteristics of the circuit, for example, a) a hybrid 
correction procedure for the controlled source, first in voltage 
and then in current, or vice versa, b) the use of linear 
elements / modified circuit nonlinearities, with the 
subvariants: b1) the use of less harsh nonlinear characteristics 
with better contraction factors and / or b2) modified values for 
the linear circuit elements, and finally, c) the use in the first 
stage of some faster but less accurate computation algorithms, 
as well as variations and combinations between them. 

2.1 THE USE OF LESS ACCURATE ALGORITHMS 
In reference [7], an efficient procedure to reduce the data 

volume and computational time using the harmonic selection 
and a selection algorithm are proposed. 

In three-phase electrical networks, the values for the 
amplitudes of the harmonics are generally decreasing with 
the harmonic order. In this situation, a rudimentary harmonic 
selection method can be used, which does not require a lot of 



396 Hănțilă method – procedures for accelerating convergence: Part II 2 

calculations: progressively increasing the number of 
harmonics and using the result in the next iterative cycle. For 
example, truncating the series up to 25, 100, 500, 1000, ... 

In most cases, both the number of iterations required, and 
the calculation time are expected to decrease, depending on 
the evolution of the coefficients h / hi and the better 
contraction given by the truncation of the Fourier series to a 
reduced number of terms. h and hi are the functions that 
ensure the correction according to the linear part of the 
circuit in the case of voltage correction or current correction. 

In the case of an inductive circuit connected to the 
terminals of the non-linear element, truncation to a smaller 
number of harmonics for voltage correction also ensures a 
better contraction factor, along with reducing the calculation 
volume. 

Similarly, a capacitive circuit provides a better contraction 
factor by truncating to a lower number of harmonics if the 
current correction is performed. 

The selection of harmonics is a solution for calculating an 
intermediate result that uses, in the first phase, a faster but 
less accurate calculation algorithm. Similarly, other faster 
calculation algorithms can be used, but with a higher error 
for the direct and/or inverse Fourier transforms. 

Another example is the use of a small number of sampling 
points in the first phase. Then, the so-obtained solution can 
be used with the reduction of harmonics. 

For example, an initial calculation can be made for the first 
25 harmonics with 50 sampling points, and the result 
obtained to be used for the calculation using 250 harmonics 
with 8,000 sampling points. Additional intermediate steps 
may also be introduced. 

2.2 HYBRID VOLTAGE / CURRENT CORRECTION 
PROCEDURE 

Starting from the evaluation of the contraction factors 
described and exemplified in [12], concerning the controlled 
source, in certain cases, it may be useful to successively use the 
voltage correction and then current correction (or vice-versa). 

For example, in the case of inductive circuits, it may be 
beneficial to apply the truncation method for a smaller number of 
harmonics (up to the rank where the coefficients h are favorable 
compared to those of hi) by using the voltage correction, followed 
by the current correction as the number of harmonics increases. 
In such cases, a hybrid solution may be faster. 

Similarly, in the case of capacitive circuits, it may be 
useful, in certain cases, to apply the truncation method for a 
reduced number of harmonics using the current correction, 
then, for an increasing number of harmonics, the voltage 
correction might be used. 

The decision to apply the hybrid procedure or directly the 
voltage or current correction can only be made following the 
evaluation of the contraction factors and the correction 
coefficients, as described in [12]. 

2.3 THE USE OF NONLINEAR CHARACTERISTICS 
WITH BETTER CONTRACTION FACTORS 

A sufficient condition for g to be a contraction is that f – 
the characteristic function of the nonlinear element in the 
time domain is Lipschitz and uniformly monotonic [12]: 

 

0 < 
1

Rmax
≝ λ ≤	 #

f(u1) – f(u2)
u1	– u2	

#  ≤ Λ≝
1

Rmin
	,			(2) 

 
∀	u1, u2 and u1 ≠ u2. 

The contraction factor for the function g(u) is in the case 
of voltage correction [12]: 

 
θg= Max '(1	–	 R

Rmax
) , ( R

Rmin
	–	1)*  .     (3) 

 
It can be seen from (3) that a “very hard” nonlinear 

characteristic can cause contraction factors very close to 1, 
as proven in [9]. In such cases, the circuit can be solved in 
the first phase using a “less steep” characteristic with λ2 > λ, 
respectively Λ2 < Λ,	ensuring a better contraction factor. 
For example, instead of λ =10–10 and Λ = 1010, the circuit 
can be solved using λ2=10–4 and Λ2=104. The obtained result 
becomes the initial value for the calculation with the correct 
characteristic. The solution is efficient in many cases, thus 
significantly reducing total computation time. 

By reducing the ratio 
 

Λ
λ

=
Rmax

Rmin
=

Gmax

Gmin
, (4) 

 
one can notice a reduced value of the contraction factor θg 
for the function g(u). Similarly, it can be noticed a decrease 
of the contraction factor θgi

 corresponding to the function gi, 
in the case of the current correction. 

2.4 THE USE OF MODIFIED VALUES FOR LINEAR 
CIRCUIT ELEMENTS 

By changing the values of certain circuit elements, one can 
change the values for Zek and Yek , thus influencing the 
contraction factors and coefficients for the functions h(E) 
and hi(Is). We denote by Zekthe equivalent impedance 
connected at the terminals of the nonlinear element, for the 
harmonic of rank k, if the voltage correction procedure is 
considered. Similarly, Yek is the harmonic order k equivalent 
admittance connected to the terminals of the nonlinear 
element in the case of current correction use. 

An intermediate result can thus be readily calculated to be 
further used as an input value for the calculation utilizing the 
correct (initial) values. 

3. MODIFYING THE NON-LINEAR 
CHARACTERISTIC BY INCLUDING SOME 

EXISTING ELEMENTS IN THE CIRCUIT 
Let us analyze a solution to increase the convergence 

speed by using elements already present in the circuit that we 
embed in the nonlinear characteristic. 

Starting from the observation that in many applications, 
the nonlinear element has a resistor in series, we propose 
embedding this resistor Rs in the nonlinear characteristic. 

Including the aforementioned resistor as part of the nonlinear 
element conveniently modifies the u – i characteristic.  Initially, 
we dispose of the dependency i → u having the minimum and 
maximum slope values bounded by Rmax and Rmin. After the 
inclusion of the resistor of resistance Rs, these slopes change to 
 Rs+ Rmax and  Rs+ Rmin, respectively. 

Sometimes it is possible that, in this way, an initially non-
monotonic (non-increasing) u – i relationship becomes 
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monotonically increasing. By including the series resistor Rs 
in the nonlinear characteristic, a “hard” nonlinear 
characteristic becomes less “harder” by decreasing the ratio 
(4), which becomes: 

 
ΛS

λS = (Rmax+ Rs)

(Rmin+ Rs) 
 < Rmax

Rmin
.                           (5) 

 
If we use the voltage correction of the nonlinearly 

controlled source, following this operation of inclusion in the 
nonlinear characteristic of the series resistor Rs we have a 
new characteristic function f2 instead of the initial nonlinear 
characteristic i = f(u): 

i = f2(u2)             (6) 

with 

u2= u + Rsi               (7) 

or 

 f2
		–1(i) = f		–1(i) + Rs i.   (8) 

We thus get 

u2 = Rs i + e              (9) 

with  

e = u2 – Rsf2(u2) = g2(u2) , (10) 

where u2 is the voltage across the new nonlinear element 
comprising the initial nonlinear element and the series 
resistance Rs. Rs denotes the new resistance calculation. 

If f is uniformly monotonic and Lipschitz, then it is 
invertible, and its inverse f	–1 is also uniformly monotonic and 
Lipschitz [8]. f2

	–1 is a sum of uniformly monotone and 
Lipschitz functions and is in turn, uniformly monotone and 
Lipschitz. Implicitly, f2 is uniformly monotone and Lipschitz. 

The contraction factor corresponding to the 
function	g2(u2)	becomes 

θg
s=Max 341– Rs

Rs + Rmax
5 , 4 Rs

Rs	+ Rmin
–156,    (11) 

with the selection range for Rs defined as [Rs + 
Rmin, 2(Rs+ Rmin)] (considering the optimal selection interval 
recommended in [12]). 

Having in view that if we choose R = x	Rmin and 
Rs=x 8Rs+Rmin9 with x	∈	(0,	2), we always get: 
x"Rs	+	Rmin#

Rs	+	Rmax
> x Rmin

Rmax
  for Rmax>Rmin and x(Rs+	Rmin)

Rs	+	Rmin
= x	Rmin

Rmin
. It 

follows that: θg
s≤	θg. It is observed that a higher value of Rs 

ensures a better contraction factor and better (contraction) 
coefficients for g2(u2). 

With the inclusion of resistor Rs as part of the nonlinear 
element, the equivalent complex impedance of the circuit 
seen at the terminals of the newly formed element becomes  

 Zek2
= Zek– Rs.  (12) 

Like [12], we have: 
hk (E'

k) – hk (E"
k)= (E'

k  – E"k)
 1

1+ R / Zek
 .      (13) 

Considering the new function h28E9, for the harmonic of 
order k, the correction coefficient becomes 

1 / (1+ Rs/(Zek
– Rs)),                  (14) 

with 

;1 / (1+ Rs/(Zek
– Rs)); < <1 / (1 + R / Zek)<.   (15) 

A better contraction factor is also ensured in this case, 
θh

s <  θh. The inequality is also valid for the moduli of the 
coefficients on the harmonics, ensuring better values here. 

To conclude this section, including the resistor as part of 
the nonlinear element is beneficial for speeding up the 
iterative procedure. 

It is also observed that a higher value of Rs provides a 
better contraction factor and better harmonic coefficients. 

In this present case Rs is a series resistance part of Zek and 
implicitly Rs	≤ min

k
(Re(Zek)). 

The proposed solution also has the advantage that the 
value of the controlled source e is calculated directly, without 
requiring additional calculations. 

If an existing series resistor is included in the nonlinear 
characteristic and current correction is used, the acceleration 
effect by improving the contraction factor is only sometimes 
ensured. One of the contraction factors (and the correction 
coefficients corresponding to the function g) decreases θgi

S< 
θgi

, and the other contraction factor (and the coefficients 
corresponding to the function h) increases θhi

S
 
> θhi. 

According [12], if the same weight x is maintained when 
choosing Rs=x	8Rs	+	Rmin9 with x	∈	(0,	2), respectively Gs 
we will have θg

s=	θgi
S. Considering the increase of the 

contraction factor and the corresponding coefficients of hi,  
such a procedure will be slower than he one analyzed above. 

The current correction is the dual procedure to voltage 
correction [10 –12]. A parallel resistor can be included in the 
non-linear characteristic if we use current correction. The 
proofs and conclusions are dual to those presented above. In 
this case, including a parallel resistor in the nonlinear 
characteristic always ensures a better convergence, 
benefiting from the already presented advantages. 

Similarly, if we include a parallel resistor in the nonlinear 
characteristic and use voltage correction, the acceleration 
effect by improving the contraction factor is only sometimes 
ensured. The procedure will also be always slower than the 
one using the current correction. 

The existence of a series or parallel resistor to the 
nonlinear element is a new decision criterion regarding the 
calculation solution option concerning voltage or current 
correction, in addition to those discussed in [12]. 

4. MODIFYING THE NONLINEAR 
CHARACTERISTIC BY INCLUDING ELEMENTS 
EXTRACTED FROM THE IMPEDANCE OF THE 

EQUIVALENT CIRCUIT 
The solution of modifying the non-linear characteristic by 

including existing resistive circuit elements has proven its 
effectiveness. The possibility of transferring such resistances 
from the impedance of the circuit connected at the nonlinear 
element terminals would allow the generalization of this 
procedure application. 

A possible solution would be to insert an additional resistor 
(in series or parallel) aiming to calculate an intermediate step 
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(like the procedures described in subsection 2.3), and then to 
solve the circuit with the correct values using the so-obtained 
intermediate result as a starting value. 

Alternatively, one can initially transfer a resistor from the 
equivalent impedance connected to the terminals of the 
nonlinear element. The solution is like that presented in 
Section 3, with the choice for the values of the computational 
resistances so that the functions g'2 and h'2 remain contractive 
and thus to ensure a better convergence speed. 

For the voltage correction procedure, if we transfer a 
series resistance R's from the equivalent impedance Zek 
connected to the terminals of the non-linear element, we will 
have the change of function g to g'2, like the approach 
discussed in Section 3, such that θ'g

s<	θg. 
A larger value of R's	provides a better contraction factor 

(and coefficients) for g'2 and a better convergence speed if 
the selection range of R is respected. 

For changing h to h'2, to ensure a better contraction, we 
should have: 

=
Zek –	R

'
s

Zek+ R =< >
Zek

Zek+ R
>< 1	. (16) 

The condition is fulfilled if 

R'
s< 2 min

k
(Re(Zek)), (17) 

with an optimal value for 

R'
s= min

k
(Re(Zek)).          (18) 

Using the value given by (18) produces a significant 
speedup, provides increased convergence speed for both g'2	
and h'2	functions, and avoids potential problems with solving 
the circuit using negative resistor values. 

Like those discussed in Section 3, the inclusion of a 
parallel resistor in the current correction case is dual to those 
presented above. 

The equivalent impedance can be brought into the desired 
form using the series-parallel impedance transformation 
formulas. Starting from the property that a resistance can be 
decomposed into two higher value parallel resistances (and 
one of the two resistances values can be arbitrarily imposed), 
the parallel resistance with the highest value on the 
harmonics can be selected to be extracted. 

Pulling a resistor in parallel and using voltage correction 
or pulling a series resistor and using current correction has 
the disadvantage mentioned in section 3. If one factor (and 
the contraction coefficients) decreases, the other increases.  

Like [12], an analysis can be made for the functions g'2 and 
h'2, respectively gi'2 and	 hi'2, concerning the contraction 
factors and the moduli of the correction coefficients resulting 
from the extraction of the series and parallel resistances. 
Hence, a faster procedure can be chosen. 

5. ILLUSTRATIVE EXAMPLE 
In the present section, we analyze the solution of the same 

circuit analyzed in [12], as shown for convenience in Fig. 1.  

 
Fig. 1 – Proposed three-phase circuit to be solved. 

We consider the same values for the circuit elements, 
namely: for the three-phase generator with symmetrical 
sources of 325 V amplitude, frequency of 50 Hz, Rl =1 Ω, 
R1= 2 Ω, Rs=10 Ω, Ll= 5×10–4 H, L1= 5×10–2 H. For the 
three identical thyristors 𝑇%: blocking resistance 
Rb =1/ Gb=104 Ω, conduction Rc =1/ Gc= 0.05 Ω, Vf = 5 V 
and α = π / 5 (tα = T / 10). 

Also, for the thyristors Tr we consider the same linearized 
characteristic depicted in [11–13]. Evidently, some different 
nonlinear elements, and implicitly characteristic 
dependences, may be used.  

Let us modify the nonlinear characteristic by including the 
series resistor Rs, as proposed in Section 3. Using the voltage 
correction, for period T, yields 

i =	f2(u2)= 

B
u2

Rc + R2
+

Vf (Rc–Rb)

Rb (Rc + Rs)
  for t ∈ C

[tα, tb), tb < T
[0, tb)∪[tα, T],  tα > tb

u2
Rb+ Rs

 for the rest of period T
	. (19) 

The blocking condition becomes    

u2 ≤ Vf (1 + Rs
Rb
).                            (20) 

Function g2(u2) can be expressed as 

g2(u2) = 

B
u2 (1– Rs

Rc + Rs
) –

Rs Vf	(Rc – Rb)

Rb (Rc+ Rs)
,t ∈ C

[tα, tb), tb < T
[0, tb)∪[tα, T], tα > tb .

u2 (1– Rs

Rb + Rs
)  for the rest of period T

(21) 

If we choose Rs=RS
min= Rmin+ Rs= Rc+ Rs (the new 

conduction resistance value), we get 

g2(u2) =B

Vf	(Rb– Rc)

Rb
  for  t ∈ C

[tα, tb), tb < T
[0, tb)∪[tα, T],  tα > tb

u2 (1– Rc+ Rs
Rb+ Rs

)  for the rest of period T
.  (22) 

By replacing in (22) the numerical values, we will obtain 
on one branch a correction coefficient of 0. On the second 
0.998996, respectively, a contraction factor θg= 0.998996, a 
value significantly better (lower) than the 0.999995 obtained 
in the case of the function g(u) (calculated in [12]). 

Let us maintain the calculation parameters used in [12] to be 
able to compare the calculation speeds: we truncate the Fourier 
series up to and including the 100th order harmonic and divide 
the period T also into 40,000 equidistant points. We use the 
same calculation algorithm for F and F–1, and we stop the 
iterations when the relative distance (relative error) ε(n)/FegF 
drops below the value of 10–8. To simulate the calculation 
algorithm, we used the GNU Octave 6.2.0 environment [14]. 
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Table 1 

Solving using voltage correction for different values of Rs with /without overrelaxation, 
by varying the blocking resistance and the number of sampling points 

Experiment no. Voltage corrections No. of iterations Time [s] θg
s×	θh

s 
1 
 

Rs=	0.8	(Rs+	Rmin) 119 23.69 0.98237 
overrelaxation μ = 2 105 40.64  
with 𝑅!	 modification 115 22.93  
of no. of points 140 20.21  

2 Rs=	(Rs+	Rmin) 94 19.10 0.97548 
overrelaxation μ = 2 88 34.57  
with Rb modification 91 18.77  
of no. of points 99 16.42  

3 Rs=1.5 (Rs+	Rmin) 61 13.47 0.95453 
overrelaxation μ = 1.5 58 23.59  
with Rb modification 59 12.99  
of no. of points 77 11.98  

4 Rs=1.8	(Rs+	Rmin) 51 11.60 0.93976 
overrelaxation μ = 1.5 50 21.28  
with Rb modification 48 11.01  
of no. of points 56 10.10  

5 Rs=1.9	(Rs+	Rmin) 48 11.13 0.93452 
overrelaxation μ = 1.2 47 19.76  
with Rb modification 46 10.65  
of no. of points 61 9.74  

6 Rs	=	RoptS 48 11.12 0.92925 
modification of no. of points 63 9.58  

 
Table 1 shows the times and number of iterations obtained 

using different Rs values, including overrelaxation and two 
other speed-up procedures: changing the value of Rb (as 
described in Subsection 2.3.1) and changing the number of 
sampling points (as described in Subsection 2.1). 

In this case, a higher value resistor Rs also reduces the time 
and number of iterations. It is observed that the fastest 
solution was obtained for the value Rs=	Ropt

S. A close 
computation time and the same number of iterations was also 
obtained for Rs	=1.9 (Rs+	Rmin). 

Comparing the time values and the number of iterations 
shown in Table 1 with those obtained in [12], a spectacular 
shortening of both calculation times and the number of 
iterations can be observed. 

Once again, in this case we used fixed valued overrelaxation 
factors. Compared to [12] the values of overrelaxation factors 
that could be adopted following the proposed procedure are 
significantly lower. Parameter μ being less than or equal to 2, 
we can see a decrease in the number of iterations but an 
increase in the calculation time. The time required to perform 
the additional calculations is greater than the savings achieved. 

An overrelaxation factor could not be adopted for 
Rs	=	Ropt

S. 
In the present case, the contraction factor being good 

enough, only small value overrelaxation factors can be 
adopted, and overrelaxation does not significantly improve 
the computation time. 

Figure 2 shows the evolution of the relative error for Rs	=	
(Rs+	Rmin) and for Rs	=	Ropt

S. The disappearance of the 
oscillating phenomenon reported in [12] is observed. A 
better contraction factor avoids the oscillating phenomenon 
and can even compensate for possible calculation errors 
while maintaining convergence. 

To change the value of Rb, we solved the initial circuit with 
Rb2 =103Ω which provides a contraction factor and better 
coefficients. The obtained result was used as an input value 
for the calculation with the correct value Rb =104	Ω. 

 

 
(a) 

 
(b) 

Fig. 2 – Relative error evolution vs. number of iterations ε(n)/#eg# for: 
(a) Rs = (Rs+ Rmin) and (b) Rs = Ropt

S. 

To change the number of sampling points, we initially 
calculated using 2,000 sampling points. The obtained result 
was then used as an input value for the calculation with 40,000 
sampling points. The number of harmonics was kept the same. 

The duration of iterations with smaller sampling points is 
significantly shorter. In this case, the total computation time 
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and not the number of iterations should be compared. 
Among the analyzed compound acceleration procedures, 

the fastest in terms of calculation time proved to be the 
inclusion of a series resistance in the nonlinear characteristic 
along with the choice of Rs=	Ropt

S and the use as an 
intermediate step a faster, but less accurate, calculation 
algorithm (e.g., reducing the number of sampling points). 

Even though in the present example, the number of 
harmonics considered seems small, it is 11 times higher than 
the number of harmonics considered by some methods that 
use models in the frequency domain and which consider only 
harmonics up to the 25th order, also with elimination of the 
ones multiple of 2 or 3. 

Generally, the calculation of high-order harmonics is also 
sufficiently accurate when using several sampling points 8 or 
16 times higher than the maximum order of the harmonic 
considered for truncation. In this case, the time and 
calculation volume reduction are substantial compared to the 
analyzed example. 

Figure 3 shows the voltage across the nonlinear element, 
respectively, across the voltage sources for the calculation 
resistances Rs=	(Rs+	Rmin) and Rs	=	Ropt

S	in the time domain 
as well as the harmonic spectrum (in detail up to the 50th 
harmonic). The appearance of the Gibbs phenomenon is 
observed. 

 
(a) (b) 

 
(b) (d) 

 
(e) (f) 

Fig. 3 – Relative error evolution vs. the number of iterations ε(n)/#eg# for: (a) Rs = (Rs+ Rmin) and (b) Rs = Ropt
S. 

 
We solved the same circuit shown in Fig. 1, considering 

2,000 harmonics, and using 2,000 sampling points (to avoid 
the Gibbs phenomenon according to the solution proposed in 
[11]), 4,000 and 8,000 sampling points. We introduced an 
intermediate step, namely calculating the first 1,000 
harmonics. In this case, the acceleration effect given by the 
harmonics’ selection procedure is visible. The results are 
summarized in Table 2. 

In the case of solving using a large number of harmonics, 
one possibility to reduce the computational effort is to 
compute for the low-rank harmonics (in the first quarter or 
first half out of the total considered ones), with a smaller 
number of sampling points than for the high-rank harmonics, 
the latter being calculated anyway with very good precision 
with sampling in a very large number of points for the 
duration of a period. 
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Table 2 

Solving with voltage correction for	Rs = (Rs+ Rmin) with / without intermediate calculation up to harmonic 1,000 
Experiment no. No of sampling points No. of iterations Time [s] 

1 
 

2000 179 33.50 

stop at intermediate step ε(n)/#eg# = 0.001 174 32.52 

stop at intermediate step ε(n)/#eg#=0.0001 178 30.96 

2 4000 269 100.28 

stop at intermediate step ε(n)/#eg#=0.0001 262 89.18 

3 8000 494 360.98 

stop at intermediate step ε(n)/#eg#=0.0001 477 334.51 

 
In the case of solving using a large number of harmonics, 

one possibility to reduce the computational effort is to 
compute for the low-rank harmonics (in the first quarter or 
first half out of the total considered ones), with a smaller 
number of sampling points than for the high-rank harmonics, 
the latter being calculated anyway with very good precision 
with sampling in a very large number of points for the 
duration of a period. 

The acceleration solution discussed in [7] and presented in 
Subsection 2.1 concerning using a reduced number of 
harmonics for the initial calculation as an intermediate result 
did not give satisfactory results for the present example. 

The total calculation time must be compared and not the 
number of iterations because the iterations with a smaller 
number of harmonics are being computed faster. The 
calculation time can be shortened even more drastically by 
introducing additional intermediate steps or by using other 
acceleration procedures. 

6. CONCLUSIONS 
Numerical computation procedures requiring a significant 

number of harmonics may lead to increased data volume and 
running time computation burden. 

Depending on the values and characteristics of the circuit 
elements, situations may arise where the contraction factor 
of the algorithm has values very close to 1, and the 
convergence is slow. In such situations, acceleration 
procedures become very useful. 

The analyzed procedures proved useful and easy to 
implement as calculation programs. In the situation where 
the contraction factor is already satisfactory (significantly 
lower than 1) or if the truncation is not done at a very large 
number of harmonics, their impact can be, in some cases, 
somewhat reduced. 

One direction of developing procedures based on a faster 
calculation of an intermediate result is to identify a procedure 
for establishing and optimizing the intermediate steps from the 
beginning. 

Modifying the nonlinear characteristic by including 
existing resistive circuit elements proved extremely effective 
in the analyzed example. The effect of reducing the 
computation time and the number of iterations was 
spectacular. 

An important development direction for the Hănțilă method 
is increasing calculation speed and acceleration procedures. 
Received on 1 September 2022  
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