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Flexible robots are subject of many research-works since their advantages in terms of safety, compliance, low energy 
consumption, manoeuvrability, high payload to manipulator weight ratio, low cost, and high speed. However, the flexibility of 
manipulator’s links or joints and the under-actuation leads to complexity in the modelling and control. To deal with this 
problem, a sliding mode control is designed and applied to a presented model of the system. So, this paper presents the modelling 
of flexible joint manipulator, the design of adequate sliding mode controller which can stabilize the flexible joint manipulator. 
The robust tracking performance will be proved in the simulation. 

1. INTRODUCTION 
The high human-robot interaction in different important 

sectors like medical [1], haptics [2], space [3] and industries 
[4] leads to development in the design, modelling [5] and 
control [6] of robotic systems to achieve an efficient, easy 
and safe interaction [7]. Interactive robots are distinguished 
by their mechanical properties: lightweight and flexibility 
in joint or links. There are many references of 
commercialized lightweight manipulators such as YuMi of 
ABB, ASSIST of CEA-LIST and LWR of KUKA-DLR.    

Compared to rigid manipulator, flexible robots are 
distinguished by reduced inertia and high dexterity [8, 9], 
possible integration in small spaces and sensitivity to the 
environment that allows abnormalities detection and 
trajectories learning. They ensure more compliance thanks 
to their flexible structure or actuation. These advantages 
come at the cost of structure flexibility that leads to 
complexity in modelling and control [10]. Indeed, 
mechanical flexibilities cause vibrations [11] that could 
deteriorate tracking performance of the system. These 
difficulties make them less expanded at some levels of 
applications [12].  

So, it’s mandatory to take them into account during the 
synthesis of control law. In particular, this work is focusing 
on robots with flexible joint which have a nonlinear 
dynamic behavior. Elasticity in the flexible transmission 
elements is the origin of flexibility and different models and 
control schemes have been proposed by researchers. 
Between them, we site the model introduced by M.W 
Spong [13] for a single rigid link with flexible joint shown 
in Figure 1. This system is considered as an underactuated 
system due to the fact that the number of actuations is less 
than the degree of freedom [14].  

   The linear control becomes not efficient technique in 
presence of external disturbances, nonlinearities and 
uncertainties in the model parameters [15]. So, many 
nonlinear strategies have been proposed by researchers like  
back stepping control [16] and linear quadratic regulator 
[17]. Despite their approved effectiveness, they also present 
some shortcomings such as the lack of robustness in front 
of parameter's uncertainties or the need of big amount of 
energy.  

The sliding mode control (SMC) is one of the most 
robust control techniques of high interest for nonlinear 
system [18, 19]. It can be applied to the flexible joint 
systems and provide a robust control in front of 
disturbances and model uncertainties [20, 21].  

SMC offers several assets like high precision and fast 
dynamic response of the system in feedback loops in 
tracking or regulation modes, also the robustness to 
parameter variations and external disturbances [22, 23]. The 
principle of sliding mode control is to constrain the 
trajectories of the system to reach a sliding surface and then 
remain there [24]. The choice of adequate sliding mode 
function represents a critical part of sliding mode control 
design to stabilize the trajectories of the system. Then, a 
switched feedback gain is constructed to drive the states 
trajectory to the sliding surface and ensure the convergence 
[25]. So, it’s necessary to add a discontinuous term to the 
control input that may cause the chattering phenomenon 
characterized with high frequency oscillation of plant 
trajectories around the sliding surface. To attenuate 
chattering, we replaced the sign function with the saturation 
function. 

Some works have investigated the sliding mode 
controller for flexible joint manipulators where 
transformation of the state coordinate of the system [26] or 
a transfer from dynamical equations to error domain [27] is 
required. 
The proposed controller is directly synthesized from the 
dynamic model, the performances of stability and 
robustness will be approved by simulation results. 

In this paper, we present a brief overview of the flexible 
joint single link manipulator. Then we design the sliding 
surface and derive the control law on the basis of Lyapunov 
stability theory and Hurwitz conditions. Stabilization and 
tracking control are demonstrated by the simulation on 
MATLAB of the flexible joint manipulator and the SMC 
controller in closed loop. 

2. DESCRIPTION OF THE FLEXIBLE JOINT 
SINGLE LINK MANIPULATOR AND 

ASSYMPTIONS  
We consider in this work the manipulator in Fig. 1 with 

single rigid link and flexible revolute joint actuated by a dc 
motor [29]. This type of arm is of high interest by modern 
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researchers recently since its spread in industry. The 
elasticity of the joint is modelled as a linear torsional spring 
with stiffness K. I and J represent respectively the link and 
motor inertias. x1 and x3 are respectively angular positions 
of the link and motor and l is the height of the center of 
mass of the link. 

 
Fig. 1 – Single-link flexible joint robot. 

The equations of motion of this system are obtained thanks 
to the Euler-Lagrange equation (3) where L is the total 
kinetic and potential energies noted Ktot and Ptot 
respectively. 

, (1) 

, (2) 

. (3) 

Then, the Euler-Lagrange’s equation of motion (4) is used 
to pick up the rotational acceleration of the motor and the 
link given by (6.1) and (6.2) respectively. In (4), u 
represents the torque or the control input, and xi is the 
variable of differentiation i.e. x1 and x3. 

. (4) 

Then 

, (5.1) 

 (5.2) 

So 

, (6.1) 

 . (6.2) 

The  system can be written into the following cascade 
state space model as: 

 (7) 

 
where  are system states, u is the control input 
and d  is a disturbance added to evaluate its influence on the 
control such as .  

The first control goal is the stabilization of all the states 
of the system to zero. The second one is to ensure a 
tracking error  that tends to zero as the time tends to 
infinity.  

For the system (7), let:  

, (8.1) 

, (8.2) 

. (8.3) 

So, the system can be written as: 

. (9) 

 must satisfy some assumptions: 

Assumption 1 

 is invertible. (10.1) 

Assumption 1 is guaranteed as . 

Assumption 2  

If then    (10.2) 

Assumption 2 is satisfied as . 

Assumption 3 

, and . (10.3) 

Assumption 3 is validated as    is bounded                

These assumptions satisfied by the system (7) are 
requirements to develop a sliding mode controller that 
stabilizes all the states of the system. 

3. SMC DESIGN AND IMPLEMENTATION FOR 
THE FLEXIBLE JOINT SINGLE LINK 

MANIPULATOR 
The design of the sliding surface depends on the class of 

the system and its dynamics. For the flexible joint 
manipulator, the nonlinearity appears into first equation and 
the number of actuations is less than the degree of freedom 
of the system.  
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3.1. SMC CONTROLLER DESIGN 
Let’s design the sliding mode function as:   

. (11) 

where n = 4, αi, i = 1,2,3 are positive constant numbers 
chosen to ensure an asymptotically stable dynamics of the 
system on the sliding manifold  and  are 
such: 

 (12) 

So, the sliding mode function can be written as: 

. (13) 

The sliding mode controller u consists of two terms: the 
equivalent control part ue that maintain the system states on 
the sliding surface and a switching control part us that 
ensure the convergence of the system trajectories to the 
sliding manifold . Then:                                                       

. (14) 

From the equation , we conclude the equivalent 
control part  . 
Since 

 (15) 

Then, we can extract the equivalent control part as: 

 (16) 

To satisfy the switching control is designed as: 

, (17) 

where  is the saturation function chosen instead of 
the sign function to reduce the chattering of the control 
input that can deteriorate the actuator [28] and  is a 
proportional rate term that force the state to reach the 
switching manifold faster when σ is large 

. (18) 

 is the boundary layer and Г is set as: 

. (19) 

Since the assumption 1 is verified, so the control law is 
effective. Substituting (14) into (15) we obtain: 

 . (20) 

3.2. STABILITY ANALYSIS 
To prove the stability of the system, let’s design the 

Lyapunov function as , then 

 (21) 

Thus, the system converge to the manifold in a finite 
time and stay on it, i.e. there exists  such as for  we 
have  then  
From (12), we have: , and  . 

Let and , then we can 

obtain the reduced system: 

, (22) 

such as A is Hurwitz. 
Design the Lyapunov function of system (22) as: 

. (23) 

Then, we can obtain this equation: 
 , where  and is 

the unique solution. So, the derivate  of  is such:  

 (24) 

where   is the minimum eigenvalue of Q. 

Since is negative definite, so the transformed system is 
asymptotically stable and the variables ,  and  
converge to zero. So, from assumption 2, the state x3 will 
also converge to zero, and then from (12) e4 will converge 
to zero. 
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3.3. POSITION TRACKING 

For the position tracking, if we choose xd and  as 
desired position and velocity respectively of the 
manipulator’s terminal link, then the variables    
are set as: 

 (25) 

So:  

 (26) 

Then from , we get the equivalent control 

 (27) 

To demonstrate the performance of the proposed control 
law, SMC and flexible joint system will be simulated for 
both stabilization and position tracking.  

4. SIMULATION RESULTS AND DISCUSSIONS 
SMC controller (14) and flexible joint system (7) with 

the parameters of Table 1 [30] were introduced in 
MATLAB. Let the initial states of the plant are set as 

, design Г from (19) with ,  
and set the boundary layer of the saturation function as 

. 

A is Hurwitz, so: , then, 

we can choose , and . 
Let’s the disturbance , so we can set D = 0.4. 
 
 

Table 1 
System parameters 

Parameter Symbol Value 
(model 1) 

Unit 

Mass  m 1 kg 
Stiffness k 100 Nm/rad 
Length  L 1 m 
Gravity g 9.8 m/s2 
Inertia of link I 1 kg m2 

Inertia of motor 
shaft 

J 1 kg m2 

 

4.1. STABILIZATION  

 

 

 

 
 

Fig. 2 – System states response. 

 
To demonstrate the stability of the system around the 

equilibrium point, we consider the equations (12), so the 
control goal is that all the states xi, i = 1 to 4 converge to 
zero. From the model (9), we have: 

, , 

 , 
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, , . 

 

From and Assumption 3, we can choose: 

. 

Simulation results are shown in Figs. 2 and 3 which 
represent respectively the system states responses and the 
control input which brought back all the states to the 
equilibrium point zero despite of the presence of a 
disturbance and justify the asymptotic stability of the 
system. 

 
Fig. 3 – Control input for f=0.5 Hz. 

4.2. POSITION TRACKING SIMULATION 
For position and speed tracking goals, the states x1and x2 

have to reach the desired position and velocity  and 
respectively. To demonstrate the performance of the 

system, we change the frequency noted f of the applied set 
point as follows: and 5 Hz. 
The Figs. 4, 5 and 6 illustrate the control input, position and 
speed response respectively of the flexible joint system at 

Hz. The sinusoidal tuned control input allowed the 
tracking of the set point and the error reach zero in a finite 
short time.  

 

Fig. 4 – Control input for f = 5 Hz. 

 

Fig. 5 – Position tracking for f =0.5 Hz. 

 

Fig. 6 – Speed tracking for f = 0.5 Hz. 

The Figs. 7, 8 and 9 illustrate the control input, position and 
speed response respectively of the flexible joint system at 

Hz. The amplitude of the control system signal is 
higher and the controlled states reach the desired 
trajectories in a short finite time and justify the asymptotic 
convergence.  

 

Fig. 7 – Control input for f =1 Hz. 

 

Fig. 8 – Position tracking for f =1 Hz. 
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Fig. 9 – Speed tracking for f =1 Hz. 

At Hz, the amplitude of the control system signal is 
even higher as shown in the figure 10. The Figs. 11 and 12 
show that the position and speed responses reach the 
desired trajectories in a brief delay. 

 

Fig. 10 – Control input for f = 5 Hz. 

 

Fig. 11 – Position tracking for f =  5 Hz. 

 

Fig. 12 – Speed tracking for f = 5 Hz. 

 
The proposed controller can be tested on a real target 
system such as the Quanser model of rotary flexible joint   
srv02 [31]. 

The QUARC (Quanser Real Time Control) software, 
integrated with MATLAB, allows the real time control in 

closed loop (Fig. 13) directly from Simulink .The code is 
deployed on the hardware  and the system responses are 
obtained via Q8_USB board from Quanser hardware to 
MATLAB . 

 

Fig. 13 – Control loop. 

4. CONCLUSION 
In this paper, a sliding mode controller design is 

proposed to control a flexible joint single link manipulator. 
The state model of the system is obtained using the 
dynamics equation of Euler-Lagrange. The sliding surface 
and the SMC controller are derived for both stabilization -
according to Lyapunov and Hurwitz conditions- and 
tracking study. The simulation results prove that the 
calculated control law allowed the system to achieve 
correctly the tracking setpoints and justify the performance 
of stability, robustness of this control technique in front of 
disturbance and internal parameters variation. Although, the 
choice of control law parameters is sensitive and delicate, 
like the boundary layer and the parameter D that have to be 
adjusted with the disturbance and also the proportional rate 
that have to be adjusted with the frequency. The positive 
constant δ can be adjusted using fuzzy controller. The high 
speed of the joint requires high amplitude of the control 
input signal. So, an adaptive SMC is required. 

Received on September 5, 2020 

REFERENCES 
 
1. V. Potkonjak, K. M. Jovanovic, P. Milosavljevic, N. Bascarevic, O. 

Holland, The puller-follower control concept in the multi-jointed 
robot body with antagonistically coupled compliant drives, in 
IASTED International Conference on Robotics, pp. 375–381 
(2011).  

2. J. Iqbal, N. Tsagarakis, D. Caldwell, Four-fingered lightweight     
exoskelet on robotic device accommodating different hand sizes,         
Electronics Letters, 51, pp. 888–890 (2015). 

3. J. Hidalgo, P. Pantelis, J. Kohler, J. Del-Cerro, A. Barrientos, Improving 
planetary rover attitude estimation via MEMS sensor 
characterization, Sensors, 12, pp. 2219-2235 2012. 

4. K. Baizid, A. Meddahi, A. Yousnadj, R. Chellali, H. Khan, J. Iqbal, 
Robotized task time scheduling and optimization based on Genetic   
Algorithms for non-redundant industrial manipulators, IEEE  
International Symposium on Robotic and sensors Environments, pp. 
112–117 (2014). 

5. M. I. Ullah, S. A. Ajwad, R. U. Islam, U. Iqbal, J. Iqbal, Modeling   and 
computed torque control of a 6 degree of freedom robotic arm, 
IEEE International Conference on Robotics and Emerging Allied 
Technologies in Engineering, pp. 133–138, 2014. 

6. M. F. Khan, R. U. Islam, J. Iqbal, Control strategies for robotic 
manipulators, IEEE International Conference on Robotics and 
Artificial Intelligence (ICRAI), pp. 26–33, 2012. 

7. B.  Siciliano, O. Khatib, Springer Handbook of Robotics, Springer, 
2016. 

8. B.  Subudhi, A.S. Morris, Dynamic, modelling simulation and control of   
a manipulator with flexible links and joints, Robot. Auton. Syst., 41, 
pp. 257–270 (2002). 



7 Majdi Boussoffara, Ikbel Ben Cheikh Ahmed, Zied Hajaiej 167 
 

9. A. Albu-Schaffer, , O. Eiberger, M. Grebenstein, S. Haddadin, C. Ott, T. 
Wimbock, S. Wolfet G. Hirzinger, Soft robotic, Robotics & 
Automation Magazine, IEEE, 15, 3, pp. 20–30 (2008). 

10. A. De Luca, S. Iannitti, R. Mattone, G. Oriolo. Control problems in 
underactuated manipulators. IEEE/ASME International Conference 
on Advanced Intelligent Mechatronics, 2, pp. 855–861 (2001). 

11. Z. Mohamed, M. Tokhi, Command shaping techniques for vibration 
control of a flexible robot manipulator, Mechatronics, 14, pp. 69–90 
(2004). 

12. W. J. Book, M. Majette, Controller Design for Flexible Distributed 
Parameter Mechanical Arms Via Combined State Space and          
Frequency Domain Techniques, 1983. 

13.Y. Sakawa, F. Matsuno, S. Fukushima, Modeling and feedback control 
of a flexible arm, J. Robotic Syst., 2, 4, pp. 453-472 (1985). 

14. S. Ajwad, M. Ullah, B. Khelifa, J. Iqbal, A comprehensive state- of-
the-art on control of industrial articulated robots, Journal of Balkan 
Tribological Association, 20, pp. 499–521 (2014). 

15. S. A. Ajwad, J. Iqbal, M. I. Ullah, A. Mehmood, A systematic           
review of current and emergent manipulator control approaches,  
Frontiers of Mechanical Engineering, 10, pp. 198–210 (2015). 

16.  N. Ali, W. Alam, M. Pervaiz, J. Iqbal, Non linear adaptive 
backstepping control permanent magnet asynchronous motor, Rev. 
Roum. Sci. Techn.– Électrotechn. et Énerg. 66, 1, pp. 9–14 (2021). 

17. O. Khan, M. Pervaiz, E.Ahmad, J. Iqbal, On the derivation of novel 
model and sophisticated control of flexible joint, Rev. Roum. Sci. 
Techn.– Électrotechn. et Énerg., 62, 1, pp. 103–108 (2017). 

18. J.-J. E. Slotine, W. Li, Applied Nonlinear Control, Prentice-Hall 
London, 1991. 

19. Y. Deia , M. Kidouche, and M. Becherif, Decentralized robust sliding 
mode control for a class of interconnected nonlinear systems with 
strong interconnections, Rev. Roum. Sci. Techn.– Électrotechn. et 
Énerg., 62, 2, pp. 203–208 (2017). 

20. Levant, A. (Levantovsky, L.V.), 1993, Sliding order and sliding 
accuracy in sliding mode control. International Journal of Control, 
58, 1247–1263 

21. T. L. Liao, L.C. Fu, C.F. Hsu, Output tracking control of nonlinear 
systems with mismatched uncertainties, Systems and 
Control Letters, 1, pp. 39–47 (1992). 

22. M.-L. Chan, C.W. Tao, T.T. Lee, Sliding mode controller for linear 
systems with mismatched time-varying uncertainties, Journal of the 
Franklin Institute, 337, pp. 105–115 (2000). 

23. Y. Xia, Y. Jia, Robust Sliding-Mode Control for Uncertain Time- 
Delay Systems: An LMI Approach, IEEE Transactions on Automatic 
Control, 48, pp. 1086–1092 (2003). 

24. F. Piltan, N. B. Sulaiman, Review of sliding mode control of    robotic 
manipulator, World Applied Sciences Journal, 18, 1, pp. 1855–1869 
(2012). 

25  S. Drakunov, V. Utkin, Sliding mode control in dynamic systems, 
International Journal of Control, 55, 4, pp. 1029-1037 (1992). 

26. S. K. Spurgeon , L. Yao, X.Y. Lu, Robust tracking via sliding mode 
control for elastic joint manipulators, Proc. IMechE, Part I: J. 
Systems and Control Engineering, 215, pp. 405–417 (2001). 

27. S. Zaare, M.R Soltanpour, M.Moattari, Voltage based sliding mode 
control of flexible joint robot manipulators in presence of 
uncertainties, Robot. Auton. Syst., 118, pp. 204–219 (2019).  

28. M. B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics: 
Modelling, Planning and Control, Springer-Verlag London Limited, 
2009. 

29. H. K. Khalil, Nonlinear Systems, 3rd ed., Prentice Hall, Upper Saddle 
River, N. J., 2002. 

30. M. W. Spong, Modeling and Control of Elastic Joint Robots, Journal 
of Dynamic Systems, Measurement, and Control, 109, 4, p. 310, 
(1987). 

31. Quanser handout, Rotary flexible joint module, accessed on July 24, 
2016. Available on: http://www.quanser.com.

 


