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The Hănțilă method is a fixed-point method which treats nonlinearity by constructing a Picard-Banach sequence with assured 

convergence. Sometimes, the contraction factor of the operator building the iteration sequence is very close to the unit value and 

thus the convergence is rather slow. We propose and analyze several procedures for accelerating the calculation algorithm in case 

of utilizing the Hănțilă method for solving nonlinear three-phase circuits.

1. INTRODUCTION 

The issues generated by the nonlinear loads present in the 

electricity networks are becoming more and more important 

considering the electricity production and consumption 

trends and the necessity of implementing innovative 

renewable energy technologies [1–7]. The identification of 

efficient methods for calculating and modeling three-phase 

circuits with nonlinear elements has become very important 

in this context. 

The Hănțilă method has been used successfully in solving 

several electrical engineering problems where nonlinearities 

may occur: magnetic and electromagnetic fields in nonlinear 

environments, electrical circuits with nonlinear elements [8]. 

The Hănțilă method is a fixed-point method treating 

nonlinearity by constructing a converging Picard-Banach 

sequence. 

For the first time, the method was presented and used in 

[9] for solving circuits with nonlinear resistive elements, and 

then developed in a series of articles [10 –12], for periodic 

circuits. The solution for the three-phase circuits using the 

Hănțilă method was proposed in [13] and later developed and 

analyzed in the articles [14, 15] in the case of some practical 

examples, including non-linear elements with controlled 

switching (i.e., thyristors). The method proved effective in 

all the analyzed cases. We mention that the analyzed method 

has several advantages compared to other methods [14, 15]: 

assured convergence, single-phase solution analyzes, the 

possibility of solving circuits with nonlinear elements with 

switched or defined characteristics on branches, the 

possibility to solve circuits having different circuit element 

values on harmonics or sequences (for example: generators 

presenting different reactances on symmetrical components). 

The solution is to “linearize” the circuit by replacing the 

nonlinear elements with generators with controlled sources 

and internal resistors. The value of the sources is corrected 

iteratively by constructing an algorithm with assured 

convergence. The value of the internal resistances is chosen 

to ensure convergence. The correction of the controlled 

sources according with the nonlinear characteristics is 

performed in the time domain. The analysis of the linear 

circuits connected to the terminals of nonlinear elements is 

done in frequency domain, separately on harmonics and 

sequences. Finally, when the value of the controlled source 

is obtained with sufficient accuracy, the currents and 

voltages may be calculated in the frequency domain for all 

the elements present in the circuit [13–15]. 

An important advantage is the possibility of adopting a 

large number of harmonics, which is practically impossible 

with other methods. Note that if a large number of harmonics 

need to be considered, the data volume and computation time 

can increase significantly. Depending on the nonlinear 

characteristic and the circuit connected to the terminals of the 

nonlinear element, situations in which the contraction factor 

of the algorithm has values very close to 1 may occur. As a 

result, the number of iterations and computation time may 

increase substantially [8]. 

We analyze several procedures for accelerating the 

calculation algorithm specific to the application of the 

method: the optimal choice of the calculation resistance R, 

the use of overrelaxation, the correction of the controlled 

source using either the voltage or the current. Considering 

the limited extent of the present article, other acceleration 

procedures will be presented in a Part II follow up paper, 

namely: the use of harmonic selection, hybrid voltage / 

current correction method, the use of “less harsh” nonlinear 

characteristics with better suited contraction factors, the use 

of modified values for the linear circuit elements, 

respectively the correction to the nonlinear characteristic by 

including some other existing elements from the circuit. 

2. APPLICATION OF THE HĂNȚILĂ METHOD – 

SHORT DESCRIPTION 

A brief description of the method is useful for 

understanding convergence acceleration procedures. There 

are two options for using it: voltage correction or current 

correction of the controlled source. The two variants are dual 

[13–15]. For simplicity reasons, we choose a three-phase 

circuit with a single star-balanced nonlinear load, which has 

identical nonlinear elements on each of the three phases. The 

method can also be applied if several nonlinear loads are 

present in the circuit. We briefly present the application of 

the method detailed in [13–15], and we will enter into details 

if necessary. 

2.1. VOLTAGE CORRECTION OF THE CONTROLLED 

SOURCE 

In this case the method consists in replacing the nonlinear 

elements with voltage generators having the controlled 

voltage sources e and internal resistances ℝ. 

The u–i characteristic of the nonlinear element on a phase 

is described in time-domain by the function f : R → R: 
 

 i = f (u),   (1) 
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where i and u are the current and respectively the voltage for 

the nonlinear element. 

We substitute each of the nonlinear elements having the 

characteristic (1) with voltage generators made up of voltage 

sources e (controlled by the voltage at the terminals of the 

branch) and the internal resistance R: 

 

u =R i + e     (2) 

with 

 e = u – R f(u) = u(1–R
f(u)

u
) = u(1–

R

Ru(u)
) = g(u).        (3) 

 

According with [8, 13–15] we chose R such that g(u) be a 

contraction in the Hilbert space of periodic functions: the 

contraction factor θg ∈ (0, 1) exists to ensure the inequality 

 
‖g(u1)–g(u2)‖ ≤ θg‖u1–u2‖ ∀ u1,u2. (4) 

 

In order to define the norm relative to the voltages, we 

consider in the Hilbert space of periodic functions of period 

T the weighted (with the factor 1/ R) scalar product [11, 13], 

as follows  

  〈u1,u2〉1/R=∫
u1u2

R

T

0
dt.  (5) 

 

In this way the function g(u) is defined making the 

transition in time domain from the voltage u across the 

nonlinear element to the controlled source e, which ensures 

the correction according with the nonlinear characteristic. 

A necessary condition for g : R→R be a contraction is that 

function f is a Lipschitz and uniformly monotone function [8, 

11–15], 

0 <
1

Rmax
≝ λ≤ ‖

f(u1) – f(u2)

u1 – u2 
‖ ≤ Λ≝

1

Rmin
,  (6) 

 

∀ u1,u2 and u1≠u2.   
 

By substituting the nonlinear elements with controlled 

generators, one will get a linear periodic regime circuit 

allowing a single phase solving, on sequences, as discussed 

in more detail in [14]. For each harmonic of rank k the linear 

circuit at the terminals of the nonlinear source can be 

replaced with the equivalent generator having the complex 

source emf Egk
 and impedance Zek

. The linear function hk 

results immediately, by which it the voltage vector Uk is 

obtained at the terminals of the nonlinear element having the 

controlled source k-harmonic emf Ek  [14, 15], given as 

 

Uk = (Ek + Egk
)Zek

 / (Zek
+ R) = hk(Ek).  (7) 

 

From (7) we get 

hk (E'
k) – hk (E"

k)= (E'
k  – E"k)

 Zek

Zek
+R
 . (8) 

In (8) we notice that hk is non-expansive. The vector U of 

the voltages at the terminals of the nonlinear element has the 

components given by (7), resulting U = h(E), where h is a 

linear diagonal operator of components hk. Vector U has the 

role in frequency domain to connect with the linear part of 

the circuit. Function h is also non-expansive. 

Using the above-defined functions g(u) contractive and 

h(E) non-expansive, one can construct the Picard-Banach 

sequence implementing the following iterative process (from 

iteration n to n + 1) [14]: 

 

e(n)→
F

E(n)→
h

U(n) →
F –1

u(n)→
g

e(n + 1),  (9) 

 

where F and F–1  are the direct and inverse Fourier 

transforms, respectively. 

The iterative process is contractive, being obtained by 

composing a contraction with non-expansive functions [13–

15]. 

2.2. CURRENT CORRECTION OF THE CONTROLLED 

SOURCE 

If f is a Lipschitz and uniformly monotone function, it is 

invertible, and its inverse f –1 also results as a Lipschitz and 

monotone function [13]: 

 

0<
1

Gmax

≝λi=
1

Λ
≤‖

f
–1(i1)–f

–1(i2)

i1 – i2 
‖ ≤

1

λ
=Λi≝

1

Gmin

 

 

 

∀ i1,i2 and  i1 ≠ i2.    (10) 

 

The nonlinear elements of characteristic u = f –1(i) are 

being replaced this time with controlled current generators is 
and internal conductance G, allowing us to write 

 

i = is + G u,            (11) 

 

with   is = i – G f
 –1(i)=i (1 – G 

f
 –1(i)

i
) = g

i
(i). (12) 

 

Similar to Section 2.1, the value of the conductance G is 

chosen in such a way that the function gi(i) represents a 

contraction [14].  

In order to define the norm relative to the currents, we 

consider in the Hilbert space of periodic functions of period 

T the weighted scalar product (with the factor 1/ G) [11, 13]: 

 
 

   〈i1,i2〉1/G=∫
i1i2

G

T

0
dt.   (13) 

 

In the same manner as presented in Section 2.1, on each 

harmonic k, the linear circuit connected to the nonlinear 

current source is substituted with the equivalent current 

generator made up of the complex current source Igk
 and the 

equivalent complex admittance Yek
. The k-harmonic of the 

current through the nonlinear element becomes 

 

Ik = hik
(Isk

) = (I
sk

+ Igk
)Yek

/ (Yek
+ G). (14) 

 

Function hik
 is non-expansive. Suppose we consider N 

harmonics for solving the circuit. Then, the vector I of the 

currents through the nonlinear element has its components 

given by (14) resulting I= hi(Isk
), where hi is a linear diagonal 

operator of components hik
. Operator hi assures the link with 

the linear part of the circuit, and is also non-expansive. 

The iterative process utilizing the correction of the current 

provided by the controlled source can be summarized by the 

following successive transformations 

 

is
(n)→

F
I
s

(n)→
hi

I(n) →
F –1

i(n)→
gi

is
(n+1).       (15) 
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3. SPECIFIC CONVERGENCE ACCELERATION 

PROCEDURES FOR THE PROPOSED METHOD 

In this category we include the acceleration procedures 

that implicitly result from the application of the method: the 

optimal choice of the calculation resistance R, the voltage or 

current correction for the controlled source, as well as the use 

of over-relaxation. 

3.1. OPTIMAL CHOICE OF COMPUTATIONAL 

RESISTANCE R 

The choice of the calculation resistance R (internal 

resistance of the generator with which we replaced the 

nonlinear element) must be made in a certain interval to 

ensure the convergence of the method. This choice can 

influence the contraction factor and the convergence speed 

of the algorithm. 

3.1.1. The choice of parameter r in case  

of voltage correction 

Assuming that g(u) is a contraction, it follows from 

equations (3) and (4) that 

 

‖u1–R f(u1)–(u
2 

–R f(u2))‖ ≤ θg‖u1–u2‖ for each u1,u2. (16) 
 

 

If we consider that f : R →R , we have 

 

|1–R
f(u1)–f(u2)

u1  – u2 
| = |1–

R

∆R12
| ≤ θg <1    (17) 

 

with ∆R12∈[Rmin, Rmax]. 

 

We have in view that the argument and the value of f are 

the functions u, i : [0, T]→R.  Function g is contractive if 

∀ t ∈[0, T], g(u(t)) is a contraction. 

To ensure that g(𝑢) is a contraction, R must be chosen in 

the range (0, 2Rmin) [13, 14]. 

The correction factor is given by 

 

θg=max [(1–
R

Rmax
) , (

R

Rmin
–1)].           (18) 

 

Reference [13] proposes a solution for minimizing θg, by 

choosing R = Ropt=
2RminRmax

Rmin+Rmax
, which leads to the lowest 

contraction factor θgopt
=

Rmax–Rmin

Rmin+Rmax
. Note that it is not 

mandatory for the convergence rate to be higher when we use 

the optimal resistance, because this rate depends on the 

values of the arguments u and implicitly on the moduli of the 

applied coefficients u that correct the voltage sources as e = 

g(u). The optimal contraction has the advantage that the 

evaluation of the error in the iterative construction of the 

Picard-Banach sequence is more efficient, considering that: 

 

‖e(n +1)–e*‖≤
θ

1– θ
‖e(n +1)– e(n)‖,  (19) 

 

where e* is the fixed point and θ < θg, the correction factor of 

the mapping (9) [8, 13–15]. 

From (3), it can be noticed that the contraction factor θg is 

a majorant of the modulus of the coefficients applied to u 

within the function 
 

𝑒 = g(u) = u (1–
R

Ru
).    (20) 

A minimum of the modulus of these coefficients for the 

choice interval of R ∈ (0, R
min
] is obtained for R = Rmin, with 

θg= (
Rmax – Rmin

Rmax
). In order to ensure a better convergence rate, 

the selection range of R can thus be restricted to the 

interval [Rmin, 2R
min

). 

For R > Rmin, part of the coefficients will be lower in 

absolute value than in the case of R = Rmin, but there are 

values of Ru (values close to Rmin) for which the coefficients 

will have a greater absolute value. Without knowing the 

distribution of arguments u, one cannot narrow the selection 

range any further. 

The non-expansive function h is determined by the 

properties of the circuit connected to the terminals of the 

nonlinear element. By truncating the Fourier series, h is 

practically a contraction. From (7) and (8) it is observed that 

for a harmonic of rank k the correction coefficient of Ek 

becomes 

 

 Zek
/ (Z

ek
+R)=1/(1 + R/ Zek

).       (21) 

 

For a given circuit and for a finite number of harmonics, 

there is a maximum subunit absolute value for the expression 

(21). In this case a contraction factor can be defined for the 

function h in the following manner 
 

1 > θh= max
k
|1 / (1 + R/ Zek

)|.  (22) 

 

A higher value of R ensures a lower value contraction 

factor for h, as well as lower values for the modulus of the 

coefficients of Ek. 

From (9) it can be seen that the contraction factor is a 

composition of the contraction factors of the component 

functions: g and h, as well as the contraction factor generated 

by F as a result of the performed series truncation. 

To conclude, in order to ensure the best possible 

convergence speed, the choice for R must be made in the 

interval [Rmin, 2 Rmin).  Most probably, the choice of R close 

to Ropt is likely to ensure a very good convergence rate. The 

selection interval of R could be narrowed in some particular 

cases depending on: the values of the circuit elements, the 

nonlinear characteristic, as well as the properties of the signal 

we are trying to determine.  

It should be noted that in the case of a “hard” nonlinearity 

(Rmin negligible vs. Rmax), Ropt is very close to 2 Rmin, and the 

process may become divergent or with “oscillating 

convergence” due to computation errors. We will analyze 

this situation in the chapter dedicated to the illustrative 

example. 

3.1.2. The choice of parameter g in case  

of current correction 

Similar to the approach of Subsection 3.1.1, we impose 

that g
i
(i) is a contraction, and we get: 

 

‖i1–Gf
 –1

(i1)–(i
2 

–Gf
 –1(i2))‖≤θgi

‖i1–i2‖for each i1,i2, (23) 
 

respectively 
 

         |1–G 
f
 –1

(i1) – f –1(i2)

i1 –i2 
|= |1–

G

∆G12
 | ≤ θgi

< 1,                (24) 
 

with ∆G12∈[Gmin,Gmax]. 



296 Hănțilă method – accelerating convergence. Part 1 4 

For g
i
(i) to be contractive, G must be chosen within the 

interval (0, 2Gmin) [13,14]. 

The contraction factor becomes 

 

θgi
=max [(1–

G

Gmax
) , (

G

Gmin
–1)].           (25) 

 

One can use the conductance value Gopt=
2GminGmax

Gmin + Gmax
 , which 

produces the smallest contraction factor θgiopt
=

Gmax – Gmin

Gmin+ Gmax
. 

Similar to Subsection 2.1, the function hi(Is) has for a 

harmonic of rank k the correction coefficient for  Isk
 given by 

 

Yek
/ (Yek

 + G) =1 / (1 + G /Yek
)  (26) 

 

and, as a result of the truncation of the Fourier series, it 

becomes a contraction with a contraction factor given by 

 

1 > θhi
= max

k
|1 / (1 + G / Yek

)|.            (27) 

 

A greater value of parameter G ensures a lower value 

contraction factor for h, as well as lower values for the 

modulus of the coefficients of Isk
. 

The overall contraction factor is a composition of the 

contraction factors of the component functions gi and hi, as 

well as the contraction factor generated by F as a result of 

the series truncation. 

The previous subsection conclusions are maintained: in 

order to ensure the best possible convergence speed, the 

choice of G must be made in the interval 

[Gmin, 2Gmin).  Therefore, most probably, the choice of G 

close to Gopt is likely to ensure a very good convergence rate. 

3.2. VOLTAGE OR CURRENT CORRECTION FOR THE 

CONTROLLED SOURCE 

As we have shown, the Hănțilă method allows the solving 

of the nonlinear three-phase circuits utilizing two dual 

variants, namely voltage or current correction of the 

controlled source. Depending on the properties of the circuit 

connected to the terminals of the nonlinear element, one of 

the variants may provide a shorter computation time and a 

smaller iteration number, compared to the other. 

The moduli of the correction and contraction factors can 

be readily evaluated for the voltage correction θg, θh and for 

the current correction θgi
, θ

hi
, respectively. These factors 

depend on parameters Rmin (Gmax), Gmin (Rmax), on the way 

R and G are respectively chosen, as well as on Zek
, Yek

. 

If parameters R and G are chosen as R = xRmin and 

G = xGmin with x ∈ (0, 2), then for the same value of factor 

𝑥, we will get θg= θgi
. Additionally, we will also have 

θgopt
= θgiopt

. 

The evaluation must practically be performed for θh and 

θhi
, and for the moduli of the correction coefficients of h and 

hi on the harmonics. 

Based on this evaluation, one can opt for the faster 

calculation option between the two.  

In the case of inductive circuits (|Zek
| increases with 

increasing k), the modulus of harmonic coefficients of h 

|1/ (1 + R / Zek
)| increase and approach 1 as k increases, 

while those of hi, |1 / (1 + G/Yek
)|, decrease and approach 

zero. If a large number of harmonics are used, the current 

correction may prove to be faster. Conversely, in the case of 

a capacitive circuit, the voltage correction could be faster. 

However, the limit values between which the coefficient 

moduli increase or decrease are also important. As we will 

further discuss in the illustrative example, a decision can 

only be made by analyzing the modulus of the coefficients 

on harmonics. 

3.3. OVER-RELAXATION 

Being based on a Picard-Banach type sequence, an assured 

convergent procedure, the method allows the use of over-

relaxation, which in many cases may significantly reduce the 

number of iterations, hence the computation time as 

discussed in [8, 10, 14, 15]: 

 

E' (n)= E (n – 1) + ω (E(n)–E(n – 1)) with ω > 1.       (28) 

 

A useful criterion to evaluate the choice for the over-

relaxation factor ω is to assess the evolution of the error 

(distance) between two successive iteration values defined as 

 

ε(n)≝‖E (n)– E (n –1)‖.                   (29) 

 

We will always have  ε(n)< ε(n – 1).     (30) 

For the over-relaxation applied to iteration n to be 

effective, the error obtained at the next iteration n + 1 must 

be smaller compared to the case when over-relaxation was 

not applied,  
 

ε'(n + 1)< ε(n + 1).                           (31) 
 

Note that, as indicated by (30), the error at iteration n + 1 

is always smaller than that at iteration n, regardless over-

relaxation is applied or not. 

The algorithm can be used with a fixed value for ω, or a 

procedure for searching the values of ω can be developed by 

testing the inequality (31). 

If the contraction factor is significantly less than 1, the use 

of over-relaxation may not bring a significant improvement. 

For solving electromagnetic field problems in nonlinear 

media, in [8], a procedure for determining a “dynamic” over-

relaxation factor is proposed. This one is calculated in two 

steps so that the next iteration error, given by (29), is 

minimal. In reference [8], the procedure is used only to speed 

up the obtaining of the first harmonic. Unlike the problem of 

a nonlinear resistive element, in the case of the 

electromagnetic field, the nonlinear function f has vectorial 

variables and values, providing intricate partial derivatives 

relationships, in the case when the harmonics are taken into 

account. In a follow-up paper, we intend to develop such a 

solution for evaluating a “dynamic” over-relaxation factor in 

the case of electrical circuits with nonlinear elements. 

4. ILLUSTRATIVE EXAMPLE 

The present section is devoted to the analysis of a three-

phase circuit, quite similar to the one in solved in [15], as 

shown in Fig. 1. Let us consider the following characteristics 

for the circuit elements: sinusoidal three-phase generator of 
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symmetrical voltage sources with 325 V in amplitude and 

frequency 50 Hz, Rl =1 Ω,  R1=2 Ω, Rs=10 Ω, Ll =5×10–4 H, 

and L1= 5×10–2 H. 

For the identical thyristors Tr, we will consider the 

linearized characteristic described in [15, 16], as depicted in 

Fig. 2. Obviously, one can use some other nonlinear circuit 

elements and different current-voltage characteristics. 

As shown in Fig. 2a, below the threshold value u < Vf, 

there is the blocking conductance Gb. Above the threshold 

u ≥ Vf, the thyristor is characterized by the conduction 

conductance Gc. The dependence shown in Fig. 2b is valid 

before the control signal is applied to the gate and after the 

voltage u drops below the threshold value Vf, being described 

by the blocking conductance Gb. 

The characteristic function of (1) is in this particular case 

the following piecewise function spanning signal period T: 

 

𝑖 =f(u)={
uGc+Vf(Gb–Gc),  t∈ {

[tα, tb), tb < T

[0, tb)∪[tα, T],  tα > tb  

uGb , for the rest of period T

 (32) 

 

where tb is the blocking time at which the condition u < Vf is 

fulfilled for the first time after the disappearance of the 

control signal applied to the gate. The inequality tα > tb 

occurs when the conduction started in the previous period 

and is maintained in the present period until the condition 

u < Vf  is met. 

For the thyristors Tr depicted in Fig. 1, the following 

parameters are considered: blocking resistance 

Rb=1/ Gb=104 Ω, conduction resistance Rc=1/ Gc= 0.05 Ω, 

Vf = 5 V and α = π/ 5 (corresponding in terms of time to 

tα = T/ 10). 

We will truncate the Fourier series up to the 100th 

harmonic rank, inclusively, and divide the period T also by a 

number of 40,000 equally spaced points, using the 

computation algorithm for F and F–1 described in [15]. We 

will thus ensure a sufficiently good calculation accuracy for 

higher harmonics as well. We will stop the iterations when 

the relative distance (relative error) ε(n)/‖eg‖ falls below     

10–8. We use the relative distance to be able to compare the 

calculated results with different metrics (different values of 

R, G). To simulate the computational algorithm, we used 

GNU Octave 6.2.0 environment [17]. After calculating the 

value of the controlled voltage source, it is possible to 

calculate the currents and voltages for all circuit elements 

[13– 15]. 

According to the Section 3.2, we analyze the modulus of 

the coefficients h and hi for each harmonic, as well as for the 

contraction factors  θh and θhi
.  

For R = Rmin= Rc and G = Gmin= Gb , the values of the 

modulus of the coefficients resulting from (21) for the 

function h are decreasing on Fortescue sequences, with the 

increase of harmonic order k, exhibiting a minimum value of 

0.99546 and a maximum value θh= 0.99982. 

Following the analysis of the modulus of the coefficients 

on harmonics we have 77 lower values for the function h and 

only 24 lower values for the function hi (only on the 

harmonics multiple of 3 and of high frequency cases). 

Similarly, for R = Ropt and G = Gopt the values of the 

modulus of the coefficients resulting from (21) for the 

function h are decreasing on Fortescue sequences with the 

increase of k with a minimum value of 0.99097 and a 

maximum value θh= 0.99964. The moduli of the coefficients 

 

Fig. 1 – The proposed three-phase circuit to be solved. 

 

 
 Fig. 2 – Linearized characteristic of the thyristor: a) with gate control applied signal; b) without gate control signal. 
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of the function hi resulting from (26) are increasing on 

sequences, with a minimum value of 0.99719 and a 

maximum value θhi
= 0.99781. Following the analysis of the 

modulus of the coefficients on harmonics we have 77 lower 

values for the function h and only 24 lower values for the 

function hi (only on the harmonics multiple of 3 and high 

frequency cases). 

Although the overall contraction factor is favorable to the 

current correction given that θhi
< θh, due to the distribution 

of the modulus of the coefficients for the two functions h and 

hi favorable to the voltage correction, we expect the voltage 

correction to be faster than the current correction one. 

If truncation were to be done for a larger number of 

harmonics, it might be useful to use of a hybrid voltage / 

current correction procedure that we are going to discuss in 

Part II of the article. 

4.1. VOLTAGE CORRECTION CASE 

If we use the voltage correction for the nonlinear element 

source, from (3) and (33) we get the function g(u): 

gg(u) =

{
 
 

 
 u (1–

R

Rc
) +

RVf(Rb–Rc)

RbRc
, t∈ {

[tα, tb), tb < T

[0,tb)∪[tα, T],  tα > tb 

 

u (1–
R

Rb
) , for the rest of period T.

(33) 

To be sure that g(u) is a contraction, parameter R must be 

chosen in the interval (0, 2Rc). The interval can be reduced to 

[Rc, 2 Rc), according to Section 3.1. 

By choosing R = Rc , we will get: 

 

gg(u) =

{
 
 

 
 

Vf(Rb–Rc)

Rb
 ,  t∈ {

[tα, tb), tb < T

[0,tb)∪[tα, T],  tα > tb 

 
u(Rb–Rc)

Rb
, for the rest of period T.

  (34) 

 

By replacing the numerical values, we obtain from (34): for 

the first branch a coefficient of u equal to 0, for the second 

branch 0.999995; the contraction factor  θg for the function 

g(u) becomes 0.999995. 

Table 1 shows the computation times and the number of 

iterations obtained using different values of R, including for 

the use of over-relaxation. We chose for the present study a 

fixed value for the over-relaxation factor, namely ω = 30. It 

was found that the benefits achieved even in this case are 

significant. In a future paper we will present detailed 

algorithms for determining the values of ω. 

We mention that simulations were carried out utilizing a 

MacBook Pro laptop with the following setup: 2.3 GHz 

8-Core Intel Core i9 processor and 16 GB 2667 MHz DDR4 

memory. 

According to the results shown in Table 1, a higher 

resistance value R reduces the computation time and number 

of iterations. In the case of the use of overrelaxation, the 

minimum number of iterations was obtained for R =1.5 Rmin, 

being also the fastest obtained result. For R =1.9 Rmin, using 

overrelaxation, there was a decrease in the number of 

iterations, but a significant increase in computation time. The 

time saving generated by the introduction of over-relaxation is 

here less than the time required to perform additional 

calculations. Note that, an over-relaxation factor could not be 

adopted for R = Ropt. 

Starting with R =1.8 Rmin, in the beginning of the iterations, 

we experienced “oscillating convergence” due to calculation 

errors and approaching the limit of the interval in which the 

convergence is ensured. The oscillating behavior is more 

pronounced with the increase of the R value and the approach 

of 2Rmin. This is probably one of the reasons why there was no 

value greater than 1that could be adopted for ω in the case of 

R = Ropt. 

Figure 3 shows some details of the evolution graph of the 

relative error in the cases mentioned above. 

Note that the model with linearized characteristic is an 

extreme case in which the modulus of the applied coefficients 

u is equal to the contraction factor, being very close to 1. In 

the case of a real characteristic the values of the modulus of 

the applied coefficients u are distributed in the range [0, 1). 

The phenomenon could be reduced by using a larger number 

of significant digits when performing calculations (but with 

the disadvantage of increasing the data volume and 

computation time). Other solutions would be reducing the R 

value or correcting the nonlinear characteristic by using a less 

harsh dependence. We will analyze these solutions in the 

second part of our study. 

Figure 4 shows the voltage across the nonlinear element, 

respectively for the controlled source (R = Rmin) in the time 

domain and the harmonic spectrum up to the 50th harmonic. 

The appearance of the Gibbs phenomenon is observed. 

4.2. CURRENT CORRECTION CASE 

For period 𝑇 we define the following piecewise functions: 

iu =f –1(i)={
i/ Gc–Vf(Gb–Gc)/Gc t∈ {

[tα, tb), tb < T

[0,tb)∪[tα, T],  tα > tb  
 i /Gb ,             for the rest of period T

  

 (35) 

 

and 

𝑖is =g
i
(i) =

{
 
 

 
 i (1–

G

Gc
)+Vf

G(Gb–Gc)

Gc
, t∈ {

[tα, tb), tb < T

[0,tb)∪[tα, T],  tα > tb 

 

i (1–
G

Gb
) ,  for the rest of period T.

 

 (36) 

 

To ensure that g
i
(i)   is a contraction, G must be chosen 

in the range (0, 2Gb). The range can be narrowed to 

[Gb, 2Gb) to optimize the convergence rate according to 

Subsection 3.2. 

Table 1 
Voltage correction solution for different values of R 

with and without over-relaxation 

 Voltage correction 

method 

No. of 

iterations 

Computation 

time [s] 
θg× θh 

1 R = 0.8 Rmin 9305 1664 0.99985 

 Over-relaxation factor 30 2193 801  

2 R = Rmin 7748 1361 0.99981 

 Over-relaxation factor 30 1767 675  

3 R =1.5 Rmin 5534 961 0.99971 

 Over-relaxation factor 30 1362 506  

4 R =1.8 Rmin 4750 831 0.99966 

 Over-relaxation factor 30 1943 730  

5 R =1.9 Rmin 4539 801 0.99964 

 Over-relaxation factor 30 2685 1014  

6 R = Ropt 4535 809 0.99962 
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(a)       (b) 

  
(c)       (d) 

 

Fig. 3 – Evolution graph of the relative error ε(n)/‖eg‖ (detail) vs. number of iterations for: 

a) R = Rmin; b) R =1.8 Rmin; c) R =1.9 Rmin, (d) R = Ropt. 

 

 
 

(a)       (b) 

  

(c)       (d) 

 

Fig. 4 – Voltage across thyristor Tr: a) in time domain; b) detail of the harmonic spectrum; the controlled voltage source voltage for 

R = Rmin; c) in time domain; d) detail of the harmonic spectrum. 
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Table 2 shows the computation times and the number of 

iterations obtained using different values of G, including for 

the use of over-relaxation. 

Even in the current correction case, the conclusions drawn 

at the end of the previous subsections are still valid: a greater 

value conductance G leads to a reduction of the computation 

time and of the number of performed iterations. If over-

relaxation is used, the fastest solution corresponded to  

G = 1.5 Gmin.  

For the case G = Gopt we could adopt an over-relaxation 

factor of just 1.1. For G =1.9 Gmin and G = Gopt the use of 

over-relaxation reduces the number of iterations, but 

significantly increases the computation time. 

Starting with G =1.5 Gmin , we experienced again 

“oscillating convergence” in the early stage of the iterations, 

the phenomenon being more pronounced with an increasing 

G value, becoming even more pronounced for G = Gopt.  

That confirms the decision taken following the analysis of 

the coefficient moduli, namely that the voltage correction 

method is (for this particular example) more rapid than that 

of current correction. 

5. CONCLUSIONS 

The Hănțilă method provides a useful calculation tool that 

can be easily utilized from the dimensioning and design stage 

of three-phase circuits and power distribution networks to 

effectively address the distorting effect of nonlinear elements 

and to facilitate the power transfer evaluation on harmonics. 

Consequently, it allows the implementation and check the 

effectiveness of the possible adopted corrective measures. The 

method brings a spectacular reduction of the computation 

volume because it allows a single-phase solving approach. 

Convergence is ensured and it is not necessary to use 

relaxation (as it is the case of other methods). In the case 

characterized by contraction factors close to 1, over-relaxation 

can be used effectively and computation time-saving can be 

significant. If a large number of harmonics needs to be taken 

into account, the data volume and computation time are 

expected to increase significantly. Depending on the actual 

nonlinear characteristic and the circuit connected at the 

terminals of the nonlinear element, situations may occur in 

which the contraction factor used in the algorithm has values 

very close to 1. In such cases, acceleration procedures may 

prove very useful. 
 

The analyzed acceleration procedures proved to be useful 

from the perspective of the easiness to implement in circuit 

analysis software. Other acceleration procedures will be 

analyzed in Part II, i.e., overrelaxation, harmonic selection, 

hybrid voltage / current correction method, the use of “less 

harsh” nonlinear characteristics with better contraction 

factors, the use of modified values for the linear circuit 

elements, and last but not least the correction of the nonlinear 

characteristic by incorporating some other existing elements 

from the circuit. For the use of over-relaxation, we consider 

useful to consider the possibility to introduce a “dynamic” 

over-relaxation factor, similar to the solution presented in [8] 

for the electromagnetic field in nonlinear media. As mentioned 

earlier, we intend to develop such a solution in a follow-up 

paper. We consider that an important direction for the 

development of the method is the increase of the computation 

speed. This can be done by: identifying more efficient 

algorithms, as well as by developing acceleration procedures. 

Received on 1 September 2022 
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8. G.M. Vasilescu, M. Maricaru, An efficient procedure for solving non- linear 

problems in electrical engineering: Hantila Method, Rev. Roum. Sci. 
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Table 2 

Current correction solution for different values of G 

with and without over-relaxation 

 Current correction method No. of 

iterations 

Computation 

time [s] 
θgi

× θhi
 

1 G = 0.8 Gmin 19559 3520 0.99912 

 Over-relaxation factor 30 4484 1734  

2 G = Gmin 15648 2809 0.99889 

 Over-relaxation factor 30 3482 1317  

3 G = 1.5 Gmin 10435 1881 0.99834  

 Over-relaxation factor 30 2429 895  

4 G = 1.8 Gmin 8698 1550 0.99802 

 Over-relaxation factor 30 3399 1279  

5 G = 1.9 Gmin 8240 1459 0.99791 

 Over-relaxation factor 30 4715 1768  

6 G = Gopt 8437 1494 0.99791 

 Over-relaxation factor 1.1 8287 2955  

 


