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Many digital signal processing applications can benefit from polynomial-based interpolation filters based on the Farrow 
structure or its variations. The number of polynomial segments determining the finite length of the filter impulse response and 
the order of polynomials in each polynomial segment are the two main design parameters for these filters. These parameters are 
linked to the complexity of the implementation structure and frequency domain performance. As a result, determining the value 
of these two parameters based on system requirements is beneficial in order to estimate complexity of the filter, and starting 
values for a design. This paper offers formulas for estimating the length and polynomial order of polynomial-based filters for a 
variety of criteria, including stopband attenuation, transition bandwidth, passband deviation, and passband/stopband weighting.

1. INTRODUCTION 
In many applications, it is necessary to determine signal 

samples at arbitrary positions between existing samples of a 
discrete-time signal, for example, sampling rate conversion 
for non-integer ratio, timing synchronization, interpolation 
in image processing [1], etc. In these cases, polynomial-
based interpolation filters can be used with piecewise 
polynomial impulse response [2, 3]. The Farrow structure 
[4] and its variants [5–7] can be used to efficiently 
construct these filters in practice. In the literature, several 
design methods are defined in the time or frequency domain 
[2, 3, 8–12]. In all these methods, there are two basic 
parameters, the number of polynomial segments M and 
polynomial order N, which control the performance of the 
filter and its complexity. M and N are directly proportional 
to the number of multipliers in the Farrow structure [2]. As 
a result, determining the value of these two parameters 
based on system needs is crucial. In [13], we derived 
estimation formulas for M and N which are suitable for 
several cases, but those formulas are obtained 
experimentally using the trial and error method, thus their 
accuracy is questionable. The formula presented in [14] is 
more general, however, it does not cover all possible 
modifications of the Farrow structure. 

In this contribution, we give the estimation for the 
number of polynomial segments N and polynomial order M. 
The formulas are developed due to a variety of system 
criteria, such as the stopband attenuation, the transition 
bandwidth, the passband deviation, and the 
passband/stopband weighting. The formulas provided here 
may be used for different modifications of the Farrow 
structure, and are a useful starting point for designing 
polynomial-based filters. 

2. POLYNOMIAL-BASED FILTERS AND FARROW 
STRUCTURE 

Polynomial-based filters are characterized by the 
underlying continuous-time impulse response, ha(t), whose 
desirable characteristics, when deriving the modified 
Farrow structure for interpolation, are [2, 3]: 
1) ha(t) is nonzero for 0 ≤  t  <  NT and zero elsewhere. 
2) In each subinterval nT ≤  t  <  (n +1)T for n  =  0, 1,…, 

N−1, ha(t) is expressed as a polynomial of degree M. 
3) ha(t) is symmetric about t = NT /2, that is 

ha(NT−t) = ha(t) .  
Based on Characteristic 3), the whole system will have a 

linear phase, which may be utilized to optimize the overall 
filter to fulfil the requirements needed in a similar way to 
linear-phase finite impulse response (FIR) filters [15]. T, 
the length of the polynomial segments, is not unique in the 
scenario above. As a result, T may be used to specify a 
variety of implementation structures, as will be explained 
later. T can be selected as T = βTin or T = βTout, where β is 
unity, an integer, or one divided by an integer, as shown in 
[5, 6]. The choice is made based on whether decimation or 
interpolation is being considered, as well as the structural 
requirements for effective implementation. 

The implementation structures for polynomial-based 
interpolation filters have several forms; In the first group 
are the modified Farrow structure [2, 4] for interpolation 
and the transposed modified Farrow structure [6] for 
decimation, where the length of the polynomial segments T 
is set to the input and output sampling intervals in the 
interpolation and decimation cases, respectively, i.e., T = Tin 
or T = Tout. For the second group of structures, T is an 
integer fraction of the sampling period, i.e. T = βTin or T = 

βTout with β < 1, and the structures under consideration are 
multistage systems consisting of a fixed linear-phase FIR 
interpolator in cascade with the modified Farrow structure 
or of a transposed modified Farrow structure in cascade 
with a fixed linear-phase FIR decimator [5]. Finally, for 
both interpolation and decimation, the so-called prolonged 
Farrow structures [5, 6] constitute the third group of 
implementation forms. The generation of these structures 
differs from those mentioned above in the fact that T is an 
integer multiple of either the input or output sampling 
period, i.e. T = βTin or T = βTout where β > 1 is an integer. 
The number of fixed coefficients in all of these structures is 
determined by the number N of polynomial segments and 
the order M of the polynomial in each segment.  

In this paper, we applied the minimax design method 
presented in [3]. Let us assume a lowpass signal as an 
example, whose sampling rate is Fin = 1/Tin, and the 
sampling rate of the output signal is Fout = RFin, and in the 
case of R > 1 (R < 1) the system realizes interpolation 
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(decimation). Then the requirements for the zero-phase 
response Ha(f) are [3]: 

 (1)  

where 

 
(2)  

In the above equations, fp is the passband edge, the 
stopband region is ΦS, where k is an integer, δs is the 
minimum stopband attenuation, and δp is maximum 
allowable passband ripple, F stands for Fout in a decimation 
case, and Fin in an interpolation case.   
In Minimax Optimization Problem the length N, and order 
M, are given, as well as passband and stopband through fp 
and ΦS, weight function W( f ). The methods finds the 
(M +1)N /2 unknown coefficients of the Farrow structure to 
minimize the energy of error between desired and obtained 
magnitude response. 

For the optimization of prolonged and transposed 
prolonged polynomial-based filters, the design process has 
been broadened and improved [5]. As a result, for a 
minimax design, we provide estimate formulas for the 
number N of polynomial segments and the order M of the 
polynomial for this case as well. 

4. ESTIMATION OF N AND M 
Polynomial-based filters can be represented as FIR filters 

in practice [16]. Furthermore, we have used a continuous-
time Kaiser window to design the polynomial-based 
interpolation filter in [12]. The estimation formula for N, as 
found in [17], is insufficiently precise. Both N and M 

estimation formulas have been proposed in [15]. However, 
these formulae are produced by a technique of trial and 
error, and they have some conditional restrictions. In 
particular, when designing a filter with a small transition 
band, the estimate equations of [13] cannot be utilized. As a 
result, we suggest the more universal and precise formulae 
in this paper. 

Similarly to the methodology applied in [14], our starting 
point is the Kaiser formula for order estimation of FIR 
filters, and we employed experimentally acquired results to 
generate estimate formulas. For the following design 
parameters, the polynomial-based filters are constructed 
using the minimax optimization technique of [3]. With the 
step equal to Δfp = 0.05 normalized to F, the passband edge 
is altered from Δfp to F/2–Δfp. The stopband edge is 
calculated using Case A specification of (2), thus fs = 0.5 
normalized to F. W(f), the weighting function used to 
distinguish design accuracy in the passband and stopband, 
is also changed from W(f) = [Wp Ws] = [1 0.1] to W(f) = [1 
1000], where Wp and Ws are passband and stopband 
weights, respectively. 

With step two, N can range from 2 to 24, and M can 
range from 0 to 7. We utilize 9 distinct values of fp, five 
different values of W(f), 12 different values of N, and 8 
various values of M, totalling 95128 = 4320 filters. For 
each set of conditions, we calculated the resulting 
performance in terms of passband ripple δp and stopband 
ripple δs. 

Comparing the results in [14] with those in Figs. 1 and 2, 
one can see that estimation formulas for N and M for Case 
A are valid for Case C as well. However, Figs. 3 and 4 
show that the Case B estimation formulae for N and M 
should be different from the formulae for Case A and C.  

For a given M, fp, and W(f), Figs. 1–4 show that there is a 
certain value of N after which the stopband attenuation δs 
saturates in value, and vice versa, for a given N, fp, and 

 
Fig. 1 –  Case C specifications: The curves are shown for M equals 0 to 7. Dashed line is plot obtained from the estimation formula for N shown in [13]. 
The stopband edge is at fs=1-fp, passband edge and stopband weighting are at: (a) f p=0.15F and W=0.1; (b) fp=0.3F and W=10; (c) fp=0.45F and W=1000. 

 
Fig. 2 –  Case C specifications: The curves are shown for N equals 2 to 24. Dashed line is plot obtained from the estimation formula for M shown in [15]. 
The stopband edge is at fs=1–fp, passband edge and stopband weighting are at (a) fp= 0.15F and W =0.1; (b) fp=0.3F and W=10; (c) fp=0.45F and W=1000. 
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W(f), there is a certain value of M after which the stopband 
attenuation δs saturates in value. So, these values of N and 
M are the optimal values that should be used in design for 
given δs, fp, and W(f). These values and parameters are put 
in the curve fitting toolbox with the starting formulae for N 
and M from [14]. The following estimation formulae for 
Case A and C are obtained: 

, (3) 

. (4) 

where fp and fs are the passband and stopband edge, As = –
20 log10(δs) is the required attenuation in the stopband, 
W = δp/δs represents weighting between required tolerances 
in passband and stopband, ⎡x⎤ stands for the smallest 
integer which is larger or equal to x.  If the transition band 
is small, as in (fs –fp)/F ≤ 0.1, the necessary value of N 
should be raised by 2. 

We also derive the Case B estimation formulae: 

. (5) 

. (6) 

When the transition band is very narrow, such as when 
(fs – fp)/F ≤ 0.1, the estimating formula, like Case A and C, 
cannot be utilized. 

The above-presented estimation formulae also lead to the 
estimation formulae for the prolonged Farrow structures 

and Farrow structures in cascaded multirate filters [16]. 
Based on (3)–(6), we derive the following Case A and C in 
(7) and (8), and Case B in (9) and (10) estimation formula 
for the prolonged Farrow structure: 

. (7) 

, 
(8) 

, 
(9) 

. (10) 

In applications of multirate cascaded structures with 
Farrow structure, Farrow structure serves to attenuate 
images of the regular FIR interpolator/decimator. So, the 
Case B specification should be used – (9) and (10). 

6. DESIGN EXAMPLES 
This part gives several examples that demonstrate how to 

utilize the formulae given, and concurrently we can 
estimate their performance. The following criteria are used 
to show this: 

Case A specifications: The passband and stopband edges 
are at fp = 0.4F and at fs = 0.5F; Case B specifications: The 
passband and stopband edges are at fp = 0.4F and at fs = 
0.6F; Case C specifications: The passband and stopband 
edges are at fp = 0.4F and at fs = 0.6F. 

 
Fig. 3 –   Case B specifications: The curves are shown for M equals 0 to 7. Dashed line is plot obtained from the estimation formula for N shown in [16]. 

The stopband edge is at fs = 1–fp, passband edge and stopband weighting are at: (a) fp = 0.15F and W = 0.1; (b) fp = 0.3F and W = 10; (c) fp = 0.45F and 
W = 1000. 

 
Fig. 4 –  Case B specifications: The curves are shown for N equals 2 to 24. Dashed line is plot obtained from the estimation formula for M shown in [17]. 
The stopband edge is at fs=1–fp, passband edge and stopband weighting are at: (a) fp=0.15F and W=0.1; (b) fp=0.3F and W=10; (c) fp=0.45F and W=1000. 
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In each case, filters should be designed in the minimax 
sense with stopband attenuation As = 60 dB, the passband 
weighting equal to unity and stopband weightings of 
W = 100.  

Figure 5 shows the performance for Case A, B and C on 
sections (a), (b), and (c), respectively. By the presented 
formulae above, parameters N and M have been found: 
N = 18 and M = 4 for Case A and, and N = 10 and M = 4 for 
Case B and C as well. The estimation formulas appear to be 
rather good since they estimate the border performance for 
the provided set of criteria. 

7. CONCLUSIONS 
The estimate equations for the number N of polynomial 

segments and the polynomial order M in the minimax 
optimization are presented in this paper, which is a more 
general and precise result than in any previous research 
since the formulae include all three specifications (Case A, 
B and C) for the Farrow structure, the prolonged Farrow, 
and the Farrow structure in cascaded multirate filter as well.  
Filter designers can save time by using formulae, which 
provide beginning values for N and M and they can be used 
to estimate Farrow-based filter implementation costs for the 
given set of requirements, and also implementation costs of 
composed sampling rate converters containing Farrow, for 
example, in optimal factorization for multistage decimation 
(interpolation). Future work will include estimation 
formulas for least-mean-square optimization. 
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Fig. 5 –  Design Examples: The frequency domain performance of filters whose parameters are estimated using the presented formulae. The filter 

specifications are stopband attenuation As=60 dB, passband weighting equal to unity and stopband weightings of W=100, passband edge fp=0.4F. (a) 
Case A filter of length N=18, and M=4 with achieved As=59.5 dB and δp=0.1065; (b) Case B filter of length N=10, and M=4 with achieved As=61.3 dB 

and δp=0.0.0864; (c) Case C filter of length N=10, and M=4 with achieved As=61.2 dB and δp=0.0866. 


