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Spectrum-aware devices and cognitive radios with wideband spectrum sensing will be integral to 5G or beyond wireless 
broadband. They must be fast and energy efficient for opportunistic dynamic access to the licensed spectrum. Compressed sensing 
(CS) methods can implement wideband sensing with reduced time and power consumption but are inaccurate at low SNR. Methods 
based on eigenvalue detection are one of the best among non-CS methods but have high computational costs. In this paper, we 
present a simple feature named the variance of multi-scale moving average (VMMA) that can be directly used as a decision statistic, 
discriminating signal from noise very accurately, even at a low signal-to-noise ratio (SNR). VMMA computes variance specifically 
over the entire band after comparing the short-term and long-term moving averages. Tests on experimental spectrum data and 
numerical simulations show that the proposed algorithms are fast and have higher detection probability than those developed in 
the literature. Analytical expressions for the probability of detection and false alarm, along with the complexities of the algorithms, 
are also derived. 

1. INTRODUCTION 
The 5G broadband wireless framework is already advanced 

and maturing to real-world implementation. It needs to meet the 
growing demand for ubiquitous connectivity of mobile devices 
supporting high-speed video streaming applications with low 
latency. Machine-to-machine (M2M) communications and the 
internet of things (IoT) further pose higher capacity requirements 
and several new challenges for 5G systems to cope and function 
efficiently in licensed and unlicensed bands. cognitive radios 
(CR) for efficient opportunistic spectrum utilization and 
dynamic spectrum access (DSA) proposed since the beginning 
of the twenty-first century have invited large-scale research. 
They are established today as a potential enabling technology for 
5G [1,2]. Providing wideband spectrum awareness to mobile 
devices that can quickly detect unused frequency bands (white 
or grey space) is a key functionality for any self-configuring 
cognitive system. This is typically called wideband sensing, 
where the whole band is divided into several contiguous sub-
bands scanned sequentially. Speed is a major limitation of 
wideband sensing in real-time scenarios. Simultaneous scanning 
of the sub-bands is expected to be fast but is computationally too 
intensive. Further, a trade-off between implementation 
complexity and detection performance is known for all sensing 
algorithms. In addition, detecting a low signal-to-noise ratio 
(SNR) signal under variable noise floor conditions seriously adds 
to the sensing challenge for wideband sensing. 

Advanced research in compressive sensing (CS) reveals 
that, theoretically, it can be adopted as a potential solution to 
many of the above challenges [3]. Exploiting sparsity through 
sub-Nyquist sampling reduces scanning time and sensor power 
consumption, unlike the non-CS systems, which exhibit a trade-
off between these two parameters. However, as reported in a 
recent survey [4], CS-based systems have the inherent limitation 
of being inaccurate under low SNR and in a dynamic wireless 
environment with variable sparsity levels. Reconstruction 
methods work mostly with high levels of sparsity, which may 
only sometimes be fulfilled. Moreover, other major areas for 

improvement are that recovery times for CS algorithms are 
mostly high, and the systems suffer from SNR loss due to sub-
sampling. Evaluating the effects of skipping the recovery 
process is still in the research stage. Most CS techniques use a 
static threshold which is extremely ineffective in handling 
variable noise floors. Among the non-CS techniques, cyclo-
stationary detection and matched filtering are fast and reliable 
but require prior knowledge of the primary user (such as 
modulation type, symbol rate, cyclic frequencies, etc.), which 
are usually only sometimes available to CR [5]. Conventional 
Energy Detection (ED) does not require any signal information. 
Still, it degrades performance over wideband sensing in low 
SNR regimes, unknown noise statistics, and a rapidly changing 
noise and interference environment [5]. Eigen Value based 
Detection (EVD) and its variants use eigenvalues of the 
covariance matrix of received signal samples as sensing 
decisions and are reported to perform better under noise 
uncertainty [6]. Although EVD is commonly used for wideband 
sensing, it is characterized by high computational complexity 
involving calculating the covariance matrix and its eigenvalue 
decompositions. Another approach to wideband sensing is 
through power-spectrum segmentation. Authors in [7] divide 
the spectrum into sub-band and compute the Riemannian 
distance of covariance matrices between the vacant sub-band 
and the sub-band to be detected. The obtained distance is further 
compared with the decision threshold to determine the 
occupancy state of the wideband spectrum. In [8], the authors 
introduce another robust blind sensing algorithm based on a 
multi-stage Wiener filter. Wavelet techniques can also detect 
local spectral edges and relate them to the frequency location of 
the channels, but they are highly computationally intensive [9]. 
In the backdrop of comparing the detection performance of 
various sensing algorithms, there were two major observations: 
i) Designing a wideband sensing algorithm that is both fast 

and accurate continues to be an unsolved research 
challenge. 

ii) The power spectrum of primary user signals has a sudden 
sharp change of variance at its edges which is missing in 
noise samples. 
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Large-scale wideband sensing datasets are difficult to 
search for cyclo-stationary features. However, some simpler 
discriminating features based on variance can still be extracted 
from narrow sub-band data samples, which can help us 
distinguish signal from noise. In this context, Machine 
Learning (ML) is popularly being tried and tested for creating 
binary hypothesis models of wideband spectrum sensing [10]. 
ML formulation relies more on non-CS procedures. Vectors 
containing energy samples are directly fed to a classifier that 
is made to learn sensing decisions. Very often, some eigen-
based feature vector is extracted to train the classifier [11]. The 
variance of energy samples is always an underlying feature 
within which the data structure is hidden.  

The motivation of the current work is to extract some 
new features which are simpler than eigen computations and 
can be directly used for sensing without requiring any 
conventional training algorithms. Authors of [12] introduce 
a similar feature named gradient of the mean of sub-band 
(GMSB) by pre-processing the raw data sensed by their 
USRP units, which can detect signals accurately over 
variable noise floors. However, upon greater 
experimentation, the GMSB sensing algorithm gave a high 
probability of false alarm (Pfa). Figure 1 shows a snapshot of 
one such instance of our experimental work, where GMSB 
detects a signal in a vacant spectral region. Varma et. al. in 
[13] have proposed another simple feature named CISS 
(Correlation of Inverted Spectrum Segments), which 
computes correlation in sub-bands in a specific rule. In this 
paper, we present a new statistical feature (skipping 
cumbersome steps of eigen decomposition) that enables the 
development of robust wideband sensing algorithms, which 
are not only computationally simple but also inherently 
capable of overcoming trade-offs between sensing time and 
accuracy in scenarios of low SNR and noise uncertainty. The 
main contributions of the paper are summarized below: 

i) We identify and extract a new VMMA (Variance of 
Multi-scale Moving Average) feature that can easily 
distinguish between noise and signal. A sensing 
algorithm using this feature proves fast and robust and 
overcomes the noise uncertainty limitation of wideband 
sensing. 

ii) Sensing with the above feature has been evaluated 
through theoretical analysis and numerical simulations 
over a wide range of SNR and validated and tested with 
real-world spectrum data. Computational complexity 
and accuracy comparisons with existing algorithms 
establish the superiority of the proposed feature. 
The rest of the paper is organized in the following fashion. 

Section 2 describes a new wideband sensing algorithm where 
the decision statistic is the VMMA feature. The experimental 
setup and results related to the performance analysis of the 
proposed algorithm are discussed in section 3. Finally, the paper 
is concluded in section 4, summarizing the salient findings. 

 
Fig. 1 – False alarm in gradient-based sensing. 

2. VARIANCE OF MULTI-SCALE MOVING 
AVERAGES (VMMA) AS A SENSING FEATURE 

The problem of static threshold affecting detection 
performance has bothered researchers since narrowband 
sensing. For wideband sensing, this gets more problematic, 
and often it is addressed by the double threshold method 
using the forward consecutive mean excision algorithm (DT-
FCME) [14] or sometimes approached by EVD. It is 
challenging to get both high accuracy and fast sensing 
simultaneously for both these methods. Besides, the 
eigenvalue decomposition of a matrix is considered a highly 
computationally expensive task. On the other hand, 
conventional energy detection is simple to implement. At the 
cost of poor accuracy, it can detect any known or unknown 
PU signal significantly faster than the EVD and DT-FCME. 
This experimental work aimed to identify a distinguishing 
feature in simple energy detection with improved 
performance. In any large-scale time series, the variance of a 
consecutive set of samples tends to follow a certain pattern 
due to an underlying fixed probability distribution of the 
spectral data corrupted in random noise. If the variance 
structure can be identified, it can be used as an important 
feature for sensing decisions. We identify such a feature and 
name it VMMA: it computes variance in a specific way over 
the entire band after comparing the short-term and long-term 
moving averages. This helps to distinguish noise and signal 
samples in the particular sub-band effectively. The VMMA 
approach can be a much simpler alternative to wavelet-
based, compressed sensing, and cyclo-stationary feature 
detection for wideband sensing. On practical CR nodes, 
which need to be small and power efficient, CS could be too 
complex [15]. 

2.1 VMMA-BASED DETECTION APPROACH 
To address the issue of wideband sensing, consider a 

wideband spectrum with n non-overlapping channels 
indexed as . At a given instant of time t, an 
unknown number of channels are occupied by PU of variable 
bandwidth. These channels are referred to as occupied, while 
the others are referred to as vacant and need to be determined 
to utilize effectively. The sensed spectrum  

 subject to non-Gaussian noise is 
represented as [16]: 

 

where  represents the Primary User 

(PU) signal vector while  stands for 
the noise vector and the parameter . Determining the 
present state of channels over a wide range of spectrum using 
an energy detection scheme is formulated as a binary 
hypothesis problem: 

 

where  and .  and  represent the 
absence and presence of the PU signal, respectively. The 
decision of hypothesis test,  (PU signal absent) and  
(PU signal present) is conventionally computed using  
directly as the energy value, where  and  
represent the total number of sensed samples. The energy 
detection scheme requires a fixed threshold derived from an 
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assumed constant false alarm rate. The approach could be 
more suitable because the system's performance deteriorates 
with variability in the noise floor. Our algorithm uses 
VMMA values computed as the decision statistic, , 
which is compared with the threshold for deciding the 
presence or absence of PU signal.  

Moving average is a commonly used technique to smooth 
out noise appearing as short-term data fluctuation, thereby 
preserving useful data's long-term pattern. It is a standard 
approach to removing redundant samples in data analysis. In 
the average moving technique, the window's optimum size 
depends on the correlated variables' clustering pattern. 
Moving average creates a new series of averages of data points 
with a specific window size on which the degree of smoothing 
depends. If smaller the size is, the model will be sensitive to 
changes in the underlying random process, but it may have too 
many redundant samples. In time series analysis, long-term 
and short-term moving averages (LMA and SMA) are often 
used with different prediction objectives. SMA can effectively 
smoothen the signal, while LMA with more memory can 
capture the long-term trend or pattern, if any.  

The algorithm proposed in this section computes short and 
long-moving averages over the data sensed through USRP 
units, where the point mean of the sliding window is at least 
10 times more for LMA than SMA. For other datasets, multi-
scale moving averages could also be performed. Here only two 
scales moving averages have been tested, i.e., LMA and SMA. 
The LMA and SMA arrays are further compared elementwise, 
based on which a new array of the same length is created by 
selecting a higher element of the two. Moving variance is 
computed for this array. A sharp variance change is observed 
near signal samples, distinctively absent for noise samples. This 
feature works very well at low SNR regimes. If the value of  
is odd, the sliding window is centered about the element for 
which the mean is computed. Otherwise, the window is centered 
in between the elements at current and previous positions. 
However, the moving average computed over different values 
of  is represented by the following equations: 

 

where MA(k) represents the moving average of kth element. 
The next element in the moving average vector is determined 
by shifting the sliding window by one step and computing 
SMA and LMA using eq. (3). A new array  is created from 
the SMA and LMA array by applying the following rule: 

 

It may be noted that all four arrays X, LMA, SMA, and 
CM are of the same length. The obtained array  is 
characterized by having a sudden sharp change of variance 
at the edges of the PU signal. Moving variance (with a small 
window size) is computed over to derive a new array 

 and can be mathematically expressed as: 

 

where  represents the mean of Z-samples in the sliding 
window, however, the obtained Y is further normalized and 
bounded between [0, 1]. The samples of array Y have values 
that are either very close to unity or zero, indicating the 
presence of signal or noise. The decision of hypothesis  
(absence of PU) versus  (presence of PU) over  
channels of the sensed spectrum are taken directly as output 
0 and 1 by comparing Y with a pre-defined threshold. The 
threshold  that is used to detect the presence of PU is 
carefully selected as  [12], where  represents the 
standard deviation of Y values computed for sensed spectrum 
data. A detailed investigation was performed regarding the 
selection of the threshold. An ample amount of sensed real-
time data has been investigated iteratively to determine an 
optimal threshold ‘T’, which guarantees a predefined 
constant false alarm rate. Unlike conventional methods, 
VMMA feature works equally well even for signal samples 
deeply buried in noise. 

2.2 PERFORMANCE EVALUATION 
Upon statistical experimentation and curve-fitting 

exercises with extracted features of sensed data, it was 
observed that the distribution of VMMA values was closely 
approximated to the Beta distribution. In statistics, the 
probability density function of the beta distribution defined 
over interval  is parameterized by two positive shaping 
parameters denoted by  and , which control the shape of 
the distribution. With different values of shaping parameters, 
the density plot of the beta function varies. The beta density 
plot is molded in bimodal shape when  and , 
showed left when  and , shewed 
right when  and , and takes 
unimodal shape for other values of shaping parameters [17]. 

The decision variable  in the proposed algorithm 
represents normalized variance which is a random variable 
bounded between  For wideband sensing, in the vicinity 
of the signal region, the value of  will be close to unity, 
while in the noise region, it will be close to zero. Hence, the 
probability density function of   is observed to fit 
beta distribution with conditional shaping parameters as 

 and  while features extracted against 
noise samples seem to fit the same distribution with different 
conditional shaping parameters i.e.  and 

 Hence, the probability density function of 

  defined for the two hypothetical regions are as 
represented below: 

 

where  and  represent the absence and presence of 
PU signal, respectively while,  is the gamma 
function. With  as the decision variable, the algorithm 
may encounter two types of errors, namely probability of 
misdetection  and probability of false alarm . 
When a sensing algorithm decides that the spectrum is 
vacant, an occupied spectrum is known as  whereas 
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 defines the probability of sensing the spectrum to be 

occupied, when it is free. In literature,  and  are 
commonly denoted as  and  
respectively. Probability of detection,  

 is also a common performance measure. For 
the VMMA algorithm, these performance measures are 
defined as below: 

Probability of Detection : Based on beta 
distribution under  is expressed as:  

 

     

 

=  

 

 
Probability of False Alarm : Based on the 

distribution of  under ,  can be evaluated as: 

 
 

where  and  represent the incomplete beta 
function and beta function, respectively, while  
stands for normalized beta function or regularized 
incomplete beta function [18,19]. 

3. EXPERIMENTAL RESULTS AND DISCUSSIONS 
An experimental setup was built with a pair of NI-USRP 

2922 interfaced with the system through LabView software, 
as shown in Fig. 2. Two QPSK signals with variable SNR 
were generated at 815 MHz and 825 MHz under variable 
noise floor conditions considering certain parameters as 
shown in Table 1. 

Thereafter, a band of 20 MHz (810 - 830 MHz), within 
which the signals were generated, was acquired, and sensed 
using the proposed algorithms to test their effectiveness in a 
real-time scenario. Figure 3 shows the detection performance.  
The sensed input signals samples from USRP are shown in 
black, while the output of the sensing algorithms (DT-FCME 
and VMMA algorithms) is shown in red. In Fig. 3(a), the low 
SNR signal at 825 MHz is miss-detected under the usage of 
DT-FCME, while in Fig. 3(b), the robustness of VMMA 

algorithms in the vicinity of low SNR is clearly visible. 
The proposed features perform equally well at both low 

and high SNR regimes, as for both, signal features have 
values close to unity while the noise samples produce feature 
values close to zero. We next make an exhaustive comparison 
of the performance of the proposed algorithms with DT- 
FCME, EVD, GMSB, and CISS in terms of complexity, 
computational time, and detection accuracy, as presented in 
Table 2. Here, accuracy is defined as the percentage of signal 
and noise detected accurately while, the complexity is 
presented in the form of Big O notation, where O is the order 
of magnitude related to the size of the input variables on which 
the time complexity of an algorithm depends. DT-FCME 
method introduces two thresholds, namely upper and lower 
thresholds, which are further compared with energy detected 
signal samples to determine the occupancy state of the 
spectrum. The two important tasks of computing double 
threshold require  tasks while spectrum decision 
under threshold comparison engages additional  tasks, 
which comprise the execution time of this algorithm. EVD-
based sensing performs autocorrelation of narrowband 
spectrum samples segmented from the wideband sensing 
signal. Eigenvalue decomposition of the covariance matrix of 
this dataset engages  tasks while comparing the 
threshold value with the maximum eigenvalue needs an 
additional  number of operations. The GMSB method 
involves the steps of smoothing, gradient computation, and 
comparison with a threshold. The size of the input data set 
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Fig. 2 – The experimental setup 

 

Table 1 
Experimental parameters 

Parameters Values 
No. of PU’s 2 

Bandwidth of PU’s 400KHz 
Frequency over which the PU’s were 

generated 

 

815 MHz and  
825 MHz 

Sensed bandwidth 20 MHz 
Sensing interval 500 sec 

 
µ

 
(a) 

 
(b) 

Fig. 3 – (a) Signal miss-detected by DT-FCME method  
(b) Signal detected using VMMA algorithm. 
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after the smoothing operation is . Assuming 
, the total complexity of the method is 

defined as  where smoothing 
operation needs , gradient computation 

 and threshold comparison  number of operations. 
 CISS scheme requires computing CISS values over the 

sensed spectrum, which are compared with a threshold to 
decide on the spectrum state. Determination of CISS value 
requires extraction of three arrays for K observed samples, 
named  and reverse sequence of  of length . 
For this, two nesting loops are required, where the outer loop 
runs K times with the three inner loops, each running 

 

times in each iteration. Thus, CISS feature derivation 
engages  computations while their 
comparison with threshold calls for an additional  
number of operations. SCISS is the same as the CISS method 
with an additional pre-processing step of smoothing used in 
GMSB. Hence, its complexity is expressed as 

  
The proposed VMMA sensing scheme requires computing 

four vectors: SMA, LMA, CM, and Y. The finally obtained 
vector, Y, is compared with the threshold to identify the 
occupancy status of the spectrum. Therefore, the complexity 
for VMMA is  where the computation 
of four vectors needs  and threshold 
comparison engages  number of operations. However, 
Table 2 shows that GMSB and CISS with the smoothing 
(SCISS) method can achieve very high accuracy and speed 
(almost five times faster than the EVD method) 
simultaneously. The impact of smoothing and the value P 
play a strong role in the speed of CISS algorithm [13]. 
However, the gain in terms of simulation time comes at the 
cost of a small degradation in detection performance. 
VMMA also proves to be excellent in speed and accuracy 
compared to DT-FCME and EVD. In terms of complexity, 
VMMA is the simplest, and additionally, it can reject false 
alarms better than the GMSB method. 

A simulation model is built to evaluate and compare the 
performance of VMMA, SCISS, and GMSB-based detection 
methods over a low SNR regime. The simulation generated 
a BPSK-modulated signal over a wide frequency band with 
square root raised cosine pulses of 0.22 roll-off factor. The 
simulation considers the Z values 500 and 5000 for SMA and 
LMA, respectively. Figure 4 (a) shows the probability of 
detection versus SNR plot obtained using VMMA, SCISS, 
and GMSB-based detection methods. The characteristic of 

the graph follows the one shown because PU signal with 
feeble SNR is difficult to extract while it can be detected 
easily as SNR increases. The proposed methods outperform 
both the detection methods i.e.: CISS and GMSB, over a low 
SNR regime, as shown in the figure. The VMMA technique 
shows 22.50 % and 63.33 % of performance improvement at 
-13 dB compared to CISS and GMSB-based detection 
techniques. Since the probability of a false alarm is also an 
important performance measure, Fig. 4 (b) shows the 
probability of a false alarm versus the SNR plot. The figure 
clearly illustrates 75.00 %  and 90.48	% of performance 
improvement at SNR -15 dB concerning CISS and GMSB-
based detection techniques, respectively. 

 
The performance of sensing algorithms is often presented 

through the ROC curve, which is nothing but 𝑃!	versus 𝑃"# plot.  
Hence, subsequent analysis determines the ROC plot for the 
proposed VMMA algorithm and SCISS and GMSB-based 
detection technique to withstand the earlier results. Figure 5 
shows the ROC plot. From the figure, the proposed VMMA 
algorithm attains the highest probability of detection with a small 
increment in the probability of false alarms in comparing SCISS 
and GMSB-based detection techniques. Further, the VMMA 
algorithm was also tested with real-time GSM band data. 
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           (a) 

 
           (b) 

Fig. 4 – (a) Probability of Detection Vs SNR  
(b) Probability of False Alarm Vs SNR 

Table 2 
Complexity* and accuracy comparison 

 
Methods 

 
Complexity (in Big  form) 

Complexity  
(in millisecond) 

Accuracy 
(in Percentage) 

DT-FCME Based Detection  56.6 62 
EVD Based Detection  27.5 90 

GMSB Based Detection  05.1 92 
CISS Based Detection 

(Without Smoothening) 

 

 

 

98.0 
 

98 

CISS Based Detection 
(with Smoothening) 

P=0.050  
 

05.8 95 
P=0.075 03.8 89 
P=0.100 01.6 82 

VMMA Based Detection  05.6 94 

*Computational time was measured on Intel® Core i5-5250U processor, with a base clock frequency of 1.60 GHz and 4 GB of RAM 
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Figure 6 shows the results of the VMMA algorithms over 

one snapshot of wideband GSM data. Although the proposed 
features worked excellently for the given dataset, there is a 
small limitation: the VMMA method still relies on the 
computation of a threshold which now depends on the 
variance of the respective feature values (l < 3sY), as 
explained in the section 2) instead of noise variance. 
Depending on the spectrum dataset, there could be 
uncertainty in the variance of these values too, which can 
degrade performance. This opens the future direction for this 
paper to enhance the system's performance. 

 

 
            (a) 

 
          (b) 

Fig. 6 - Real time wideband sensing using VMMA technique for 
(a) GSM uplink channel (890-915 MHz) 

(b) GSM downlink channel (935-960 MHz) 

5. CONCLUSION 
This paper proposes a new method of wideband spectrum 

sensing based on extracting simple stochastic features that 
can be directly used as a sensing decision statistic. The 
proposed VMMA method computes moving variance over 
the sensed samples after processing it in a specific way with 
multi-scale (two in our case) moving averages. The feature 
proves to be very powerful in sensing accurately a wideband 
of the spectrum even at low SNR and noise uncertainty 
conditions. Unlike some of the existing Eigenvalue and DT-

FCME-based detection methods, speed, complexity, and 
accuracy are not sacrificed here. The feature is capable 
enough to identify a very distinctive differentiating pattern 
of signal and noise in a large spectrum dataset obtained 
through a USRP experimental setup. The requirement of 
wideband CR receivers in 5G systems can use these features 
for fast robust sensing without consuming much power. 
These features may be beneficial in developing machine 
learning models and will be investigated in future work. 
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