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The accuracy of studying the performance of the six-phase induction motors (SPIMs) depends on the accurate estimation of the 

motor parameters. This article examines the performance evaluation of SPIMs among several optimization algorithms using 

parameter optimization. The competitive algorithms are differential evolution (DE), genetic algorithm (GA), Jaya optimization 

algorithm (JOA), particle swarm optimization (PSO), and sunflower optimization (SFO) algorithms. Parameter estimation is 

extracted from the performance curves based on manufacturer data. Laboratory verifications are performed on a SPIM 

modified from a three-phase induction motor. It also shows that using SFO gives convergence between measured and estimated 

parameters with small errors and fast response compared to many optimization algorithms. The statistical analysis of the results 

shows the effectiveness of the proposed SFO algorithm compared to other methods at different values of iterations.  

 

1. INTRODUCTION 

The most widely used electrical machines in industrial 

applications are multi-phase induction motors (MPIMs) [1]. 

To study the target performance of poly phase induction 

machines, real modeling is an important issue for this type 

of machine. The problem of parameter estimation for the 

MPIMs is modeled as nonlinear mathematical equations. 

The optimization programs aim to achieve the best degree 

of convergence between the actual parameters and the 

estimated parameters. Therefore, the main function of the 

studied parameters evaluation problem is to maintain the 

minimum distance between the actual and estimated 

parameters.  

Parameter's estimation of the MPIMs models aims at 

finding their unknown variables. Exact determination of the 

induction motor parameters is one of the important things 

for the operation and control of the MPIM [2, 3]. It is 

important to know all MPIMs parameters with very high 

accuracy and costs as low as possible. The old methods for 

calculating equivalent circuit parameters depend on a set of 

experimental tests as in IEEE Std 112-1991 and updated in 

IEEE Std 112-2004[4] . The accuracy of the experimentally 

based methods estimated parameters is dependent on the 

accuracy degree of the monitoring and implementation 

procedures. Added to the difficulty of the tests needed to 

calculate the parameters is the large cost of implementing 

the tests required for implementation. Therefore, due to 

these limitations, many designers of optimization tools 

provide a number of methods aimed to getting acceptable 

solutions to estimate the MPIMs parameters [5]. To achieve 

this objective of the modernization process, many types of 

optimization methods used in the SPIMs equivalent circuit 

parameter estimation process have been improved  [6].  

In this part, the topics studied for estimating parameters 

by optimization methods are summarized: 

• Reference [7] presented the parameters estimation of 

induction motor from manufacturing data by using 

artificial immune methods.  

• Reference [8] presented the induction motor parameter 

estimation using shuffled frog-leaping form data on 

nameplate. 

• Reference [9] presented a measurement of mechanical 

Power by using simplified Indirect Technique for the 

PIMs. 

• References [10] developed a particle swarm 

optimization using data taken from tests to minimize 

the error data.  

• Reference [11] presented a differential evolution to 

estimate the induction motor parameters.  

• Reference [12] presented a six-phase IM parameters 

estimation by using zero-sequence test to improve the 

accuracy of parameter estimation. 

• In [13], the poly-phase IM parameters were estimated 

using a hybrid optimizer motor with experimental 

verification. 

• Reference [14], which discusses the detection of 

induction motors using a new genetic approach.. 

The previously studied survey demonstrates the use of 

various optimization methods to solve the parameter 

estimation problem of induction motors. The area of 

improvement is ongoing and deserves attention. Several 

optimization methods have been developed for several 

engineering applications such as: fruit fly [15], moth-flame 

optimization algorithm[16], cat swarm optimizer [17], 

sunflower optimization algorithm [18], water cycle used in 

Distributed Generation [19], and wind driven algorithm 

[20]. One of the methods used for optimization, PSO 

optimization method is designed by Eberhart and Kennedy 

to emulate the movement of birds to move around or the 

movement of fish [21, 22]. There are many engineering 

applications that depend on the process of optimization on 

PSO, such as: method of intelligent diagnosis using optimal 

LS-SVM presented in [23, 24], optimal design of onshore 

wind farm, and for the optimal parameters of PID controller 

[25], optimal cylindrical rotor synchronous motor design 

[22], one of the main drawbacks of PSO is the good 

knowledge of the parameters that need to be tuned for the 

inertia and learning coefficients. 

In recent years, the Jaya optimization algorithm (JOA)  is 

one of the latest optimization methods used in many 

engineering applications [26, 27]. JOA is an optimizer that 

has been used in many engineering applications as follows: 
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The optimal size for a capacitor used in low voltage 

applications is unknown [28], unit commitment economic 

application [29], Reducing the reactive power in 

photovoltaics’ used to power an induction motor was 

discussed in [30], multi-area control of power system 

automatic generation [31], optimization of  power system 

current flow [32], Environmental distribution of energy 

sources in a small network[33] for the thermal performance 

optimizing of the system using underground power 

cable[34], for the optimization of reactive power 

solution[35], and by using digital FIR filters design 

presented in [36]. The SFO is used in many application 

such as the electrical parameters for three-diode 

photovoltaic model [37], for optimal estimation of the 

circuit-based PEMFCs [38], for placement distributed 

generation in distribution system [39], and for Solving the 

Security Constrained Optimal Power Flow Problem [40]. In 

[41], the SFO was developed for finding the parameters of 

Lithium ion battery. In [42], an improved SFO was 

developed for efficient distribution systems operation 

taking into account the impact of the uncertain output 

power of wind turbines. The SFO algorithm benefited over 

PSO, JOA, GA, and DE for solving the optimal power flow 

problem as presented in [43]. 

This paper derives the equivalent circuit of 6-phase IM. 

The estimated parameters are carried out using the SFO 

algorithm. The assessment of simulation results obtained by 

SFO is compared with four computing paradigms called 

JOA, GA, DE, and PSO methods.  The performance of the 

competitive algorithms is assessed. The results proved the 

efficiency of the proposed SFO method by comparing the 

results obtained with this method with the results obtained 

from other optimization methods. 

The remaining parts are divided as follows: In part 2, the 

electrical steady-state performance of SPIM is presented 

depending on the electrical circuit of SPIM. In part 3, the 

estimated problem of SPIM parameter computation is 

described as an optimization problem that defines the goal 

and limitations. The proposed procedure of SFO is 

explained in section 4. In section 5, the experimental work 

and comparative analysis of simulation results for all 

optimization methods are presented. Section 6 concludes 

the main results of this article. 

2. STEADY STATE CHARACTERISTICS OF  

6-PHASE INDUCTION MOTOR 

Figure 1 shows the steady state equivalent circuit of 6-

phase induction motor that is used to study the performance 

of motor operation at different modes of operation. The 

equivalent circuit shows the electrical circuit of SPIM 

without a separate stator winding mutual leakage 

inductance [12].  

 
Fig. 1 – Six-phase electrical equivalent circuit of IM. 

The stator impedance and magnetizing reactance in 

SPIM can be written using the Thevenin electrical circuit in 

Fig. 2.  

 
Fig. 2 – Thevenin equivalent circuit. 
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where
mX is magnetizing reactance, 

sR and 
sX are the 

stator resistance and reactance, respectively. 
thR  and 

thX are the equivalent Thevenin resistance and reactance, 

respectively.  

The rotor current I2 in the Thevenin circuit can be 

computed as: 
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where 2X  is the per phase reactance of rotor and 
2R  is the 

per phase resistance of rotor. The electrical torque is 

calculated from Eq. (4) as: 
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where s  is the slip of induction motor, m  is no of motor 

phases, s  synchronous angular speed, the slip defined at 

the maximum torque is  
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The 6-phase induction motor maximum torque is 

computed from: 
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The 6-phase induction motor starting torque is computed as 
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The stator current power factor is computed as 
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3. PROBLEM FORMULATION 

Equation (9) presents the objective function of the 

optimal parameter estimation of the motor under study that 

aims to minimize the deviation between the experimental 

and estimated values as: 

max

2 2 2 2

d stEF = ET +ET +ET +Epf . (9) 

The objective function has four normalized error 

components representing the full load power factor, the 

starting torque, rated torque, and the maximum torques. 

Normalized components are computed as in Eqs. (10)-(13) 

as:  

epf mpf
Epf =

mpf

− , 
(10) 

,d d
d

d

eT mT
ET =

mT

−  
(11) 

max max
max

max

eT mT
ET = ,

mT

−   
(12) 

eT mTst stET =st mTst

− , 
(13) 

where EF is objective function expressed as summation of 

square error that consists of rated power factor, starting 

torque, full load torque, and maximum torque, where the 

optimization process aims to reduce the error to the lowest 

possible value. 

4. SFO ALGORITHMS 

The proposed SFO method is designed to simulate the 

movement of a sunflower to track the movement of the sun 

through the pollination that occurs between sunflowers and 

each other. SFO can also be represented by the inverse 

square distance of the solar radiation [44]. The direction of 

sunflower Sk to the sun is written as: 

1,2,3,......., .

*
X XkS =  ,        k = npk *
X Xk

−

−

 
(14) 

where Xk and X* are the existing and best status of plants to 

the sun directions, np is the sunflowers number. 

The sunflower step moves in the direction of the sun can 

be written as  

( )k k k k-1k k-1
X + Xd = λ×P X +X ×

.

 (15) 

where λ is the inertial displacement that occurs due to the 

movement of the sunflower plant and ( )1k k kP X X −+  is 

the probability of pollination of each flower of a sunflower 

plant k with nearby flowers is expressed as k–1. The 

maximum sunflower step moves in the direction of the sun 

can be written as  

( )max min
max

2

X X
d

N pop

−
=


, (16) 

where Xmax is the higher constraints value, Xmin is the lower 

value of constraints and Npop is the sunflowers number of 

the population. The next updated population Xk+1 is 

calculated as: 

kkkk SdXX +=+1 . (17) 

The SFO steps are presented in the flowchart as shown in 

Fig. 3. 

 

 

Fig. 3 – SFO flowchart of proposed six phase induction motor parameter 

estimation. 

5. APPLICATIONS 

5.1. EXPERIMENTAL SETUP 

The experimental tests- dc, short circuit (S.C.), and open 

tests- are implemented on SPIM to calculate the parameters 

of the electrical circuit. Figure 4 shows an experimental 

photograph in the Faculty of Engineering, Kafrelsheikh 

University. The tests are implemented according to the 

IEEE specifications Std 112TM-2004 for SPIM [4]. Table 1 

represents the test data taken for the six-phase IM. 

 
Table 1  

Experimental tests of 3 HP six-phase IMs 

Variables 
3 HP six phase IM  

O.C. test S.C. test 

Voltage, V 220 96.9 

Current, A 0.95 2.67 

Power W 104 159.37 

Rdc Ω 12 

5.2. SETTINGS PARAMETERS OF OPTIMIZATION 

ALGORITHMS'  

The population size and maximum iteration are 

respectively 60 and 100 for all algorithms. The other 

parameters for optimization algorithms are set as follows: 

1. For DE [45], [11], mutation probability is 0.5, the 

crossover probability is 0.7 and scaling factor is 0.5, 

and for GA [46], [47], resolution = 3, the crossover 

length = 0.5, and mutation probability = 0.12.  

start 

Define the no of sun flowers, np. 
 

Input the boundaries of the motor 
five parameters (Lb and Ub)  

 

Initialize the parameters of the 

motor (Eq. 15) 

 

Update parameters using SFO  Calculate Td, Tst, Tmax, pf 

using Eqs. (4, 6,7,8) 

 

Evaluate the fitness function of 

SFO, Eq. 15 for motor Eq.9 

 

d ≤ iter_max 

 

No 

 

Calculate rotor current I2, 

using Eq. (3) 

 

Select the optimal parameters R1, 
X1, Rr, Xr, Xm 

 

End 

 

k = k+1 
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2. For PSO [48], [49], weighting factor c1= 1, c2= 2, and 

search length space are max
kv = 0.8, and min

kv = 0.3. 

3. For SFO [44], number of sunflowers = 150, mortality 

rate = 0.01, pollination rate = 0.05 

 

 

Fig. 4 – Photography of experimental setup of six phase induction 
motor. 

5.3. SIMULATION RESULTS 

Table 2 shows the recorded experimental parameters 

from the experimental tests on a 3 hp modified MPIMs. 

Also, this table shows the estimated parameters for SFO 

and four competitive algorithms Jaya and PSO, DE, GA. 

The fitness function with JOA is (2.99×10-5), PSO 

algorithm equals (5.13×10-5), with GA equals (1.21×10-4) 

and DE algorithm equals (5.82 ×10-5), while with the 

proposed SFO is (6.04×10-13). By comparing the calculated 

results from the experimental parameters and the 

parameters estimated by optimization methods, the 

estimation algorithms can estimate the parameters with 

great accuracy at the smallest error limits. 

Table 2   

Evaluation of comparative algorithms for 6-phase IM  

Parameters Exp. GA DE PSO Jaya SFO 

Rs   [Ω] 12 12.281 11.699 12.843 12.202 11.967 

Xs [Ω] 12.843 13.687 13.38 11.78 12.428 13.719 

R2  [Ω] 8.098 8.025 8.078 7.98 8.091 8.042 

X2   [Ω] 12.843 11.611 12.11 13.057 13.1035 11.875 

Xm [Ω] 266.68 273.141 266.29 260.46 270.769 265.637 

Tst [N·m] 3.34 3.358 3.36 3.193 3.35 3.348 

TFL   [N·m] 3.179 3.179 3.187 3.349 3.18 3.1785 

Tmax [N·m] 5.36 5.347 5.392 5.32 5.35 5.359 

PF 0.844 0.85 0.843 0.845 0.844 0.844 

ΔF 1.21×10-4 5.82×10-5 5.13×10-5 2.99×10-5 6.04×10-13 

 

Figure 5 clearly shows that the performance curve of 6-

phase IM depends on the parameters that are calculated 

from estimation and the associated experimental tests, the 

parameters estimated is employed by the PSO optimization, 

Jaya, DE, GA optimization and proposed SFO algorithm. 

The estimated torque-slip characteristic by using proposed 

SFO has minimum differences compared with that 

calculated from parameters taken from experimental tests, 

whereas the torque-slip characteristics calculated using the 

parameters estimated by the suggested algorithms is very 

near to the real case when compared with other 

optimization methods. The inner graphic in Figure 5 shows 

a zooming of the torque speed curve of the region defined 

by the slip axis in the period from 0.22 to 0.35 and the 

torque axis in the period from 5.25 to 5.36 N·m., as the 

torque curve drawn by using SFO is the closest approach to 

the actual curve.  

 

 
Fig. 5 – Six phase IM torque – slip characteristics. 

 

The stator current characteristics versus slip of 6-phase 

IM that are dependent on the values computed using the 

PSO, DE, GA, Jaya, SFO and compared with that computed 

from experimental tests are shown in Figure 6. Estimated 

stator current based on parameters that are computed by 

DE, GA, PSO, JOA, are compared with the characteristics 

based on tests, while stator current calculated using 

parameters computed by the SFO is very near to stator 

current based on the tests. 

 
Fig. 6 – stator current curves of six phase IM. 

 

Table 3 presents the statistical components, standard 

deviation, median, variance, best, worst, and mean of all 

algorithms adjusted to the same values of 60 populations 

and 100 iterations, respectively. The results extracted from 

Table 3 ensure that the proposed SFO gives the best results 

compared to JOA, PSO, GA, and DE. 

Table 3 

Statistical components for the different algorithms 

index Comparative Algorithms 

GA DE PSO Jaya SFO 
Mean 3.44×10-5 7.57×10-6 1.87×10-5 1.52×10-4 4.03×10-9 

Median 3.04×10-5 6.49×10-9 8.93×10-6 1.22×10-4 1.61×10-12 

Best 5.82×10-6 4.07×10-7 4.89×10-7 9.74×10-6 4.69×10-14 

Standard deviation 1.96×10-5 5.78×10-6 3.73×10-5 1.19×10-4 3.69×10-8 

Variance 3.84×10-10 3.34×10-11 1.39×10-9 1.42×10-8 1.37×10-15 

worst 9.47×10-5 2.79×10-5 2.89×10-4 5.77×10-4 3.69×10-4 

 

Figure 7 shows the convergence rate of the best solution 

for all optimization methods. Fig. 7 proves that the SFO 

method achieves the best convergence if compared to other 

optimization methods, as it is faster and more stable. 
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Fig. 7 – Convergence of competitive optimization tool of 6- phase IM. 

5.4. ROBUSTNESS 

Figure 8 shows the robustness of the competitive five 

optimization methods. The suggested SFO has a lower error 

than JOA, GA, PSO, and DE algorithms. Table 3 reports 

the statistical data of the proposed method. A fair 

comparison between all algorithms is assured at the same 

population and maximum iteration   
 

 

Fig. 8 – Robustness of different optimization algorithms of 6- phase IM.  

6. CONCLUSIONS 

The current paper presented the optimal parameters 

estimations of SPIM using the sunflower optimization 

algorithm compared with four optimization algorithms 

called Jaya, PSO, GA, and DE. The parameters estimated 

by experimental tests were also evaluated. The output 

values give an indication of the validity and reliability of all 

the proposed algorithms for the optimization of the specific 

parameters of the SPIM.  

The statistical analyzes are done to assess the 

competitive algorithms, which proved that SFO is the best 

method, as it gave the least possible error with a greater 

convergence rate.  

The resulting indicators from the statistical analysis give 

the best approximations between the calculated values of 

the parameters estimated by the optimization algorithms 

and the experimental parameters. The analytical analysis 

shows that the SFO algorithm provides a better solution for 

SPIM parameter estimation. 

Received on 23 August 2021 

REFERENCES 

1. M. Mechernene, A. Loucif, M. Zerikat, Induction motor control based on a 

fuzzy sliding mode approach, Rev. Roum. Sci. Techn. – Électrotechn. 

et Énerg.,  64, 1, pp. 39–44 (2019). 

2. D. Bhowmick, M. Manna, S.K. Chowdhury, Estimation of equivalent 

circuit parameters of transformer and induction motor from load 
data, IEEE Trans. Ind. Appl., 5, 3, pp. 2784–2791 (2018). 

3. M.I. Abdelwanis, R.A. El-Sehiemy, A fuzzy-based controller of a modified 

six-phase induction motor driving a pumping system, Iran. J. Sci. 
Technol. – Trans. Electr. Eng., 43, pp. 153–165 (2019). 

4. ***IEEE – Institute of Electrical and Electronics Engineers., Standard Test 

Procedure for Polyphase Induction Motors and Generators (ANSI) 
(IEEE Std 112-2017), IEEE Stand. 112, pp. 3–5 (2017). 

5. G.K. Singh, Multi-phase induction machine drive research – A survey, 
Electr. Power Syst. Res., 61, 2, pp. 139–147, 2002. 

6. Y.K. Damak, N.S. Kamoun, Estimation of asynchronous machine 

parameters and state variables, International Review on Modelling 
and Simulations, 4, 3, pp. 1112–1120 (2011). 

7. V.P. Sakthivel, R. Bhuvaneswari, S. Subramanian, Artificial immune 

system for parameter estimation of induction motor, Expert Syst. 
Appl., 37, 8, pp. 6109–6115 (2010), 

8. I. Perez, M. Gomez-Gonzalez,  F. Jurado, Estimation of induction motor 

parameters using shuffled frog-leaping algorithm, Electr. Eng., 95, 3, 

pp. 267–275 (2012). 

9. G. Bucci G, F. Ciancetta, E. Fiorucci, A. Ometto, M.A. Segreto, A 

simplified indirect technique for the measurement of mechanical 
power in three-phase asynchronous motors, Int. J. Emerg. Electr. 

Power Syst., 20, 2 (2019). 

10. M.G. Bijan, P. Pillay, Efficiency estimation of the induction machine 
by particle swarm optimization using rapid test data with range 

constraints, IEEE Trans. Ind. Electron., 66, 8, pp. 5883–5894 

(2019). 
11. J.J. Guedes, M.F. Castoldi, A. Goedtel, C.M. Agulhari, D.S. Sanches, 

Parameters estimation of three-phase induction motors using differential 

evolution, Electr. Power Syst. Res., 154, pp. 204–212 (2018). 
12. O.D. Che, E.L.H.S. Che, A.S. Abdel-Khalik, Parameter estimation of 

asymmetrical six-phase induction machines using modified standard 

tests, IEEE Trans. Ind. Electron., 64, 8, pp. 6075–6085 (2017). 
13. M.I. Abdelwanis, R.A. Sehiemy, M.A. Hamida, Hybrid optimization 

algorithm for parameter estimation of poly-phase induction motors 

with experimental verification, Energy AI, 5, p. 100083 (2021). 
14. E.G. Boudissa, M.H. HabbI, F. Gabour, M., Bounekhla, A new dynamic 

genetic selection algorithm: application to induction machine 

identification, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 66, 
3, pp. 145–151 (2021). 

15. A.A. Abou El-Ela, R.A. El-Sehiemy, R.M. Rizk-Allah, D.A.Fatah, Solving 

multiobjective economical power dispatch problem using MO-FOA, 
Twentieth International Middle East Power Systems Conference 

(MEPCON), Cairo, Egypt, 2018, pp. 19–24. 

16. A.A. Elsakaan, R.A. El-Sehiemy, S.S. Kaddah, M.I. Elsaid, An enhanced 
moth-flame optimizer for solving non-smooth economic dispatch 

problems with emissions, Energy, 157, pp. 1063-1078 (2018), 

17. A.A. Abou El-Ela, R.A. El-Sehiemy, E.S. Ali, A. M. Kinawy, 
Minimisation of voltage fluctuation resulted from renewable energy 

sources uncertainty in distribution systems, IET Gener. Transm. 

Distrib., 13, 12, pp. 2339–2351 (2019). 

18. G.F. Gomes, S.S. da Cunha, A.C. Ancelotti, A sunflower optimization 

(SFO) algorithm applied to damage identification on laminated 

composite plates, Eng. Comput., 35, 2, pp. 619–626 (2019). 
19. A.A.A. El-Ela, R.A. El-Sehiemy, A.S. Abbas, Optimal placement and 

sizing of distributed generation and capacitor banks in distribution 

systems using water cycle algorithm, IEEE Syst. J., 12, 4, pp. 3629-
3633 (2018). 

20. A.M. Shaheen, R.A. El-Sehiemy, S.M. Farrag, A novel framework for 

power loss minimization by modified wind driven optimization 
algorithm, Proceedings of 2018 International Conference on Innovative 

Trends in Computer Engineering (ITCE 2018), pp. 344–349. 
21. R.M. Rizk-Allah, H.M.A. Mageed, R.A. El-Sehiemy, S.H.E.A. Aleem, A. 

El Shahat, A new sine cosine optimization algorithm for solving 

combined non-convex economic and emission power dispatch 
problems, Int. J. Energy Convers., 5, 6, pp. 180-192 (2017). 

22. R.A. El-Sehiemy R.A. M.I. Abd-Elwanis, A.B. Kotb, Synchronous motor 

design using particle swarm optimization technique, Proceedings of 

the 14th International Middle East Power Systems Conference 

(MEPCON’10), Cairo University, 2010, pp. 795–800. 

23. W. Deng, R. Yao, H. Zhao, X. Yang, G. Li, A novel intelligent diagnosis 
method using optimal LS-SVM with improved PSO algorithm, Soft 

Comput., 23, 7, pp. 2445–2462 (2019). 

24. A. Zangeneh, Optimal design of onshore wind farm collector system using 
particle swarm optimization and Prim’s algorithm, Rev. Roum. Sci. 

Techn. – Électrotechn. et Énerg., 64, 4, pp. 349–356 (2019). 

25. L. Jia, X. Zhao, An Improved particle swarm optimization (PSO) optimized 
integral separation PID and its application on central position control 

system, IEEE Sens. J., 19, 16, pp. 7064–7071 (2019). 



264 Prameter estimation of six-phase induction motor 6 

 
26. R. Venkata Rao, Jaya: a simple and new optimization algorithm for 

solving constrained and unconstrained optimization problems, Int. J. 

Ind. Eng. Comput., 7, 1, pp. 19–34 (2016). 

27. M. Mekki, A.A., Kansab, M. Matallah, M. Feliachi, Optimization of the 

inductor of an induction cooking system using particle swarm 
optimization method and fuzzy logic controller, Rev. Roum. Sci. 

Techn. – Électrotechn. et Énerg., 65, 3–4, pp. 185–190 (2020). 

28. W. Hemly, M.A.E. Abbas, Optimal sizing of capacitor-bank types in the 
low voltage distribution networks using JAYA optimization, 2018 9th 

International Renewable Energy Congress (IREC), Hammamet, 
Tunisia, 2018, pp. 1–5. 

29. Z. Yang, Y. Guo, Q. Niu, H. Ma, Y. Zhou, L. Zhang, A novel binary jaya 

optimization for economic/emission unit commitment, 2018 IEEE 
Congr. Evol. Comput. (CEC 2018) – Proc., Jan. 2019. 

30. S. Mishra, P.K. Ray, Power quality improvement using photovoltaic fed 

DSTATCOM based on Jaya optimization, IEEE Trans. Sustain. 
Energy, 7, 4, pp. 1672–1680 (2016). 

31. S.P. Singh, T. Prakash, V.P. Singh, M.G. Babu, Analytic hierarchy process 

based automatic generation control of multi-area interconnected 

power system using Jaya algorithm, Eng. Appl. Artif. Intell., 60, pp. 

35–44 (2017). 

32. W. Warid, H. Hizam, N. Mariun, N. I. Abdul-Wahab, Optimal power flow 
using the Jaya algorithm, Energies, 9, 9, p. 678 (2016). 

33. I.N. Trivedi, S.N. Purohit, P. Jangir, M. Bhoye, Environment dispatch of 

distributed energy resources in a microgrid using Jaya algorithm, in 
2nd International Conference on Advances in Electrical, Electronics, 

Information, Communication and Bio-Informatics (AEEICB), 

Chennai, India, 2016, pp. 224–228. 
34. P. Ocłoń et al., Thermal performance optimization of the underground 

power cable system by using a modified Jaya algorithm, Int. J. Therm. 

Sci., 123, pp. 162–180 (2018). 
35. A. F. Barakat, R. A. El-Sehiemy, M. I. Elsayd, E. Osman, Solving reactive 

power dispatch problem by using Jaya optimization algorithm, Int. J. 

Eng. Res. Africa, 36, pp. 12–24 (2018). 
36. D.P.V.S.V.S. Chilamkurthi, GC. Tirupatipati, J. Sulochanarani, V.K. 

Pamula, Design of optimal digital FIR filters using TLBO and Jaya 

algorithms, 2017 International Conference on Communication and 
Signal Processing (ICCSP), Chennai, pp. 0538–0541. 

37. M.H. Qais, H.M. Hasanien, S. Alghuwainem, Identification of electrical 

parameters for three-diode photovoltaic model using analytical and 
sunflower optimization algorithm, Appl. Energy, 205, pp. 109-117 

(2019). 

38. Z. Yuan, W. Wang, H. Wang, N. Razmjooy, A new technique for optimal 

estimation of the circuit-based PEMFCs using developed Sunflower 

Optimization Algorithm, Energy Reports, 6, pp. 662–671 (2020). 

39. T.T. Nguyen, Enhanced sunflower optimization for placement distributed 

generation in distribution system, Int. J. Electr. Comput. Eng., 11, 1, 

pp. 107–113 (2021). 
40. T.L. Duong, T.T. Nguyen, Application of sunflower optimization 

algorithm for solving the security constrained optimal power flow 

problem, Eng. Technol. Appl. Sci. Res., 10, 3, pp. 5700–5705 (2020). 
41. R.A. El-Sehiemy, M.A. Hamida, T. Mesbahi, Parameter identification and 

state-of-charge estimation for lithium-polymer battery cells using 
enhanced sunflower optimization algorithm, Int. J. Hydrogen Energy, 

45, 15, pp. 8833–8842 (2020). 

42. A.M. Shaheen, E.E. Elattar, R.A. El-Sehiemy, A. M. Elsayed, An Improved 
sunflower optimization algorithm-based Monte Carlo simulation for 

efficiency improvement of radial distribution systems considering 

wind power uncertainty, IEEE Access, 9, pp. 2332–2344 (2021). 
43. M.A.M. Shaheen, H.M. Hasanien, S.F. Mekhamer, H.E.A. Talaat, Optimal 

power flow of power systems including distributed generation units 

using sunflower optimization algorithm, IEEE Access, 7, pp. 109289–

109300 (2019). 

44. A.M. Hussien, H.M. Hasanien, S.F. Mekhamer, Sunflower optimization 

algorithm-based optimal PI control for enhancing the performance of 
an autonomous operation of a microgrid, Shams Eng. J., 12, 2, pp. 

1883–1893 (2021). 

45. C. Wang, Y. Liu, X. Liang, H. Guo, Y. Chen, Y. Zhao, Self-adaptive 
differential evolution algorithm with hybrid mutation operator for 

parameters identification of PMSM, Soft Comput., 22, 4, pp. 1263–

1285 (2018). 
46. R.A. El-Sehiemy, M.A. El-Hosseini, A.E. Hassanien, Multiobjective real-

coded genetic algorithm for economic/environmental dispatch 

problem, Stud. Informatics Control, 22, 2, pp. 113–122 (2013) 
47. E.A. Almabsout, R.A. El-Sehiemy, O.N.U. An, O. Bayat, A hybrid local 

search-genetic algorithm for simultaneous placement of DG units and 

shunt capacitors in radial distribution systems, IEEE Access, 8, pp. 
54465-54481 (2020). 

48. F.B. Asmaa, A.E.S. Ragab, I.E. Mohamed, Close accord on particle 

swarm optimization variants for solving non-linear optimal reactive 
power dispatch problem, Int. J. Eng. Res. Africa, 46, pp. 88–105 

(2020). 

49. R.A. El Sehiemy, F. Selim, B. Bentouati,  M.A. Abido, A novel multi-
objective hybrid particle swarm and salp optimization algorithm for 

technical-economical-environmental operation in power systems, 

Energy, 193, 116817 (2020).

 


