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In this paper, an optimization problem is formulated for determining the optimal reactive power management strategy, for a 
microgrid, based on the reactive power support provided by the inverters from photovoltaic power plants (PVPPs). The 
optimization problem is solved by applying a recent and performant metaheuristic, namely the sine-cosine algorithm. Multiple 
scenarios are defined, depending on the load and PVPP active power output, and the results obtained by the proposed strategy 
are presented in comparison with a reactive power management strategy based only on capacitor banks (CBs). 
 

1. INTRODUCTION 
In recent times, policymakers worldwide are increasing 

their efforts for mitigating climate change. The current 
measures enforced for all economic sectors are also 
imposing new challenges on power systems. In this context, 
the integration of high penetration renewable energy sources 
represents one of the most important measures, appliable to 
power systems, for reducing the global CO2 footprint. 
Renewable energy sources are currently integrated into all 
sectors of power systems, from small-scale residential or 
commercial applications up to utility-scale power plants, as 
most economic systems have supported the investors by 
introducing various incentives. Consequently, wind and 
solar are the most popular renewable energy sources that 
have seen spectacular development in recent years. As the 
main disadvantages of high upfront costs and large 
necessary surfaces were successfully compensated by 
introducing various incentives, PVs made remarkable 
progress, also sustained by their advantages such as 
scalability, as PVs have applications from a few W or kW 
(such as telephone chargers and residential PV arrays) up to 
tens of MW at utility-scale PVPPs, low maintenance cost, 
very low operational costs, and relatively long-life cycles. 
As a result, solar energy generated worldwide has increased 
from 3350 TWh in 2014 up to 40770 TWh in 2020 [1], 
which represents a 12-time increase in six years. Although, 
there is still a long road toward zero-emissions power 
systems, during the last decade a change of paradigm has 
already been observed in the energy sector. 

A natural consequence of integrating renewable energy 
sources is that power systems are transitioning towards a 
more decentralized operation model, which requires new 
technologies for improving the efficiency of small groups 
comprising controllable loads, distributed generation 
sources, and storage devices. In recent years, microgrids are 
increasing in popularity and are evolving towards a regular 
presence in power systems, rather than an experimental 
proof-of-work for a theoretical concept. As defined by [2], a 
microgrid is “a group of interconnected loads and distributed 
energy resources with clearly defined electrical boundaries 
that act as a single controllable entity with respect to the grid 
and can connect and disconnect from the grid to enable it to 
operate in both grid-connected and island modes”.  

Digitalization represents one of the key factors for 
assuring microgrids’ controllability, as data from all 

controllable entities need to be collected and transmitted to 
the local controller. In turn, the local controller requires 
performant hardware resources and efficient software 
algorithms to make the decisions and transmit them back to 
the controllable entities to assure the optimal microgrid 
operation. Both classical methods and metaheuristic 
algorithms are applied for solving a large variety of 
optimization problems formulated for microgrid operation, 
scheduling, and planning. The research literature shows 
during the recent period that metaheuristic algorithms are 
currently a very popular choice for solving various medium-
sized optimization problems, as they provide accurate results 
without employing additional complex mathematical 
models. The authors of [3] proposed an optimal microgrid 
energy management strategy by using An Asynchronous 
Decentralized Particle Swarm Optimizer, while in [4] a 
power management enhancement strategy is determined by 
using an adaptive Ant Lion Optimizer. Another microgrid 
optimal energy management strategy is determined in [5] by 
using a grey wolf optimizer, alongside the optimal battery 
energy storage system sizing. An optimal BESS scheduling 
strategy for a microgrid is also provided in [6], by using a 
genetic algorithm. In [7] the authors apply a Multi-Objective 
Hunger Game Search Optimizer for finding the optimal 
BESS scheduling strategy for a grid-connected microgrid, 
while [8] presents a power quality enhancement in 
autonomous microgrids based on a Particle Swarm 
Optimizer. Furthermore, metaheuristic algorithms 
applications are not limited to microgrids, as numerous 
studies are also conducted on distribution and transmission 
grids. For example, in [9], an optimal BESS scheduling 
strategy is determined by using a Mutation-Improved Grey 
Wolf Optimizer upon distribution network characterized by 
high renewable energy sources penetration. Paper [10] 
proposes an improvement for solving optimal power flow 
salp swarm algorithm problems for transmission networks 
and [11] presents a unit commitment optimization based on 
an improved genetic algorithm. Metaheuristic solvers are 
also applied in designing and tunning controllers for power 
systems. For example, in [12], a Non-Dominated Sorting 
Genetic Algorithm is applied for the optimal tuning of a 
power system stabilizer, while [13] proposes a direct power 
control for a doubly fed induction generator based on an 
adaptive neural fuzzy sliding controller optimized by genetic 
algorithm. 

This paper applies the sine-cosine algorithm for 
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determining the optimal reactive power management 
strategy for a microgrid, using the reactive power generated 
by the PVPPs inverters. The paper is organized as follows. 
The first section is the introduction, section 2 presents the 
mathematical model. The sine-cosine algorithm is described 
in section 3, while section 4 presents the case study. 

2. MATHEMATICAL MODEL 

2.1. THE OBJECTIVE FUNCTION 
The reactive power management problem formulated in 

this study aims to minimize the microgrid total active power 
losses ΔPtotal, as follows:  

 (1) 

where f is the objective function, x is the vector of control 
variables, g is the equality constraints, and h is the inequality 
constraints.  

The control variables vector x consists of the PVPPs 
reactive power output Qg,1 … Qg,N and the capacitor banks 
operating step nCB,1 … nCB,n:  

 (2) 

The total active power losses are determined based on the 
microgrid active power balance, as the difference between 
the total active power supplied to the microgrid (by the up-
stream sub-station Pslack and PVPPs Pg,i) and the total power 
demanded by the loads (PC,i): 

 (3) 

2.2. EQUALITY AND INEQUALITY CONSTRAINTS 
The equality constraints g(x) from (1) are used for 

performing the load flow calculation and consist of the 
nodal active and reactive power equations [14]: 

 (4) 

where Pi and Qi are the nodal active and reactive powers, 
Ui, Uk and θi, θk are the voltage amplitudes and angles at 
buses i and k, while Gik and Bik are the real and imaginary 
part of the i-k term from the bus admittance matrix. 

The inequality constraints h(x) is given in eqs. (5) – (8). 
The first two inequality constraints represent the operational 
constraints for the PVPP inverters reactive power output and 
capacitor banks operating steps and are given below: 

, (5) 

, (6) 

where  and  are the ith PVPP reactive power 

limits, while and  represent the minimum and 
maximum operating step for the ith capacitor bank. 

The inverter minimum and maximum reactive power 
limits can be set considering the power factor and the active 
power output or depending on the inverter’s apparent power 
limit [15]. In this study, the reactive power limits are 
determined at the rated active power and minimum power 
factor and considered constant for all active power output 
values from 0 % to 100 %. 

The other two inequality constraints consisting in the 
microgrid operational constraints regarding the bus voltages 
and branch currents are presented below: 

, (7) 

, (8) 

where and are the lower and upper admissible 
voltage values for bus i,  is the admissible current 
through branch i, while nB and nL are the numbers of 
microgrid buses and lines.  

2.3. ADAPTATIONS FOR METAHEURISTIC SOLVERS 
A meta-heuristic algorithm, namely the Sine-Cosine 

Algorithm (presented in section 3), is applied in this study 
for solving the optimization problem, therefore several 
adaptations are introduced to assure that the equality and 
inequality constraints are satisfied. 

The first adaptation consists in performing the load flow 
calculation, by using the backward-forward sweep (BFS) 
method, to assure that the equality constraints g(x) from (1) 
are satisfied. The BFS method is the most appropriate as the 
study is focused upon an MV microgrid, characterized by a 
radial or tree-like topology and low X/R ratio. Firstly, a 
preprocessing stage, based on the graph theory, is necessary 
to determine the graph which models the microgrid 
topology, the predecessor and successors for each bus, and 
the order in which buses are visited. Within the BFS 
method, the loads and distributed energy sources are 
modeled as constant active and reactive powers 
absorbed/injected at the buses, while the capacitor banks are 
modeled as constant shunt impedances. 

The BFS is an iterative method, which begins by 
initializing all bus voltages with the voltage value at the 
slack bus. Each iteration consists of two main stages: (1) the 
backward sweep, when the currents demanded by the loads 
and the currents through the network branches are 
determined, and (2) the forward sweep, when the voltage 
drops across the branches and bus voltages are computed. 
After each iteration, the complex apparent power supplied 
by the slack bus is computed and a convergence test is 
performed to decide if a new iteration is performed, or the 
iterative process has reached the results. 

The inequality constraints (5) and (6) regarding the PVPP 
reactive power limits and CB step limits are imposed as 
lower and upper bounds for the decision variables Qg,i and 
nCB,i. The inequality constraints regarding the microgrid 
operational constraints are introduced as penalty functions. 
Consequently, the penalized objective function F is defined 
as the sum between the objective function f and the penalty 
functions P1 and P2. 
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. (9) 

The divergent load flow solutions will be penalized by 
applying the additional penalty coefficient (α) to multiply 
objective function by a large value, while for the 
convergent solutions, α = 1. 

Penalty function P1 is applied to enforce constraint (7) 
regarding the voltage limits. P1 is defined as the sum 
between the penalty coefficients p1,i , which are zero only if 
the ith bus voltage is within admissible limits. 

, (10) 

 (11) 

The second penalty function P2 is defined as the sum 
between the penalty coefficients p2,i, which are zero if the ith 
branch current is within the admissible limit. 

, (12) 

 (13) 

3. SINE-COSINE ALGORITHM 
The Sine-Cosine Algorithm is a relatively recent 

metaheuristic algorithm, proposed by S. Mirjalili in 2016, 
[16]. Given its simplicity and increased performance, the 
SCA has become a very popular metaheuristic algorithm, 
applied in a significant number of research papers, in its 
original form or in various modified, hybridized, and multi-
objective versions [17]. SCA is also applied in solving 
power system optimization problems, such as economic and 
emission dispatch [18], optimal tuning of a PID controller 
for a solar system [19], optimal allocation of distributed 
energy sources [20], etc. 

The SCA is a highly-performant and robust optimizer, 
with the major advantage of having a straightforward 
algorithm, which basically consists of one mathematical 
expression and several random numbers for updating the 
candidate solutions. The position updating mechanism is 
based upon the trigonometric sine and cosine functions, as 
presented below: 

 (14) 

where represents the position in the ith dimension of a 
candidate solution at iteration t, is the position in the ith 
dimension of the best solution discovered at iteration t, 
while r1, r2, r3 and r4 are random numbers. 

As (14) reveals, the SCA is based on four parameters: r1, 
r2, r3 and r4. The first parameter, r1 is used to decide if the 

candidate solution is heading towards (r1 < 1) or outwards 
(r1 > 1) as the best solution. Therefore, the balance between 
exploitation and exploration is maintained by linearly 
decreasing r1 starting from a constant a to 0, as the current 
iteration t advances towards the maximum iteration T: 

. (15) 

Parameter r2 is applied for defining how far the candidate 
solution moves towards or outwards from the destination. 
As r2 is the argument of the sine and cosine function, it is 
set in the [0, 2π] range. The third parameter r3 is used for 
emphasizing (r3 > 1) or deemphasizing (r3 < 1) the 
destitution’s contribution in choosing the next position, 
while r4 is simply a switch for choosing between the sine 
and cosine functions. Finally, the position update 
mechanism is illustrated in Fig. 1.  

 
Fig. 1 – The position update mechanism for the sine-cosine algorithm. 

The SCA pseudo-code, presented below reveals its 
remarkable simplicity, as only one mechanism is applied 
for updating the positions: 

Initialize a set of solutions X 
while t is less than T do 

Evaluate the objective function for each solution X 
Update the destination P (the best solution so far) 
Generate the random parameters r1, r2, r3 and r4 
Update solution X using (10) 

end while 
Return the destination P. 

4. CASE STUDY 

4.1 THE MICROGRID UNDER STUDY 
The case study presented in this paper is conducted on a 

20 kV grid-connected microgrid, which supplies seven loads 
through seven MV underground electrical lines, from the 
MV busbar of a step-down substation. Also, the microgrid 
comprises four PVPPs and three capacitor banks. The 
microgrid one-line diagram is presented in Fig. 2. It should 
be mentioned that the tree-like topology, with one main axis 
and one derivation, is inspired by the European version of the 
CIGRE MV benchmark network introduced in [21].  

 
Fig. 2 – Microgrid one-line diagram. 
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each of the seven loads, alongside the corresponding 
apparent power (Si) and power factor (cosφi) are presented 
in Table 1, for the base load scenario. 

Table 1 
Load data 

Load Pi [kW] Qi [kvar] Si [kVA] cosφi [–] 
L2 255 155 298.4 0.855 
L3 705 475 850.1 0.829 
L4 465 310 558.9 0.832 
L5 425 245 490.6 0.866 
L6 335 165 373.4 0.897 
L7 535 330 628.6 0.851 
L8 765 485 905.8 0.845 

 Table 2 shows the electrical lines’ parameters: resistance 
(r0), reactance (x0), susceptance (b0), rated current (Imax) and 
power (Smax), extracted from [22], alongside the line length. 

Table 2 
Electrical lines data 

Line Length [km] Parameters 
L12 3.25 

r0 = 0.927 Ω/km 
x0 = 0.142 Ω/km 

b0 = 47.12389 μS/km 
Imax = 150 A 

Smax = 5196.2 kVA 

L23 0.90 
L24 0.85 
L45 0.75 
L56 0.55 
L67 0.75 
L78 0.60 

As mentioned before, the microgrid comprises four 
PVPPs, for which the rated active power (Pmax), and reactive 
power limits (Qmin and Qmax) are presented in Table 3. The 
negative values for reactive power imply that the inverter 
absorbs the reactive power from the point of common 
coupling. It should be mentioned that the Qmin and Qmax 
values correspond to a 0.85 power factor at the PVPP rated 
active power, therefore the PV inverters have the capability 
to continuously regulate the reactive power absorption or 
injection between these limits at any given active power 
output between 0% and 100% of their active rated power.  

Table 3 
PVPP data 

PV Pmax [kW] Qmin [kvar] Qmax [kvar] Smax [kVA] 
PV2 330 –205 205 388.5 
PV3 950 –589 589 1117.8 
PV6 350 –217 217 411.8 
PV8 1050 –651 651 1235.4 

The data corresponding to the three installed capacitor 
banks are presented in Table 4: a maximum number of steps 
(nCBmax), rated voltage (Ur) and rated reactive power per step 
(Qr,step). It should also be noted that the capacitor banks are 
modeled as a constant susceptance for the load flow 
calculation. 

Table 4 
Capacitor banks data 

CB nCBmax Parameters 
CB4 5 Ur = 20 kV 

Qr,step = 100 kvar CB5 5 
CB7 5 

4.2 SIMULATION ALGORITHM 
The simulations presented in this case study are conducted 

on multiple scenarios by solving the optimization problem 
formulated in section 2 using the sine-cosine algorithm 
presented in section 3.  All simulations are performed under 

the MATLAB environment, based on the scripts created by 
the authors for solving the optimization problem, performing 
the microgrid load flow calculation using the Backward-
Forward Sweep Algorithm and data manipulation. It should 
be noted that the SCA code utilized in this paper is provided 
by S. Mirjalili, [16]. 

Three different scenarios are considered regarding the 
power demanded by the loads, namely light load (S1), 
baseload (S2), and heavy load (S3). The base load scenario 
is defined by the load values given in Table 1. The light load 
scenario is defined by reducing the active and reactive 
demanded power by 15 % for all loads, while the heavy load 
scenario is characterized by a 15% increase in demand 
power. Five scenarios are defined for the PVPPs output, by 
applying the PV generation coefficient (PPV) of 0 %, 25 %, 
50 %, 75 %, and 100 % on the active rated power Pmax. 
Finally, the 15 scenarios, obtained by generating all the 
possible combinations between the load demand and PV 
generation scenarios, are presented in Table 5. 

Table 5 
Considered scenarios 

PPV (%) 
Load 0 % 25 % 50 % 75 % 100 % 

Light Load S.1.0 S.1.1 S.1.2 S.1.3 S.1.4 
Base Load S.2.0 S.2.1 S.2.2 S.2.3 S.2.4 

Heavy Load S.3.0 S.3.1 S.3.2 S.3.3 S.3.4 

4.3. RESULTS AND DISCUSSIONS 
The case study presents the impact of using the PVPPs to 

inject reactive power upon the microgrid active power losses 
and voltage profile, for the 15 considered scenarios. For each 
scenario, a reference strategy is defined by using only the 
capacitor banks for reactive power management, while the 
PVPP operates at a unitary power factor. The reference 
strategy is defined according to the voltage control paradigm 
that was applied for PVPPs until recently, which stated that 
“inverters should not actively participate in voltage/var 
regulation” [23]. Furthermore, the impact of the reactive 
power support provided by the PVPPs on the microgrid’s 
operating conditions is clearly revealed by comparison to the 
reference strategy, where no reactive power support is 
provided. For the reference strategy, the optimal CB 
operating step is determined by solving a simplified version 
of the optimization problem formulated in section 2, where 
only the xCB,1, … xCB,n variables are considered. The optimal 
settings for all scenarios according to the reference strategy 
are nCB4 = 5, nCB5 = 5, and nCB7 = 5, which represents the 
maximum available step for all three CBs comprised within 
the microgrid. Figure 3 presents the bus voltage microgrid’s 
profile for all Base Load scenarios (S.2.0 – S.2.4). 

 
Fig. 3 – Microgrid bus voltage profiles obtained in the base load scenarios, 

for the reference strategy. 

The results presented in Fig. 3 reveal that the bus voltage 
values are comprised, for all base load scenarios, between 1 
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p.u and 0.9570 p.u. (at bus 8 in S.2.0). The lowest bus 
voltage is observed at bus 8 for the first four scenarios, 
while for the last scenario, where the active power output of 
the PVPPs is maximum, at bus 7. The minimum bus 
voltage value is 0.9641 p.u. in the light load scenarios 
(S.1.0 – S.1.4) and 0.9497 p.u. in the heavy load scenarios 
(S.3.0 – S.3.4).  

Hereinafter, the microgrid operating conditions obtained 
by applying the proposed strategy, which consists in using 
the PVPPs to inject reactive power alongside the CBs, are 
presented in comparison with the reference strategy. 

The first part of this section presents the results obtained 
for one representative scenario, namely S.2.3, defined by 
Base Load and 75% PV generation. The optimal settings 
for the PV reactive power output are: QPV2 = 466.71 kvar, 
QPV3 =197.36 kvar, QPV6 =125.43 kvar, QPV8 = 495.26 kvar 
while the optimal CB operating steps are nCB4 = 3, nCB5 =2 
and nCB7 =3. The microgrid bus voltages are presented in 
Fig. 4 as a comparison between the values obtained 
applying the optimal settings provided by the SCA and the 
values from the reference strategy when the PVPPs operate 
at a unitary power factor.  

The reactive power injected in the two considered 
strategies is relatively close, as approx. 1589 kvar are 
injected by both PVPPs and CBs, while in the reference 
strategy the CBs supplied approx. 1500 kvar. Therefore, the 
results presented in Fig. 4 reveal a relatively reduced 
impact of the reactive power support provided by the 
PVPPs upon the bus voltage profile, as the maximum 
increase of 0.0011 p.u., is observed at bus 8. In the 
proposed strategy, the amount of supplied reactive power is 
close to the value in the reference strategy, but a better 
distribution of the reactive power sources throughout the 
microgrid is achieved. Consequently, the active losses are 
decreasing by 15%, from 28.38 kW to 24.12 kW. 

 
Fig. 4 – Comparison between microgrid bus voltages. 

The second part of this section presents a synthesis of the 
results obtained for the 15 considered scenarios. The 
optimal reactive power output for the four PVPP is 
presented in Fig. 5, while the optimal operating step 
settings for the three CBs are shown in Fig. 6.  

 
Fig. 5 – PV Inverters optimal reactive power output. 

From Fig. 5, it can be observed that the reactive power 

output for PV3 and PV8 is slightly decreasing as the active 
power output increases. The step-like variation of the CB 
reactive power output also influences the PVPP reactive 
power output. In scenarios S.2.3 and S.2.4 when nCB5 is 
decreased from 3 (in S.2.0 – S.2.2) to 2, the PV6 reactive 
power output which was slightly decreasing in S.2.0-S.2.2 
increases with 65 kvar and then it continues to decrease. 
Similar behavior is observed for PV2 due to the CB4 step-
change in S.3.3. Also, due to the increased load demand in 
S.3 scenarios, CB7 operating step is increased from 3 (in all 
S.0 and S.1 scenarios) to 4 (in all S.3 scenarios).  

 
Fig. 6 – Capacitor banks optimal step settings. 

Figure 7 presents the minimum (Umin) and average (Uavg) 
bus voltage values for both reference and optimal strategies 
in all the 15 considered scenarios. The results reveal that 
the impact on bus voltage is increasing as the load 
increases. For example, in the S.3.1 scenario (heavy load 
and PPV = 25%), both minimum and average bus voltage 
values are increased by 0.002 p.u., while for the light load 
scenarios the increase is even lower.  

 
Fig. 7 – Minimum and average voltage. 

As expected, the impact of the PVPP reactive power 
injection upon the microgrid voltage profile is reduced, as 
the reactive power injected by the CBs in the reference 
strategy of about 1500 kvar, is replaced by a total reactive 
power between 1700 kvar (in light-load scenarios) and 
2500 kvar (in heavy load scenarios) injected by both PVPPs 
and CBs. Although the reactive power injection is better to 
spread throughout the microgrid and PVPPs offer 
continuous reactive power control, the microgrid reactive 
power support provided by the CBs during light load 
conditions is relatively close to the optimal solution. 
Furthermore, the voltage sensibility to reactive power 
variation is relatively reduced, due to the reduced X/R ratio 
that is specific to MV networks.  

The active power loss reduction is presented in Fig. 8, 
expressed in percentage relative to the reference strategy. 
The blue bars represent the light load scenarios, the base 
load scenarios are represented by the red bars and the heavy 
load by yellow bars. The bars are grouped within the figure 
by the PVPP active power output PPV, expressed in 
percentage relative to the active rated power Pmax. 
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Fig. 8 – Active power losses reduction. 

The results presented in Fig. 8 reveal a considerable 
impact of the PVPPs reactive power injection upon the 
active power losses.  In the light load scenarios, the active 
power losses are reduced by at least 2% (for PPV = 0%) and 
up to 34.8% (for PPV = 100%). For the heavy load 
scenarios, the PVPP reactive power support reduces active 
power losses by at least 6.4% (for PPV = 0%) and up to 
30.5% (at PPV = 100%). The active power loss reduction is 
achieved by the PVPPs continuous reactive power support 
as compared to the step-like variation of the CBs reactive 
power output and a better distribution of the reactive power 
sources throughout the microgrid. On the other hand, in 
higher load scenarios, the optimal necessary reactive power 
exceeds the CBs capacity of 1500 kvar. 

5. CONCLUSIONS 
The study presented in this paper aims to integrate the 

reactive power generated by the PVPPs inverters in 
providing an optimal reactive power management strategy 
for minimizing the active power losses of a microgrid. The 
optimization problem formulated in section 2 is solved by 
using the sine-cosine algorithm for 15 scenarios defined by 
generating all possible combinations between the light, 
base, and heavy load and 0%, 25%, 50%, 75% and 100% 
PVPP active power output. 

The microgrid reactive power management strategy 
consists in simultaneously controlling the capacitor banks’ 
operating steps and the reactive power generated by the 
PVPPs inverters. A reference reactive power management 
strategy is also considered as a term of comparison, where 
all PVPPs inverters operate at unitary power factor and only 
the capacitor banks are used for providing reactive power 
support. The results show that, although the bus voltage 
profile is slightly improved, the total microgrid active 
power losses are reduced by a significant amount. 
Moreover, active power losses are also reduced when the 
PVPP inverters are only used for providing reactive power 
support, without generating active power. In conclusion, 
this study demonstrates that the PVPP inverters are 
effective in reducing the active power losses in microgrids 
by providing reactive power support. 

Received on 11 November 2021. 
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