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The present study outlines the application of artificial neural networks for the Prediction of corona discharge parameters in SF6-
N2 gas mixture. The artificial neural network modeling is used to predict corona discharge temperature, ionic mobility, and 
onset voltages for different gas pressures with a mixture of 10 % SF6 – 90 % N2, and using experimental data obtained 
previously. The results of artificial neural networks’ prediction of ionic mobility (μ) onset voltages (Vs) and temperature are 
found to be around ± 6% for training as well as for testing and are significantly consistent with the experimental values.  

 

1. INTRODUCTION 
Sulfur hexafluoride is the electric power industry's 

preferred gas for electrical insulation and arc quenching 
capabilities. Generally, there are four major types of 
electrical equipment, which use SF6 for insulation and/or 
interruption purposes: gas-insulated circuit breakers and 
current-interruption equipment, gas-insulated transmission 
lines, gas-insulated transformers, and gas-insulated 
substations. The properties of a gas that are necessary for its 
use in high voltage equipment are many and vary depending 
on the application of the gas and the equipment. Sulfur 
hexafluoride exhibits many properties that make it suitable 
for equipment utilized in electric power systems [1–3]. It is a 
strong electronegative (electron attaching) gas both at room 
temperature and at temperatures well above ambient, its 
dielectric strength is substantially greater than that of 
traditional dielectric gases and it has good arc-interruption 
properties. The breakdown voltage of SF6 is nearly three 
times higher than air at atmospheric pressure; it has good 
heat transfer properties. SF6 offers significant savings in land 
use, is aesthetically acceptable, has relatively low radio and 
audible noise emissions, and enables substations to be 
installed in populated areas close to the loads.  

However, SF6 has been found to be environmentally 
unacceptable and was listed among the seven greenhouse 
gases in the Kyoto Protocol [4]. It has a lifetime of 
3200 years in the atmosphere and a global warming 
potential (GWP) on a 100-year horizon of 23 900 compared 
to CO2 [5]. In fact, the concentration of SF6 in the 
atmosphere increased by 20% from 2010 to 2015 [6].  

The European regulation 517/2014 on fluorinated 
greenhouse gases [7] bans SF6 in all applications except in 
high voltage technology. In the short term, the main option 
is to reduce the emission of SF6. The potential candidate to 
substitute the SF6 is the mixture of Sulphur hexafluoride 
and nitrogen (SF6-N2) with a small amount of SF6. The 
mixture must satisfy all the requirements such as chemical, 
electrical, physical, and environmental properties [8,9]. 

Nitrogen (N2) is the typical electron retarding gas in 
which, the fast electron can be slowed down and the 
electron energy can be reduced. This can be achieved by 
de-energizing electrons reaching higher energy and 
returning them to the lower energy range, where attachment 
by electronegative gas is most effective [10,11].  

The overall cost of the system can be reduced depending 
on the cost of the buffer gas; furthermore, the use of dilute 
mixtures could provide a convenient solution to the pressing 

problem of global warming associated with SF6 leak. 
The prediction of corona parameters in the gas mixture 

10%SF6-90%N2, which is considered the favorite candidate 
to replace pure SF6 is carried out using Artificial Neural 
Network (ANN) technique. 

The ANNs can be used to predict the ionic mobility (μ), 
the onset voltages (Vs), and the temperature of the corona 
discharge. The main feature of neural networks is the 
establishment of complex relationships between data 
through a learning process [12,13]. This technique can be 
very attractive in the modeling of processes where 
traditional mathematical modeling is difficult or impossible.  

Recent years have seen attempts by several authors to use 
various artificial neural networks (ANNs) based models [14–
16]. The rationale here is that ANNs have the potential to 
provide a mechanism for dealing with multi-variant, often 
noisy, and possibly non-linear data sets, where an exact analytic 
model is either intractable or too time-consuming to develop. 
The basic procedure is to use a database of measurements to 
train an ANN structure and then evaluate the predictive 
capacity of the built model on previously unseen data. 

2. SIMULATION METHOD 

2.1. NEURAL NETWORKS MODEL 
The proposed multi-layer neural network structure is 

shown in Fig. 1.  

 
Fig. 1 – Architecture of different neurons into an artificial neural 

network (MLP). 

It has two input layers, the gas pressure (P) and the ratio 
of N2 in the gas mixture (r). The number of output layers is 
three, ionic mobility (µ), discharge rotational temperature 
(Tr), and onset voltage (Vs), as expressed in equations (1, 2, 
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and 3), W is the neural network weights. 

. (1) 

. (2) 

. (3) 

The output is even that, onset voltages (VS), ionic 
mobility (µ), or temperature (Tr), these values have the 
following expressions.  

. (4) 

. (5) 

. (6) 

where Wji is the weight matrix of the first layer, Wkj is the 
weight matrix of the second layer, bj is the bias vector of the 
first layer, bk is the bias vector of the second layer, d is the 
number of input nodes and M is the number of hidden nodes. 

The Hecht-Kolmogorov theorem [17,18], proposes that 
the number of neurons in the hidden layer must be greater 
than the double of the neurons in the input layer. The output 
layer has three neurons, such as the onset voltage, ionic 
mobility, and rotational temperature, corresponding to the 
input data. The training and testing of these neural networks 
were done using MATLAB® software. 

To perform accurate learning, the output layer is 
normalized to have the same order of magnitude as the 
input layer. 

2.2. LEARNING ALGORITHM 
According to Fig. 2, the learning algorithm adjusts the 

weights in all connecting links and thresholds in the nodes 
so that the actual output Y(t) and the target output T(t) are 
minimized for all given training patterns. 

 
Fig. 2 – Learning Algorithm Scheme. 

For the pth training pattern (p=1...P), the learning 
algorithm is performed to minimize the energy function.  

. (7) 

Where, Yi(N) is the activation of ith neuron in the output 

layers N, Ti is the ith desired output, and N is the number of 
layers. The application of Levenberg-Marquardt to neural 
network training is described in [19-21]. This algorithm 
appears to be the fastest method for training feed-forward 
neural networks. The weights are adjusted according to the 
iterative Levenberg-Marquardt updating: 

. (8) 

where Wij is the weight between ith neuron of layer n+1 and 
jth neuron of layer n, (0 £ n £ N-1), I is the identity matrix, J 
is the Jacobian matrix, which contains first derivatives of 
the network errors with respect to the weights and biases 
and ET  is a vector of all network errors. 

The parameter a is adapted during the learning 
procedure. When the total error ET goes below a 
predetermined threshold value Emin, the learning algorithm 
is then stopped. Back-propagation is used to calculate the 
Jacobian J of the performance function Ep. 

. (9) 

with  where:  

. (10) 

. (11) 

with ui(n) th input to the ith neuron in nth layer, Ln+1, the 
number of neurons in the (n+1)th layer, ( , ), a derivative 
of the sigmoid activation function over the input to the jth 
neuron in (n+1)th layer. It is important, however, to 
remember that the training patterns must cover the entire 
range of input combinations for which the network will be 
required to perform accurate process emulation. 

Since the input and output, variables of the ANN have 
different ranges, the feeding of the original data to the 
network leads to a convergence problem. In addition, the 
normalization of the inputs and outputs of the neurons 
network over an interval of [0-1] was done, to avoid a 
saturation effect of the sigmoid function. 

3. THEORETICAL ANALYSIS 

3.1. DETERMINATION OF CORONA ONSET 
VOLTAGES 

Theoretical models to determine corona onset voltages 
(Vs) in strongly inhomogeneous fields (tip-plane 
configuration) have been proposed by several authors. 
Nitta’s [22] model is based on the streamer criterion, and it 
is expressed in the following manner: 

. (12) 

E is the electric field, P is the gas pressure, u is the field 
utilization factor; rp is the tip radius and d is the inter-
electrode distance. 

The constant C in equation (12) can be determined by the 
following equation: 
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. 
(13) 

With K is the streamer criterion constant and bm comes 
from the approximation of the ionization coefficient  of 
the mixture:  

. (14) 

Determination of  

 
is defined by  

. (15) 

The latter relation shows the value of the reduced field 
for which the equilibrium between ionization and 
attachment is realized. For (E/P)>(E/P)lim, ionization 
becomes predominant and streamer phenomena occur in the 
gap, whereas for (E/P)<(E/P)lim, there is no possibility to 
start a streamer. 

Malik and Qureshi [23] calculated (E/P)lim for SF6-N2 
mixtures making the assumption that: 

 

 (16) 

with z = ratio of SF6. 
However, since nitrogen and SF6 do not interact with 

electrons of the same range of energy, this assumption is 
not rigorously exact. Kline and al. [24,25] have shown that 
there’s good agreement between experimental results and 
those calculated using the empirical expression: 

 (17) 

 

3.2. EXPERIMENTALLY DEDUCED MOBILITIES 
In a highly inhomogeneous configuration such as the 

point plane geometry, the theoretical determination of the 
mobility from the value of the mean electrical current was 
carried out using the following expression: 

, (18) 

where, e is the dielectric constant of the gas, d is the point-
plane distance. A is a constant, which, depends only on the 
geometry chosen.  

To calculate the mobility in the point plane geometry, a 
simple geometric approximation is used instead of the real 
needle plane configuration. 

R. Sigmond [26], considered the Warburg distribution on 
the plane electrode and obtained the unipolar saturation 
formula: 

. (19) 

Using Blanc’s law [27], the mobility of gas mixture can 
be expressed by: 

, (20) 

where and are the mobility of the ions in the pure 

gases, and are respectively the mole fraction of the 
gas 1 and 2 in the mixture. 

 and . (21) 

 

3.3. DETERMINATION OF THE GAS TEMPERATURE 
For a gas such as SF6, where most of the constituents are 

diatoms, the total energy of any given molecule also 
includes the energy corresponding to the vibrational and 
rotational energy of the two atoms with respect to one 
another.  

The vibrational temperature is related to the temperature 
of the vibrationally excited species, whereas the rotational 
temperature corresponds to the temperature of the neutrals 
[29,30]. At high-pressure collision between neutrals and the 
excited molecules are more effective and the rotational 
temperature tends to equilibrate with the kinetic 
temperature of the heavy spices. Because of this, the 
rotational temperature (Tr) measured at high pressure is 
used to give the kinetic gas temperature [31]. 

In the present study, the spectra obtained from the light 
emission of SF6-N2 mixture were recorded with different 
values of pressure, voltage, and current together with the 
variation of the position of the tip electrode. The emission 
of N2 is very dominant for different gas concentrations and 
the second positive system 2S+ is the most important. The 
convolution method [29-31] can be used to determine the 
discharge temperature by comparing the simulated 
spectrum obtained by the latter method and the 
experimental spectrum. The temperatures are determined by 
minimising the surface delimited between the two spectra. 

This technique can be used as a spectroscopic 
thermometer.  

4. EXPERIMENTAL DATA 
Using the experimental setup shown previously [31] the 

measurements of the ionic mobility, the rotational 
temperatures, and the onset voltages were obtained using a 
tip-to-plane configuration. 

The measurements of the current-voltage curves were 
done for different gas pressures ( ) and the mobility 
is determined from the slopes of ( ) curves using 
R.S. Sigmond model [26].  

Rotational temperatures of SF6-N2 gas mixture are 
spectroscopically measured over a pressure range of 2-14 
bars. The spectra obtained from the light emission of the 
corona discharge were recorded with different values of 
pressure, voltage, and current together with the variation of 
the position of the tip electrode.  
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The measurements of the onset corona discharge 
voltages in SF6-N2 gas mixtures at higher pressure ranging 
from 2 to 14 bars and with different percentages of SF6. The 
onset voltages were determined from the measurements of 
the current-voltage curves in both negative and positive 
polarities, with tip radii of a few micro-meters and the gap 
between the electrodes is lower than 10 mm. 

5. RESULTS AND DISCUSSION 
As an alternative to empirical prediction models, 

Artificial Neural Networks can be used to predict gas 
mixture parameters. The main feature of neural networks is 
the establishment of complex relationships between data 
through a learning process, with no need to previously 
propose any model to correlate the desired variables. The 
basic procedure is to use a database of measurements to 
train an ANN structure and then evaluate the predictive 
capacity of the built model on previously unseen data. As 
shown in Fig. 3 and 4, the best training performance of the 
neural network is obtained at epoch 213 (1,0499.10-11). The 
average relative error on predicted onset voltage is found to 
be less than 5% for our neuron network model. 

 
Fig. 3 – Best training performance of a neural network of onset voltage 

(1,0499.10-11 at epoch 213). 

 
Fig. 4 – Average relative error with respect to iteration number of 

predicted onset breakdown voltage. 

Figure 5 shows the experimental and predicted values of 
onset voltage with different amounts of SF6 in the mixture 
as a function of the gas pressure for negative polarity. The 
values of corona inception voltages (Vs) increase linearly 
with pressure (P) and tend towards saturation at high values 
of pressure for both mixtures 100 % of SF6 and 10 % SF6 -
90 % N2 [32,33]. As can be seen in figure 5, there is a total 

concordance between the predicted and measured values of 
the onset voltages in pure SF6 and in 10% SF6 – 90 % N2. 

 
Fig. 5 – The variation of the onset voltage with the gas pressure for 

10%SF6-90%N2 and pure SF6 for a negative polarity. 

For the prediction of ionic mobilities, Figs. 6-7 detail the 
mean square error and the average relative error obtained 
during the training procedure. The performance of ANN’s 
training is shown in figure 6, where the convergence of the 
Levenberg-Marquardt algorithm is obtained at iteration 
174 (3,2726.10-11): The average relative error on predicted 
mobilities is found to be less than 5% as can be seen in Fig. 7. 

 
Fig. 6 – Best training performance of a neural network of ionic mobility 

(3,2726.10-11 at epoch 174). 

 
Fig. 7 – Average relative error with respect to iteration number of 

predicted ionic mobilities. 

The curves of ANN’s predicted values of ionic mobilities 
and the curves of determined values are shown in Fig. 8. The 
results clearly indicate a good agreement between the curves. 

 



5 Faissel Beloucif et al. 143 

 
Fig. 8 – Measured and predicted ionic mobility, versus the gas pressure 

using ANN for 10 % SF6-90 % N2 in negative polarity. 

The best training performance of the neural network of 
temperature is achieved at epoch 1000 (2,2448.10-10), Fig. 9. 

The relative error during the testing phase is under 4 % 
which is a very good measure to state the efficiency of the 
network architecture (figure 10).  

The rotational temperature of SF6-N2 gas mixture was 
measured over a pressure range of 2-14 bars, as can be 
observed in figure 11, the predicted temperatures using the 
proposed ANN model are very consistent with the 
measured values. 

 
Fig. 9 – Best training performance of a neural network of temperature 

(2,2448.10-10 at epoch 1000). 

 
Fig. 10 – Average relative error with respect to iteration number of 

predicted rotational temperature. 

 
Fig. 11 – Measured and predicted rotational temperature, versus the gas 

pressure using ANN for 10 % SF6 in negative polarity. 

As shown in Fig.11, the variation of the temperature with 
the pressure with the value of the corona discharge current 
equals 5 µA. It can be noticed that the effect of pressure is 
less important on the discharge temperature in mixture gas 
with an amount of 10 % of SF6. 

6. CONCLUSION 
The application of neuron networks has become an 

important tool for estimating the variation of several 
parameters in insulators used in electrical systems [24-26], 
as in the present work the ANN can be very useful for the 
prediction of onset voltage, ion mobility and rotational 
temperature in SF6-N2 gas mixture, in the absence of 
mathematical models which give a precise prediction.  

The prediction of these parameters using the proposed 
ANN is found to be in good agreement with the 
experimental values. The errors are always less than ±6% 
for training and testing. This technique can be a very useful 
prediction modeling tool for high voltage equipment. 

For the same onset voltage, a mixture with 10% of SF6 
must work at approximately twice the pressure of pure SF6. 
The variation of the mobility at elevated pressures is 
inversely proportional to the gas density. The mobility 
decreases with the increase of the amount of SF6 in the gas 
mixture. In the present conditions, the effect of pressure on 
the temperature of the gas is not very important. 

The comparison of the predicted results obtained by 
neural networks with those measured shows a good 
agreement for low SF6 concentrations of 10 % SF6 in 
mixtures, the difference is clearly observed.  

Received on 12 July 2021. 
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