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Several researchers considered logarithmic spherical signal quantization. The design of a logarithmic spherical quantizer in k 
dimensions is considered in this paper. Logarithmic quantization is here used for vectors consisting of samples in sphere 
coordinates. The combination of logarithmic and spherical quantization (LSQ) is an efficient multi-dimensional quantization 
method at a high dynamic range, by preserving the original signal as close as possible. The signal-to-noise ratio (SNR) and its 
dependence on the sphere dimension at lower bitrates are derived and discussed in this paper. 

1. INTRODUCTION 
The area of digital signal processing (DSP) has experienced 

explosive development in the last four decades primarily due 
to the advancements and availability of digital signal 
processors (abbreviated as DSPs). Nowadays, DSP systems 
such as mobile smartphones and high-speed wireless 
networking systems become an integral part of daily life. 
Analog sensors measure analog signals in response to 
different physical processes that occur in an analog way, such 
as signal amplitude. Signal processing can be carried out in 
one of two ways: the analog or digital domain. To represent 
an analog signal in the digital domain, it is required that a 
digital signal is created by processes of sampling and 
quantizing (digitizing) the analog signal. There are several 
reasons why an analog signal should be converted into a 
digital form. The fundamental reason is that digital processing 
permits programmability, contrary to analog processing.  

Quantization is a very important phase in the digitization 
process [1]. During the decades' quantization became an 
integral part of all DSP systems. While an analog signal is 
continuous, a digital signal is quantized in both time and 
amplitude. It is the basic step in the signal transformation 
from analog form to digital form. DSP includes the 
mathematical treatment of digital signals to obtain useful 
information.  

Quantization determines how many different 
representation levels one digital signal has. Quantization can 
be scalar or vector, depending on if samples are quantized 
individually or in a block. Each sample of the signal in scalar 
quantization is quantized separately, while in vector 
quantization several samples are jointly quantized. Vector 
quantizers have better performances than scalar quantization 
in one way because they can usually achieve better SNR for 
the same bit rate [2]. On the other hand, the main obstacle of 
vector quantizers is high complexity, which increases with 
the increase of the dimension. The choice of the quantizer is 
usually based on the statistical characteristics of a signal 
which should be digitally processed.  

The structure of this paper is as follows. Section II 
considers the basic principles of logarithmic spherical 
quantization. In Section III μ-law signal compression is 
described. Section IV concerning quantization noise and 
SNR concludes this paper.  

2. LOGARITHMIC SPHERICAL QUANTIZATION 
Logarithmic spherical quantization (LSQ) is a special 

kind of vector quantization based on representing a vector 
formed by samples in spherical coordinates and searching 
for a quantization cell on a k-dimensional sphere while 
quantizing the corresponding radius with respect to a 
logarithmically spaced codebook [3,4].  

The radius is quantized separately from the surface of the 
sphere, whereas the SNR (signal-to-noise ratio) is 
independent of the radius within the logarithmic area. 
Spherical quantization is investigated in more detail in [5] 
and [6]. A reasonable balance between quantization 
performance and coding complexity is presented by 
Conway and Sloane [7]. 

LSQ is a quantizing method that combines, on the one 
hand, good properties of multidimensional logarithmic 
quantization at a moderate complexity, and on the other 
side can achieve coding gain. The LSQ method achieves a 
trade-off in the rate-distortion sense. Its characteristics are 
high dynamic range and low structural delay of a few 
sample periods, usually up to 16.  

The evaluation of this method can be estimated by an 
SNR gain because it is the most used objective quality 
measure [8]. One important property of spherical 
quantization is that it offers some quantization gain, even if 
there don’t exist statistical dependencies among samples 
combined with a vector. However, the main drawback of 
vector quantization is that it increases the complexity of the 
system, with a little or marginal gain.  

In this paper, we propose μ-law (“mu-law”) logarithmic 
quantization for the radius of the sphere r (magnitude), 
because it provides almost constant SNR in a wide range of 
input variance. The SNR is independent of the signal 
variance and probability density function (pdf). We decided 
to consider μ-law quantization because it is used for many 
years in telecommunications [9]. 

3. MU-LAW SIGNAL COMPRESSION 
The problem with the logarithmic compression is that it 

is most sensitive to spectral parts with the worst power, i.e., 
where the SNR is usually the lowest. Furthermore, values 
below 1 can cause problems with the float number range of 
the computer. A solution for this problem can be to use the 
logarithmic function ln(1+r), instead of lnr, because 1 is a 
minimum threshold to which critical values should be set.  
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The μ-law compression function g(x) of an input signal x, 
on which the quantizer`s design is based, is defined with 
[10–12]: 

 

 

where  (1) 

The value xmax is the amplitude of the maximum load of 
the quantizer which defines the support range of the 
logarithmic quantizer, whereas μ is a non-dimensional 
compression factor. The support region means the interval 
where quantization errors are low or at least bounded. 
Accurate and fast estimation of the support region that 
minimizes distortion of the signal is very useful in quantizer 
design.  

In our approach xmax = 1, because normalization is made 
before the companding energy. Furthermore, sign(x) = 1, 
because we operate with the positive values of input signal 
x. Therefore, the compression function becomes 

 

. (2) 

 
If we replace 1/[ln(1+ μ)] with a scale factor r0, which 

depends only on values of μ, as well as μ(x) with r, we 
obtain a new compression function 

 
. (3) 

 
μ-law compression is flexible because it depends only on 

the parameter μ, and by choosing the appropriate value of μ 
the quantizer can be adjusted to different types of signals. 
In the logarithmic area, the derivative of the compression 
function applied for the radius r is: 

 
. (4) 

 
If we assume M quantization intervals for the radius, the 

width of a quantization cell in radial direction Dr is as 
follows [12,13]: 

 

. 
(5) 

 
Let Δ is the width of a quantization cell (field) that 

covers the k-dimensional sphere surface:  
. (6) 

 
We choose the radius r = 1, for the sake of simplicity. 

Therefore, we consider that the quantization cells cover the 
whole surface of the unit sphere. This simplification is 
possible because the SNR does not depend on the radius due 
to logarithmic quantization. It follows from eqs. (5) and (6): 

. (7) 

We can see that the number of the quantization intervals 
M (horizontal layers) available for the radius of the unit 
sphere is a function only on the width of quantization cells. 

With Sk we denote the surface area, or the (k–1)-
dimensional content of a sphere. It is uniformly covered 
with (k–1)-dimensional cubes and they contribute to a 
region of Δk-1 to the whole surface area of the sphere. 
Therefore, the surface of the unit sphere, subdivided into C 
(number of the quantizing cells on the surface of the k-
dimensional unit sphere) equal cubes, is as follows [7] 
 

. (8) 
 

The width of quantization cells Δ is approximately equal 
in all dimensions. The number of quantization levels Nk 
(sublayers) available per quantization step can be optimally 
split into C and M: 

 

. (9) 

 
By replacing M from (7) and C from (9) in eq. (8), the 

value Sk can be transformed as  
 

 

. 

(10) 
 
 
 

(11) 
 
From eq. (11) we obtain that the width of the 

quantization cell on the surface of the unit sphere is  
 

. (12) 

The combination of eqs. (8) and (12) yields the number 
of the quantization cells on the surface as 

 

 
(13) 

i.e. 

. (14) 

 
If k®µ, the number of cubes C becomes 

. (15) 

By replacing eq. (15) into (9), we obtain that the number 
of the quantization intervals M depends only on the total 
available number of bits per sample N as 

. 
(16) 

4. QUANTIZATION NOISE AND SNR 
If we have enough quantization cells in k dimensions, the 

approximation of a uniformly distributed quantization error 
within those quantization cells can be utilized [14]. Having 
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that in mind, we can use the usual term for the noise 
variance s2 within these cells [10]: 

. (17) 

The signal-to-noise ratio (SNR), defined as the squared 
amplitude of a signal r divided by the noise variance s2, is a 
widely applied measure for quantifying objective signal 
quality and it usually serves as a comparison between 
different algorithms:  

. 
(18) 

By replacing D from (12) into (18) we obtain for SNR: 

 (19) 

The SNR is dependent on N intervals per sample, and not 
on the variance of the signal in considered area. The term 
W(k) can be considered as the loss regarding the rate-
distortion bound: 

 (20) 

It has been known, at least since the 19th century that the 
surface of the sphere is 

. (21) 
If r = 1, the surface of the unit sphere Sk is equal to the 

surface of the sphere S [7,15,16] 
, (22) 

where Vk is the volume of the unit sphere in k dimensions 
(k-dimensional content). It can be calculated according to 
[7,13] as 

 
(23) 

where Γ is the Gamma function defined by 

. (24) 

Therefore, 
. (25) 

We will consider later what happens if k is odd. eq. (25) 
avoids the use of the Gamma function. We replace Vk with 
eq. (22) and the surface of the unit sphere can be described as 

. (26) 

The values of volume and surface area of an object are 
sometimes potentially confused, and instead, the term k-
dimensional content of an object is often used. To 
approximate factorial from eq. (26) we will use the Stirling 
approximation: 

, (27) 

 (28) 

Inserting approximated factorial from (28) into (26), and 
then transforming Sk into (20) we obtain 

 

(29) 

i.e., 

 (30) 

Finally, after some re-ordering W(k) has the following form: 

 (31) 

When k®∞ 

  

i.e., 10 log W(k) ® - 1.55 dB.	
This is the loss of the rate-distortion bound obtained by the 

suboptimal quantization cells (k ®µ), instead of quantization 
of the surface of a k-dimensional unit sphere. That means that 
by using logarithmic spherical quantization, we can 
compensate for the loss up to a margin of 1.55 dB. Further 
improvements of the system beyond this margin of 1.55 dB 
are not possible at all under the given requirements. It is well 
known that the rate-distortion function is an upper bound on 
the minimum rate at a given distortion. 

On the other side, if k is odd, we should repeat the 
previous calculus, but with a different value for Vk [7,17]: 

. 
(32) 

Now we are applying the Stirling approximation for k! 
from (27) and on the other side for [(k-1)/2], as follows 

 (33) 

Now, Sk from eq. (22) can be calculated with the value 
for Vk from eq. (32) and approximation from eq. (33) as 
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(34) 

By inserting (34) into (20) we obtain  

 (35) 

If k®∞ then . 

Interestingly, we can notice that there is the same loss 
bound when k is even and odd: 10log W(k) ® - 1.55dB 	

When k ® ∞, the logarithm of eq. (19) yields 

 (36) 

Let R [bpp] denotes the average bitrate and N = 2Rk – is 
the total available number of bits per sample (code vectors) 
[16]. To be implemented in a communication system, N 
code vectors must be identified by strings of length R·k 
which are transmitted through a communication channel. 
Then, SNR can be calculated as  

 (37) 

However, W(k) has different values when k is even or odd. 
We compared in Fig. 1 SNRs for different lower bit rates R 
(0.2, 0.4, and 0.6 bpp) and even sphere dimensions k. 

5. CONCLUSION 
This paper presented one method for SNR calculation, 

which combines gains from logarithmic and spherical 
quantization. The logarithmic spherical quantization is 
applicable to any number of dimensions k. The derived 
performance expressions may be used to decide if obtained 
results are of value in a particular application. 

The results presented here for the logarithmic spherical 
quantizers show that they can be efficient in several known 
applications, such as speech coding and other source coding 
problems, numerical evaluations of integrals on spheres, or 
the minimum energy configuration of a sphere for 
astronomy and physics applications. 

 
Fig. 1 – Signal-to-noise ratio (SNR) vs. sphere dimension. 
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