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This work describes a new kind of FIR digital filter intended for the filtering of the pulse signal periods. This kind of digital 
filter was designed using the frequency locked loops (FLL), which are based on the time measurement and processing of the 
input periods only. FLL is a linear discrete system. Starting from the general form of differential equation of FLL, the transfer 
functions of FLL and Z transform of the FLL outputs are developed for FLL of any order. The main part of the article is 
devoted to describing how to design the appropriate FIR digital filter using an FLL of any order. Although the FIR digital filters 
and FLLs are different systems, for this purpose the theory of FIR digital filter and the corresponding MATLAB tools are used. 
Filtering abilities of the fifth order FLL are demonstrated. The mathematical analyzes were performed using the Z transform 
approach. Analysis of FLL of the fifth order was performed in the time and frequency domain. Computer simulation of FLL of 
the fifth order is made in the time domain to enable precise insight into its properties.  
 

1. INTRODUCTION 
The field of the Time Recursive Processing Phase and 

Frequency Locked Loops (TRP PLL and TRP FLL) based on 
the processing of the periods of input and output signals and 
time differences between them was recently described in refs. 
[3–10]. These papers described their numerous applications, 
but in comparison to the classical phase and frequency 
locked loops, some of them are completely new, such as 
phase and time-shifting, applications in the field of tracking 
and prediction, and others. Through the development of these 
systems, knowledge about them also increased. When the 
cognition of these systems reached the necessary level, the 
idea was imposed that this kind of FLL could be used for 
digital filtering of the pulse signal periods. The general form 
of such M-th order FLL difference equation is described in 
[1]. In [1,2] it was proved that, regardless of the differences 
between FLL and digital filters, the complete theory of FIR 
digital filters, as well as the corresponding MATLAB tools, 
can be used in the analysis and design of FLL. This 
discovery opened wide opportunities for the development of 
new theory and practice in the digital filtering of pulse signal 
periods, based on FLL. 

In this paper, we will use the term FIR FLL (Final 
Impulse Response FLL) instead of the term “non-recursive 
FLL” used in refs. [1,2], because the article describes the 
usage of FLL for the special values of the parameters, i.e., 
in the role of a Fir digital filter. This paper, among other 
things, describes a development methodology for FIR FLL 
of any order, using the theory of FIR digital filters and the 
appropriate MATLAB tools.  

The articles and books in refs. [11–23] are used as a 
theoretical base, for electronics implementations, and for 
the development necessities. 

2. TIME ANALYSES OF FLL OF M-TH ORDER 
Let us borrow the derived expressions for the difference 

eqs. (1) and (2) for FLL of the M-th order, as well as Fig. 1, 
from [1]. Figure 1 is slightly changed and adapted to this 
paper. It represents a general case of an input signal Sin and 
an output signal Sop of FLL and shows the physical 
relations between the variables used in eqs. (1) and (2). The 
periods TIk and TOk, as well as the time difference tk, occur 

at discrete times tk, tk+1, tk+2,…,tk+M-1, tk+M, defined by the 
falling edges of the pulses of Sop in Fig. 1. Note that the 
variable "k", represents the discrete-time tk when an input 
period is measured and taken in the calculation. According 
to eq. (1), there are "M" calculations of any output period 
with "M" system parameters b1, b2... bM, and "M" 
consecutive input periods. The number "M" represents the 
order of FLL, and it can be any natural number from one to 
infinity. The beginning of "M" calculations starts at the 
discrete time , just like in Fig. 1, where "k" is usually 
zero, but it can be any natural number. Equation (2) comes 
out as natural relation between the variables in Fig. 1. The 
variable tk will serve to identify the phase relation, as well 
as the time relation between the input and output periods, 
during both the locking procedure and the stable state of 
FLL. Because of simplicity, discrete times in brackets of 
TO(tk+M) and TI(tk+M-i) are changed with the corresponding 
index marks like TOk+M and TIk+M-i in eq. (1). The same 
changes are made in Fig. 1 and in eq. (2).  

 

 
Fig. 1 – The time relations between the input and output variables of the 

M-th order FLL. 
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To perform the analyses of FLL it is necessary to 
determine their transfer functions, as well as the Z 
transforms of TOk and tk. The Z transform of eqs. (1) and 
(2) can be derived in two ways. The first way is to develop 
it directly from eqs. (1) and (2). The Z transformation of an 
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M-th order FLL can also be performed from the Z 
transformations of multiple lower-order FLLs. We will 
apply the second approach, as the first would take up a lot 
of space. For the FLL of the second order, [2], TO(z) and 
t(z) are shown in eqs. (3) and (4). For the FLL of the third 
order, [1], TO(z) and t(z) are shown in eqs. (5) and (6). 
Based on eqs. (3), (4), (5), and (6), we can derive the Z 
transforms of M-th order FLL, given in eqs. (7) and (8). 
The shorted form of eqs. (7) and (8) are presented in eqs. 
(9) and (10), where  and 

 are the transfer function of M-th order 
FLL. The transfer functions are presented in eqs. (11) and 
(12). TO0 and t0 in eqs. (3) to (10) are the initial conditions 
of the output periods and time differences. 

 in eqs. (4), (6), and (8) 
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, (4) 
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, (11) 

. (12) 

Although eq. (12) looks complicated, it is together with 
eq. (11) very useful, because using them, we can easily 
derive Z transforms of the outputs and transfer functions of 
any order FLL, escaping long mathematical operations and 
significantly reducing the possibility to make an error. Let 
us now demonstrate the development of the Z transform 
equations for , i.e., for FIR FLL of the fifth order 
(FIR FLL5). If we enter  in eqs. (11) and (12), we 
will get the transform functions HTO5(z) and Ht5(z) for FIR 
FLL5, shown in eqs. (13) and (14). Using eqs. (9) and (10), 
the Z transform of the FIR FLL5 outputs are determined and 

shown in eqs. (15) and (16).  

, (13) 

 (14) 

, (15) 

. (16) 

In order to investigate the properties of FIR FLL5, let us 
suppose that the step input is  
Substituting the Z transform of TI(k) i.e. 

 into eq. (15) and using the final value 
theorem, it is possible to find the final value of the output 
period TO5¥, which FIR FLL5 reaches in the stable state. 
We can calculate  if , using 
TO5(z). This is shown in eq. (17). It comes out from eq. 
(17), that  if eq. (18) is satisfied. FIR FLL5 
possesses the properties either of a FLL or of a PLL, if eq. 
(18) is satisfied. To make decision, it is necessary to 
determine the behaviour of time difference t5.  Substituting 
now TI(z) into eq. (16) and using the final value theorem, it 
is possible to find the final value of the time difference 

 if , using t5(z). This is shown in eq. 
(19). Equation (19) also confirms that FIR FLL5 possesses 
the properties of a FLL, since t5¥ depends on the initial 
conditions. It comes out that the system does not possess 
the properties of a PLL 

 (17) 

, (18) 

 (19) 

All reached math results can be confirmed by the 
simulations in the time domain, realized by MATLAB 
tools. The results derived from math must agree with the 
simulated ones. Besides that, the simulations are to enable 
better insight into the procedures and physical meaning of 
the variables described. All discrete values in simulations 
were merged to form continuous curves. Note that all 
variables in the following diagram were presented in time 
units. The time unit can be, µsec, msec, or any other, but 
assuming the same time units for all time variables TI, TO 
and t, it was more suitable to use just “time unit” or 
abbreviated “t.u.” in the text. It was more convenient to 
omit the indication “t.u.” in the diagrams.  

The simulations of TO5(k) and t5(k) are realized using 
eqs. (1) and (2), for . They are shown in Fig. 2 for 
the step input  The presentation for three cases 
with different parameters b1, b2, b3, b4, b5, initial conditions 
and final values, are shown in Fig. 2. In the cases 1 and 2, 
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the system parameters satisfy eq. (18) and therefore, FIR 
FLL5 is a stable system, and the output periods reached the 
input periods. According to eq. (19), 

    This result agrees with the simulated t1∞ in Fig. 2 (the 
label 5, which indicates the order of the loop, is omitted in 
Fig. 2). However, in case 2, it was intentionally chosen that 
the parameters additionally satisfy the condition 

 
According to eq. (19),  

This result agrees with the simulated t2∞, shown in Fig. 2. 
We can conclude that there are two types of FLL, regarding 
time differences t1∞ and t2∞. In the first case, when the FLL 
is in a stable state, the time difference t1∞ depends on the 
initial conditions, the input period, and the system 
parameters. In the second case, t2∞ depends only on the 
initial conditions TO0 and t0. Both are interesting for 
practice, depending on the type of application. 

 At last, in case 3, it was intentionally chosen an unstable 
system. The sum of chosen parameters is 

. 
The sum does not satisfy eq. (18). According to eq. (17), 

 This 
result agrees with TO3∞ in Fig. 2. However, the 
corresponding time difference t3∞ is not constant after five 
steps, like in cases 1 and 2. Time difference t3∞ tends to 
infinity in Fig. 2. That means, there is no time compatibility 
between the input and output periods, even after 5 steps, 
when FLL should reach the stable state. 

The simulation results completely agree with the 
calculated ones. This proves the correctness of all previous 
mathematical descriptions. 

 
Fig. 2 – Transition and stable states of FLL5 for the step input and for three 

cases of system parameters and the initial conditions. 

3. DESIGN OF FIR FLL DIGITAL FILTER USING 
THEORY OF CLASSIC DIGITAL FILTER 

3.1 FIR FLL FILTER OF THE FIFTH ORDER 
In section 1 we developed the Z transform of the general 

form of the transfer functions of M-th order FLL, eqs. (11, 
12). Using these equations, for M is equal to 5, we easily 
obtained eqs. (13, 14), which represent the Z transforms of 
the FLL5 transfer functions HTO5(z) and Ht5(z). Using these 

two transfer functions we can discover how will the 
changes in the input period TI reflect on the FLL5 output 
variables in the frequency domain, i.e., on the output period 
TO and time difference t. In other words, we can analyze 
the filtering properties of two digital filters, i.e., two outputs 
belonging to FLL5. Note that TO and t are time variables. 
Period TO is always present in digital form at an output of 
any FLL and t can be also easily calculated in digital form. 
They also appear inside pulse signals (semi-digital forms). 
Period TO is inside of output TO and t is presented by a 
pulse width of a t-pulse signal, which is generated by t 
generator as a constituent part of an FLL, refs. [4–7, 9]. If 
we can, using an FLL, an input frequency spectrum of TI 
change into a completely different frequency spectrum of 
TO, in a way like digital filters do, then we can say that 
FLL functions like a digital filter, but is intended for the 
filtering of pulse signal periods. In other words, the output 
periods TO represent the filtered period TI. In the physical 
sense, it means that the variations inside of periods TO are 
reduced or eliminated in comparison with those insides of 
TI. We will now show this filtering of periods by an 
example of FIR FLL5, which functions as a digital filter. 

In [1], besides the comparison regarding the similarities 
and differences between classic digital filters and FLLs, the 
difference equations of these two systems of any order are 
also compared. The comparisons and analyzes in [1] 
showed that the complete theory of FIR digital filters, as 
well as MATLAB tools dedicated to FIR digital filters, can 
be used in the analysis and design of FIR FLL digital 
filters, considering the determined differences. In this 
article, we will rely on the previous conclusions from [1]. 
To demonstrate how we can use the existing FIR digital 
filter theory; we will first design a low pass FIR digital 
filter of the fourth order (N is equal to 4). Let us suppose 
that the filter is defined by the cutoff frequency fg is equal 
to 2000 Hz and sampling frequency fs is 14000 Hz. If we 
choose triangle windowing, using MATLAB command 
"fir1", we can get vector "bd" of the filter coefficients as bd 
is fir1(N, fn, triang (N+1)), where the normalized cutoff 
frequency fn is fg/(fs/2). This command gives the next 
coefficients for FIR digital filters: b0d = 0.0620, b1d = 
0.2314, b2d = 0.4132, b3d = 0. 2314, b4d = 0.0620, where the 
suffix "d" signifies that these coefficients belong to the 
digital filter. If we use any other kind of windowing, 
supported by MATLAB, the coefficients would not be the 
same. The transfer function, for the digital filter Hd4(z) can 
be presented as b0d + b1d∙z-1 + b2d∙z-2 + b3d∙z-3 + b4d∙z-4. It can 
be given in another form, as in eq. (20). How can we use 
the coefficients of the presented digital filter to adapt FLL5 
to make digital filtering of the input periods? If we compare 
the transfer functions HTO5 and Hd4, we will note that both 
consist of five parameters or coefficients. We can simply 
adopt the calculated coefficients instead of the parameters 
and use them in HTO5 in a way that b1 = b0d, b2 = b1d, b3 = 
b2d, b4 = b3d and b5 = b4d. If we enter the proposed 
parameters into eq. (13), HTO5(z) changes into eq. (21). The 
sum of the  

, (20) 
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. (21) 
chosen parameters of FLL: b0d, b1d, b2d, b3d and b4d is equal 
to one. It satisfies eq. (18). It means that the FLL5 is a stable 
system. HTO5(z) possesses the same zeros as Hd4(z). The 
difference between Hd4(z) and HTO5(z), in eqs. (20) and 
(21), are in their denominators. Namely, their relation can 
be expressed as HTO5(z) = Hd4(z)∙z-1. This means that the 
magnitudes of the frequency responses of HTO5(z) and 
Hd4(z) will be the same. But due to the one-step delay, 
which refers to factor “z-1”, FLL5 will introduce an 
additional delay of -π rad on the output signal, in relation to 
the phase that which digital filter makes on its output 
signal, for half of the sample rate. Based on transfer 
functions Hd4(z) and HTO5(z), shown in eqs. (20) and (21) 
and considering the MATLAB rules for the definition of 
vector “b”, we can define vectors bd4 and bTO5, shown in 
eqs. (22) and (23). 

, (22) 

. (23) 

Based on the results obtained, we can define relation 
between any order transfer function of FLL and the transfer 
function of the digital filter, whose coefficients are used as 
parameters of FLL. To cover all zeros of the digital filter, 
an FLL order must be higher for one. If the digital filter is 
of (M-1) order, FLL must be of M-th order. The relation of 
their transfer functions is presented in eq. (24). The second 
important conclusion relates to vectors bTOM and bd(M-1) of the 
transfer functions respectively HTO of M-th order and Hd of 
(M-1)-th order. These vectors are used in commands, 
devoted to the design of digital filters. Their relation is 
shown in eq. (25) 

, (24) 

. (25) 

3.2 FILTERING ABILITIES OF FIR FLL5 
After described design procedure, we can present the 

filtering abilities of FIR FLL5 and compare it with the 
designed digital filter of the fourth order. To do that we will 
use the tools of FIR digital filters. Using commands "freqz 
(bTO5, 1, 1024, fs)" and "freqz (bd4, 1, 1024, fs)", the frequency 
responses of HTO5(z) and Hd4(z) are determined and presented 
in Fig. 3, for the half of the sample rate. The magnitudes of 
the digital filter and the FLL are identical. Both phases are 
linear, but for half of the sample rate, the phase of FIR FLL5 is 
-540° and the phase of the digital filter is -360°. The phases in 
which two systems are introduced into the output signals 
differ for expected -180°. Let us now present the effects of 
FIR FLL5 filtering in the time domain. For this purpose, the 
input period TI(k+1) = 10+S1(k)+S2(k) t.u. was fed into the 
input of FIR FLL5, where S1(k) = 6∙sin[2π/fs∙f1∙k] and S2(k) = 
6∙sin[2π/fs∙f2∙k]. The values of frequencies f1 and f2 are f1 = 
1500 Hz and f2 = 4500 Hz. Since f s= 14000 Hz, it means that 
S1 is sampled by 14000/1500 ~ 9.33 samples per period, Fig. 

4a. Signal S2 is sampled with 14000/45000 ~ 3.11 samples per 
period, Fig. 4b.  

 
Fig. 3 – Magnitudes and phases of the frequency responses of HTO5(z) and 

Hd4(z). 

 

Fig. 4 – Presentations of the initial conditions and signals in the time domain: 
a. S1(k), b. S2(k), c. TI(k) and TO(k), d. TO(k) and the initial conditions. 

Due to fact that the numbers of samples per period are 
not integers, S1k and S2k are deformed sinusoidal signals. 
This is especially true for S2k, which has a needle shape and 
deformation in amplitude, creating a wide range of higher 
frequency components in the frequency domain. The input 
TI(k+1), as the sum of 10 t.u, S1k, and S2k, as well as TO(k) 
are shown in Fig. 4c. The separated TO(k) is shown in Fig. 
4d. The initial conditions are TO0 = 0 t.u., t0 = 0 t.u. and TI0 
= 10 t.u. The described filtering of FIR FLL5, shown in Fig. 
4, is presented in the time domain for the 50 steps. The FIR 
FLL5 decreased the amplitude of S1k, but it mainly 
preserved the basic harmonic of the input signal S1k, 
because the frequency f1=1500 Hz is less than the cutoff 
frequency fc = 2000 Hz. However, signal S2k disappeared at 
the output, because f2 = 4500 Hz belongs to the stop band 
of FIR FLL5. 
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A completed insight into the filtration process can be 
obtained if we present its effects in the frequency domain. 
Using commands "fft" and "stem", frequency spectrums of 
TIk and TOk are presented in the whole sample rate, in Fig. 
5. As it was expected, the frequency component at 4500 Hz, 
corresponding to S2, is suppressed, just as in Fig. 4d in the 
time domain. According to the results of the computer 
listing, shown in Fig. 5, the frequency component at 
1500 Hz, corresponding to S1k, is attenuated for 
TOf1500/TIf1500 = 33110/42000 = 0.788 or for 20 log (0.788) 
= -2.065 dB. A similar result can be found at the magnitude 
of HTO(z) in Fig. 3. If we magnify Fig. 3, using the 
proportionality, it could be determined roughly, that the 
attenuation at 1500 Hz is about -2.1 dB. It is expected that 
the same attenuation can be determined in the time domain 
using Fig. 4. If we magnify Fig. 4 and measure ATO and 
ATI, it can be found that ATO/ATI = 47/70 = 0.671, which in 
relation to TOf1500/TIf1500 = 0.788 represents a lower value 
than it is expected. This is since TOk, in Fig. 4d, does not 
have an identical form as S1k in Fig. 4a. This deformation is 
a consequence of the fact that TOk, besides the components 
of S1k, also contains attenuated components of signal S2k, 
whose frequencies are higher than 1500 Hz. But note that 
these components, according to the FIR FLL5 
characteristics, shown in Fig. 3, have a higher attenuation 
than the component at 1500 Hz. To prove this claim, Fig. 6 
shows TOk for the case when S2 = 0 t.u., i.e., for TIk = 
10+S1k. From the picture it can be found that now ATO/ATI 
= 59/76 = 0.776, which corresponds to the previously 
determined ratio TOf1500/TIf1500 = 0.788. This is at the same 
time the proof for the previous claim. The attenuation of 
FIR FLL5 at 1500 Hz can be also determined using the 
linear magnitude response of FIR FLL5, shown in Fig. 7a. 
Using the proportionality of the magnified Fig. 7a, it was 
determined that the magnitude at 1500 Hz is approximately 
0.783, which agrees with all previous results, concerning 
the attenuation of FIR FLL5 at 1500 Hz. At last, note that 
zero component TOf0 in the output spectrum is equal to zero 
component TIf0 in the input spectrum in Fig. 5. This agrees 
with Fig. 7a, because the ratio of output and input signal is 
equal to one at 0 Hz. This result is also confirmed in Fig. 3, 
in which the attenuation at zero frequency is 0 dB. A 
comparison between linear magnitudes of FIR FLL5, FIR 
FLL11 and FIR FLL20, for the same previously defined 
conditions, is shown in Fig. 7b. As it was expected, the 
higher FIR FLL order provides the better filtering quality. 

 
Fig. 5 – The input spectrum of TI and the output spectrum of TO. 

Based on the given description, we can now describe the 
design procedure of FIR FLL filter of any order.  

The first step is to make any kind of classic FIR digital 
filter, which will determine bdM-1. The characteristic of this 
filter should cover the needs for the filtering of pulse signal 
periods by a FIR FLL filter. The second step is to determine 
the transfer function HTOM and vector bTOM, according to 
eqs. (24) and (25). Using HTOM and vector bTOM, all 
frequency analyses of FIR FLLM filter can be now 
performed just in a way like with the classic digital filter, 
i.e., by Matlab tools for FIR digital filters. If we need to 
make the frequency analysis of time difference t, it is 
necessary to determine the transfer function HtM(z), using 
eq. (12) and new values of parameters “bM” corresponding 
to HtM(z), [e.g., Ht5(z), eq. (14), for M = 5]. New values of 
parameters “bM” are to be calculated using the coefficients 
bdM-1 of the digital filter, changing b1 = b0d, b 2= b1d, and so 
on. After that, it is necessary to determine vector btM = [0 
bM]. The further procedure of analyses of the output tk is 
identical to demonstrated analyzes of the output TOk. 

 
Fig. 6 – The output TOk preserved the form of TIk. Relation ATO/ATI = 

0.776 is very close to TOf1500/TIf1500 = 0.788. 

 

Fig. 7 – Linear magnitude of frequency responses for the half of sample 
rate: a. FIR FLL5, b. FIR FLL5, FIR FLL11 and FIR FLL20. 

4. CONCLUSIONS 
This article describes the basic theory and development 

approach to a new kind of FIR digital filter, intended for the 
filtering of pulse signal periods. This kind of FIR digital 
filter is based on the recently described theory and design 
of FLL. Unlike the classic amplitude FIR digital filters, 
these digital filters process the periods, i.e., time instead of 
amplitude. For the special values of the system parameters, 
FLL functions as a digital filter for pulse signal periods. 
The article describes the methodology, procedures, math, 
simulation support and analyzes in time and frequency 
domains, providing development of any order FIR FLL 
digital filter with any filter requirements. This is the first 
article in the literature describing the general development 
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approach to FIR FLL digital filter of any order.   
Although classic FIR digital filters and FLLs are two 

different systems, their different equations have a similar 
structural form, due to which the theory of FIR digital 
filters and the appropriate MATLAB tools, were used in the 
analysis and development of FIR FLL digital filters. Thanks 
to this fact, the process of developing new FIR FLL digital 
filters has been enormously shortened and almost reduced 
to the procedure of developing classic FIR digital filters. In 
this usage, care must be taken of the difference between 
these two systems as well as the correct physical 
interpretation of the results obtained. 

This article opened the wide possibilities for the usage of 
FIR FLL digital filters in electronics, telecommunications, 
control, and measurements which use the different forms of 
periodic and non-periodic pulse signals. There is an obvious 
need to filter them in some of the applications. This kind of 
digital filter does not require A/D and D/A converters. 
Instead of them, the measurement of time is used, which 
provides more precise, simpler, and cheaper electronic 
solutions. 

The authors are aware of the complexity of the presented 
material and therefore they made significant efforts to 
connect in logical whole all segments of different 
presentations and analyses like math, simulation, time 
presentations of signals, frequency responses of transfer 
functions, and frequency presentations of signals for FIR 
FLL of the fifth order. This helped, not only to prove the 
correctness of all presented materials but to facilitate the 
understanding of the physical process described.  

For the realization of the FIR FLL digital filter, it is 
necessary to use a microprocessor to perform numerous 
calculations. Note that almost all functions of the FLL 
parts, described in [3–10], can be realized using 
microprocessors, providing that the described principles of 
hardware control of FLL functioning are respected. 

The results of this article represent the base for the 
further possible applications of both FLLs and FIR FLL 
digital filters in different fields. However, the most 
probable and useful next step is the development of the IIR 
digital filters, based on the processing of the input and 
output periods.  
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