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The advanced development of artificial intelligence (AI) in healthcare has exhibited such promise hence it revolutionizes diagnostic 
precision, facilitates personalized treatments, and streamlines procedures. AI has progressed from primitive rule-based systems 
such as MYCIN to today's last generation of AI models such as GPT-4 and Med-Gemini. AI has been quite consistent in enhancing 
its capabilities and bringing continuing innovation in evidence-based medicine from medical-image predictive analytics to patient 
monitoring. Explainable AI (XAI) helps address the main problems of trust in AI because it allows transparent and understandable 
machine-learning predictions on which the physician can rely. Our paper investigates the potential of AI to change the delivery of 
care and define the cost, access, and outcome of care for different populations within the integration of human expertise and 
machine efficiency. Future research would need to combine innovation with ethical considerations and achieve full adoption, 
regarding its potential and quality operation in the healthcare sector.

1. INTRODUCTION 
There have been significant advances in artificial 

intelligence (AI) and rapidly growing healthcare systems, 
which are producing remarkable efficiencies and innovations 
that are paving the way for a better and healthier future [1]. 
These technological transitions also make an impact on the 
processes of improving health services.  

Generative Models and large language models (LLMs) are 
the main forces driving change and innovation, and they are 
transforming themselves in many applications such as 
medical image processing, analysis, and automatic 
diagnosis, while personalized therapy and drug discovery 
can be done at an exponentially higher speed [2]. LLMs offer 
the best programs for clinical decision support, delivering 
evidence-based insights, automating manual processes, and 
enhancing precision and effectiveness in healthcare services.  

Despite all this, the full transition of AI in the health sector 
would necessitate a balanced approach that would allow for 
overcoming operational bottlenecks, fine-tuning the delivery 
of care, and bringing all public trust into the capability of AI 
for ethical governance. Since the evolution of AI from the 
early stages to the current methods of application, it has 
emerged as a swift influence upon the medical sector, setting 
down challenges offered and future directional focus for AI 
integration into healthcare systems. 

Health systems around the world are being stretched to 
their limit, battling between increasing demand and spiraling 
costs while medicine itself becomes more complex and 
necessitates more personalized health services. To this end, 
most of the developed economies are interested in 
innovation; artificial intelligence has made a leap into the 
power that uses groundbreaking ways to schedule immense 
data volumes and patterns. But as soon as this work turns into 
practice, traditional tools would appear less competitive, and 
deficiencies in diagnostic precision, planned therapies, and 
operational reform would be detailed all along. This lag 
underlines the absolute necessity of integrating innovative 
strategies into the medical industry while touching upon new 
issues arising in terms of ethical considerations and public 
concerns over AI. Furthermore, peoples skepticism should 
be taken into account when using such novel approaches that 

would implicate considerable risks.  
Our current paper presents an analysis of the potential 

impact AI can have in healthcare, starting with the 
presentation in chapter 2 of its historical evolution. Chapter 
3 delves into the “hows” and “whys” of the technology 
presenting the concept of explainable artificial intelligence, 
while section 4 underlines ethical and social considerations 
on the matter. Finally, chapter 5 presents innovations in 
medicine using generative AI including comparison of 
various AI models, and chapter 6 draws the conclusions and 
possible future directions of the subject. Some of the research 
questions that we are planning to answer in this article 
include the following - RQ1: How has artificial intelligence 
evolved in healthcare from early rule-based systems (such as 
MYCIN) to contemporary generative models like GPT-4 and 
Med-Gemini? RQ2: In what ways do contemporary AI 
models outperform earlier systems in medical applications? 
RQ3: How does AI contribute to increasing physician trust 
and adoption of AI-supported diagnostic tools? RQ4: What 
ethical concerns arise with the implementation of AI in 
healthcare, particularly regarding data privacy, bias, and 
consent? RQ5: How can policymakers and developers align 
AI innovation with ethical standards to ensure responsible 
deployment? RQ6: How do generative AI models differ in 
their medical applications, and what are their comparative 
strengths and weaknesses? RQ7: What are the most 
promising current and emerging applications of generative 
AI in healthcare? 

2. HISTORICAL CONTEXT OF AI IN 
HEALTHCARE 

To address RQ1 and RQ2, we have researched the 
evolution of artificial intelligence in healthcare over time. It 
can be said to have originated from the application of rule-
based expert systems in the 1950s to simulate human 
decision-making using pre-set rules. The most important 
event on the matter was undoubtedly MYCIN, a system 
designed in the 1970s to help diagnose bacterial infections 
and recommend their treatment with antibiotics. This system, 
while never implemented in clinical practice, powerfully 
indicated the potential of AI for transformational change in 
medicine. It used backward chaining reasoning and a 
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knowledge base of approximately 600 production rules for 
recommending therapies in infections such as bacteremia 
and meningitis [3]. Such reliance on static rules limited the 
system’s scalability and transferability but highlighted the 
possibility of using artificial systems to supplement human 
expertise in clinical decision support. 

MYCIN's contributions were extensively evaluated, 
showing its performance to be similar to that of infectious 
disease experts. In one study, its recommendations were 
compared to those of 10 specialists using data from 15 
patients with positive blood cultures [4]. It comprised three 
main elements: a consultation module for processing input 
data and producing recommendations, an explanation system 
to clarify its reasoning, and a knowledge acquisition system 
that allowed domain experts to update rules without 
programming skills. Designed to provide clinically 
actionable advice while explaining its decision-making 
process, MYCIN presented a novel integration of symbolic 
reasoning into medicine. However, it relied on extensive 
computing resources which were inaccessible to most 
hospitals at the time. Despite its limitations, MYCIN laid the 
foundations for AI-based decision support systems, and 
consequently, enhancements were proposed in the following 
years for networking technology to broaden access and adapt 
it for smaller, portable machines. 

In the 1990s, machine learning was adopted in the field of 
healthcare, which brought changes towards an entirely 
different patient care paradigm, from strictly rule-based 
systems to something more flexible and driven by data. 
These machine learning algorithms could learn and improve 
from data, creating predictive modeling, early warning 
systems, and basic clinical decision-support tools. This 
revolution coincided with the proliferation of Electronic 
Health Records (EHR), which supplied the large datasets 
necessary for training those models. This enabled high-
accuracy identification of high-risk patients, hence massive 
proactive interventions and fewer complications. During this 
period, artificial neural networks (ANNs) were introduced to 
the medical field, attaining a central role in the diagnosis and 
classification of diseases. The early applications positioned 
ANNs as multirole actors, targeting classification, 
prediction, and diagnosis. Meso-level applications focused 
on strategy-oriented decisions such as cost forecasting or 
technology adoption, while macro-level applications 
addressed system-wide models like risk adjustment and 
revenue generation. (Nida Shahid, 2019). A review of over 
3000 articles [5] categorized ANN applications into three 
levels: micro (patient diagnostics), meso (intra-
organizational decisions), and macro (system-wide 
behaviors). ANN models were associated with accuracy 
ranging from 50% to 100% and built with architectures like 
standard ANNs, feed-forward networks, and hybrid models. 
Findings confirm ANNs' increasing role in healthcare, from 
resource allocation to better patient flow and improved care 
quality. 

The 2010s were the decade that saw the emergence of 
deep learning (DL) with a specific emphasis on 
convolutional neural networks (CNNs). Such technologies 
revolutionized medical imaging, resulting in human-level 
accuracy, for instance, when detecting conditions such as 
diabetic retinopathy, breast cancer, or lung diseases. One of 
the most significant developments in this field is Google 
DeepMind [6], which designed an AI tool with the same 

precise understanding as an ophthalmologist for diagnosing 
retinal diseases. The initiatives were timely, considering that 
in Europe, age-related macular degeneration (AMD) affected 
almost 25% of people above 60 years, with about 15% 
moving toward exudative AMD (exAMD), the advanced and 
blinding form of the disease [7]. Curating a dataset on retinal 
images in partnership with companies and hospitals for 
training an AI system at DeepMind was established. The 
objective of developing this system is to provide exAMD 
occurrence prediction using two deep convolutional neural 
networks. Clinically, the system predicted by 90% 
specificity the high-risk exAMD patients which was 
compared to 6 retinal specialists (three ophthalmologists and 
three optometrists), each with at least a decade of experience. 
These findings emphasized that the variability in 
assessments among experts was minimized by a standardized 
analysis to which the AI system defaulted. The segmentation 
of eye scans anatomically also provided doctors with a visual 
representation of the changes in retinal tissues over time. 
Hence, during the observation of a patient over 13 months, 
the system could follow changes in anatomy and forecast 
exAMD transience much before visible signs of evidence 
were collected. This capability not only improves accuracy 
for other predictions but also gives clinicians evidence that 
can be acted upon to better understand disease progression. 

Last but not least, the fusion of artificial intelligence with 
the Internet of Things (IoT) has become a growing 
application area in medicine, enabling real-time monitoring 
and data analysis [8]. Wearable devices like smartwatches 
and implanted sensors collect health data continuously, 
which AI algorithms process for anomaly detection and 
health event prediction. Key platforms advancing this field 
include the Apple Watch, AliveCor's KardiaMobile, and 
Android Wear, the most widely used platform in healthcare 
studies. Smartwatch applications provide diversified 
healthcare services, including health monitoring for elderly 
individuals (25%), Parkinson’s management (21%), and 
drug adherence for chronic conditions (13%). Android Wear 
led health research (46%), with Samsung Galaxy Gear being 
the most used brand (25%). The most common sensors were 
accelerometers and gyroscopes, used in 67% of the studies. 
Some studies also used smartwatches as aid devices with 
screens or voice inputs rather than relying solely on sensors 
[9]. These applications are especially significant given the 
projected growth in the elderly population in the U.S., where 
a majority of older adults manage multiple chronic 
conditions. These advancements represent a shift from 
reactive to preventive care, allowing earlier interventions 
and reducing the burden on healthcare systems. 

3. EXPLAINABLE AI: THE “PERFECT” ASSISTANT 
Based on the previous studies on the historical evolution 

and impact of AI, one common problem emerges: How does 
AI contribute to increasing physician trust and adoption of 
AI-supported diagnostic tools? (RQ3). The answer lies in 
Explainable Artificial Intelligence (XAI), a set of techniques 
and tools that make AI model predictions interpretable and 
understandable for humans. Unlike classical "black-box" 
models, which offer limited insight into their operations, 
XAI provides interpretation, allowing users to understand 
the “how and why” behind an AI's predictions or decisions 
[10]. 
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As the stakes in healthcare are extremely high, AI can 
have enormous consequences on patient outcomes, and 
clinicians need to understand its use, especially given the 
trust and understanding already established among a broader 
consumer audience. Some of the possible advantages 
provided by Explainable AI (XAI) include: 
• Strengthened Trust: XAI enables medical professionals 

and patients to understand the reasoning behind AI-
based predictions, fostering confidence in the new 
information presented.  

• Follow-Up Accountability: XAI ensures models are 
transparent, allowing them to be held accountable for 
their decisions by end users. 

• Error Detection: XAI helps identify biases or mistakes 
in AI systems, enabling healthcare practitioners to 
mitigate potential harm. 

• Regulatory Compliance: XAI supports healthcare 
compliance regulations, like the GDPR, by improving 
interpretability and making automated decision-making 
more understandable. 

The "black-box" nature of many AI models remains a 
significant hurdle to their adoption in healthcare, as 
clinicians are reluctant to rely on opaque decision-making 
processes, especially in high-stakes environments [11]. 
Transparency in AI models is essential for fostering trust 
among healthcare professionals, who are more likely to 
embrace tools that provide clear and interpretable outputs. 
Transparent systems are also better suited to meet regulatory 
standards and address ethical concerns related to 
accountability and fairness. By making AI recommendations 
interpretable, clinicians can validate these outputs against 
established medical knowledge, ensuring alignment with 
clinical standards and boosting confidence in AI-driven 
solutions. 

Further studies utilized a publicly available diabetes 
dataset from Kaggle, consisting of 768 samples with 8 
features, such as glucose level, blood pressure, and age. A 
Random Forest Classifier trained on this dataset achieved 
good results: precision = 0.74, recall = 0.70, and F1 score = 
0.72. With SHAP inclusion, it was found that glucose level 
is the most significant predictor of diabetes, followed by age 
and body mass index (BMI). SHAP dependency plots 
revealed that patients younger than 30 years had a lower 
likelihood of diabetes, while those older than 30 showed a 
higher probability [12]. 

Another notable contribution to the medical industry 
during the COVID-19 pandemic was the use of XAI, which 
developed a proof of concept in public health management 
by providing transparency and actionable insights for critical 
decision-making. Transparent AI models capable of 
justifying predictive analytics for outbreak predictions 
empowered policymakers to allocate medical resources 
effectively and prioritize interventions wisely. XAI systems 
optimized resources by analyzing trends in infection and 
hospital bed usage, assisting in the strategic allocation of 
ventilators and personal protective equipment (PPE) to areas 
of highest need. Additionally, XAI fostered public trust by 
clarifying the rationale behind recommendations, reducing 
resistance to policies like lockdowns and vaccine rollouts, 
and promoting collaboration during the global crisis [13]. 

4. ETHICAL AND SOCIAL CONSIDERATIONS 
As previously highlighted through the promising potential of 

XAI, the reason for its existence is to resolve ethical and social 
considerations (RQ4) that take center stage in the heavy 
dominance of the integration of AI in medical engineering. 
Applications span fields such as radiology, surgery, pathology, 
dermatology, ophthalmology, and general practice, using 
technologies for purposes like diagnostics, surgical assistance, 
and patient monitoring. This integration has prompted 
individuals from diverse backgrounds to address critical issues, 
including privacy concerns, mitigating biases, ensuring 
accountability, and fostering trust between stakeholders. 

A scientific paper introduces the term Technology 
Availability Level (TAL) scale to gauge AI readiness and 
accessibility, ranging from TAL 0 (unknown / not feasible) to 
TAL 9 (publicly available) [14]. Based on this new scale, 
algorithms for computer-aided diagnosis and structured reports 
for eHealth (TAL 8, 9) show high social impact through 
applications in clinical decision support and improving 
workflow efficiency. AR/VR tools for advanced imaging and 
navigation (TAL 6, 7, 9) provide transformative capabilities, 
particularly in image-guided surgery and automated analysis. 
Companion robots for elderly care and big data analysis (TAL 
2-9) enhance patient care and epidemiological research. 
Controversially, technologies like brain-machine interfaces 
(TAL 5-8), gene editing for superhumans (TAL 2, 6), and 
human-animal embryos (TAL 2, 4, 5) raise ethical concerns. At 
lower TAL levels, advancements such as autonomous AI 
systems for surgery (TAL 2-5) and the quest for immortality 
(TAL 1-3) spark debates about their societal risks. Bioterrorism 
applications, rated TAL 1-2, represent the most negative 
potential, emphasizing the wide spectrum of benefits and 
hazards associated with these technologies. 

Furthermore, among World Health Organization priorities 
we encounter promoting fairness in healthcare, leveraging 
emerging technologies, and building public trust. However, it 
also raises significant concerns about patient privacy, data 
security, and the risk of disrupting traditional doctor-patient 
relationships. Potential pitfalls are starting to take a toll on the 
industry, beginning with the fragmentation of medicine into 
"fake-based," "patient-generated," and "scientifically tailored" 
practices, stressing the importance of upholding scientific and 
ethical standards. This led to an abrupt rise in intrigue for the 
ethics of AI when the focus switched to the zero-shot learning 
capabilities of LLMs in tasks such as diagnostic assistance, 
drug discovery, and personalized medicine [15]. Different 
adaptation strategies were taken into consideration, 
emphasizing fine-tuning methods for uni-modal and multi-
modal LLMs to address challenges like medical question 
answering and processing biomedical literature. Identified 
challenges include limited model interpretability, dataset 
quality issues, and ethical implications in healthcare 
deployment. 

One other key aspect of the rapid evolution of AI is the legal 
implications and the way policymakers can ensure the 
development of AI according to ethical standards to ensure 
responsible deployment (RQ5). Attention started growing 
towards frameworks like the GDPR in Europe and HIPAA in 
the United States which enforce stringent rules to safeguard 
patient information and outline protocols for addressing 
breaches. Additional regulations, such as Canada’s PIPEDA 
and the UK’s Data Protection Act, impose similar 
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requirements, ensuring global alignment in data privacy 
standards. Despite these measures, healthcare organizations 
remain highly vulnerable to cyberattacks, which highlights the 
urgent need for advanced security practices and innovative 
solutions like federated learning, which enable AI models to 
train on decentralized data without transferring sensitive 
information, effectively balancing privacy with utility while 
minimizing the risk of exposure [16]. 

As advanced AI technologies are often available only in 
well-resourced systems, this widens health discrepancies, 
leaving underserved populations behind—a concept known as 
the Matthew Principle [17]. Another concern is the costs of AI 
development and maintenance, which burden healthcare 
budgets, diverting resources from essential services. Resource 
dislocation is another issue, where jobs in healthcare are 
disrupted by AI automation, leading to employment challenges 
and a changing work environment. 

Nonetheless, the advent of personalized medicine has 
brought transformative advancements in healthcare, sparking 
debates about the privacy and accessibility of patient data. 
Building upon traditional personalized medicine, the concept 
of Extended Personalized Medicine incorporates diverse data 
sources beyond genetics to tailor healthcare more dynamically 
and holistically. While traditional approaches emphasize 
genetic profiling, Extended Personalized Medicine includes 
biological, demographic, social, environmental, and lifestyle 
data, offering a more comprehensive framework for health 
management. Key data sources include biophysical metrics 
like bioelectromagnetic fields and biomarkers, alongside 
insights into brain function and connections. Social and 
demographic data, combined with lifestyle parameters such as 
sleep, stress, and physical activity, are collected via IoT devices 
and wearables. Behavioral sensors capture mood and 
physiological changes through smartphones and smart home 
technologies, while environmental factors like pollution and 
weather conditions complement traditional clinical data, 
including imaging scans and genomics [14]. Despite its 
transformative potential, implementing Extended Personalized 
Medicine poses technical challenges. The integration of 
heterogeneous datasets requires advanced AI tools and 
interactive visualization techniques, such as augmented and 
virtual reality, to enable practical applications. Additionally, 
the accumulation of intimate data raises privacy and security 
concerns, necessitating robust governance frameworks to 
maintain patient trust. Addressing these challenges while 
leveraging benefits like individualized treatment and proactive 
health management will shape the future of this innovative 
paradigm. 

Thus, establishing trust in the public's perception of AI 
through techniques like timely communication, ethical 
robustness, and patient-centered approaches is crucial for 
healthcare success. Transparency about AI applications helps 
patients understand how data is collected, processed, and 
utilized in diagnosis and treatment plans. Ethical practices 
involve creating guidelines for data use that safeguard patients 
and respect their consent. Research shows that 78% of patients 
express concerns about data usage, while over 60% feel more 
comfortable with healthcare systems that transparently discuss 
AI policies [18]. Informed consent processes must ensure 
patients comprehend AI's benefits, limitations, and risks. 
Public awareness campaigns also play a vital role in reducing 
skepticism and improving acceptance. For instance, Britain's 
NHS initiative demonstrated that educating people on AI’s 

capabilities and ensuring data protection increased public 
acceptability by over 50%. Additionally, 74% of patients feel 
reassured when informed about how AI improves diagnostic 
accuracy, which research shows may rise by 15%-20% for 
conditions like diabetic retinopathy or breast cancer detection. 
These efforts emphasize open communication among 
stakeholders—patients, healthcare providers, and AI 
developers—to foster trust and the responsible adoption of AI 
in medicine [19]. 

5. IMPACTFUL AI INNOVATIONS IN MEDICINE 
The current chapter focuses on tackling RQ6 and 

comparing different generative AI models, including their 
comparative strengths and weaknesses in medical 
applications. Recent increase in generative AI is impacting 
the medical world, contributing to various innovations. 
OpenAI's world-renowned GPT (Generative Pre-trained 
Transformer) family comprises advanced language models 
capable of producing coherent and human-like text for 
various applications. These models have evolved from GPT-
2 through GPT-3 and GPT-3.5, culminating in GPT-4, with 
each version boasting improved complexity, accuracy, and 
natural language understanding. Similarly, Google's 
advancements include MedPaLM 1 and MedPaLM 2, which 
adapt large language models specifically for clinical 
knowledge and reasoning. MedPaLM 2, for instance, excels 
at answering specific medical questions, summarizing 
patient notes, and supporting diagnostic decision-making 
using datasets tailored for tasks like medical question 
answering, clinical note summarization, and diagnostic 
decision support. Tuned for health-related tasks, MedPaLM 
2 has demonstrated remarkable performance in medical 
reasoning and diagnostics, while GPT-4 scores well in the 
generation and interpretation of medical content. These 
models differ from specialized LLMs like Microsoft BioGPT 
and PubMedBERT, which exhibit varying accuracy, 
contextual understanding, and clinical applicability. 

Medical question-answering datasets and diagnostic 
accuracy tests serve as benchmarks to evaluate these models, 
providing insights into their potential for improving 
healthcare delivery and research. A subsequent table 
highlights the performance dominance of models developed 
by OpenAI and Google (Table 1). 

Even though it is the one with the least accuracy, amazing 
advancements have been made by GPT-4, the state-of-the-
art large language model, particularly in medical 
competency assessments [20]. This has to be mentioned 
because the GPT-4 is not a model created specifically for 
medical assessments. Thus, the results shown by this model 
are much more impressive than the others that were 
specifically pre-trained to perform better on medical 
datasets. Qualitatively, GPT-4 excelled in explaining 
medical reasoning, personalizing explanations for learners, 
and offering counterfactual scenarios during interactive 
case-based discussions. It demonstrated robustness in 
processing both text and image-based questions, minimizing 
content memorization, which further highlights its potential 
in medical education and assessment. These advancements 
render GPT-4 a powerful tool for education and evaluation, 
with promising applications in clinical decision-making, 
provided challenges around accuracy and safety are resolved 
before field deployment. 
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Table 1 
Accurate LLMs used in Medical Sciences  

Model Description Performance metrics Acc. 

GPT-4 

LLM by OpenAI, 
GPT-4 excels in 
various medical 
tasks, passing the 
U.S. Medical 
Licensing 
Examination 
(USMLE). 

Exceeded the 
passing score on 
USMLE by over 20 
points, showing high 
competency in 
medical reasoning 
and interpretation. 

>80% 
(USMLE) 

PaLM 

Developed by 
Google, PaLM is 
a 540-billion-
parameter 
transformer-
based LLM 
capable of 
handling diverse 
tasks, including 
medical 
scenarios. 

Achieved state-of-
the-art performance 
on various 
benchmarks, 
including 85% 
accuracy on medical 
question-answering 
datasets and clinical 
text summarization. 

85% 

Med - 
PaLM 2 

Developed by 
Google, Med-
PaLM 2 is fine-
tuned on medical 
data and achieves 
state-of-the-art 
performance on 
medical 
benchmarks. 

Scored 86.5% on the 
MedQA dataset, 
improving upon its 
predecessor by over 
19%. 

86.5% 

ChatDoctor 

Fine-tuned on a 
large dataset of 
patient-doctor 
dialogues, 
ChatDoctor 
provides accurate 
and context-
aware medical 
advice. 

Significant 
improvement in 
understanding 
patient inquiries and 
precise medical 
responses with up to 
88% accuracy in 
dialogs. 

88% 

ClinicalGPT 

Designed for 
clinical 
scenarios, 
ClinicalGPT 
integrates diverse 
real-world 
medical data to 
perform 
effectively across 
clinical tasks. 

Outperformed others 
in tasks such as 
medical knowledge 
question-answering 
and diagnostic 
analysis with high 
accuracy in real-
world medical cases. 

~88% 

Med-
Gemini 

A state-of-the-art 
multimodal AI 
model designed 
for medicine, 
excelling in 
reasoning, 
multimodal data 
analysis, and 
clinical 
knowledge. 

Recorded the 
highest accuracy in 
medical AI, 
processing data 4x 
faster, and reducing 
diagnostic errors by 
30% setting a new 
standard. 

92% 

 
Text mining and knowledge discovery in biomedical 

literature have gained prominence due to the rapidly growing 
pool of biomedical data, with over 30 million articles on 
PubMed alone. This wealth of information necessitates 
automated approaches for efficient knowledge extraction. 
General-purpose pre-trained language models such as 
BERT-like for understanding tasks and GPT-like for text 
generation have demonstrated success in general natural 
language processing (NLP) applications [20]. However, 
these models often underperform in biomedical applications 
due to the domain shift. Domain-specific models like 

BioBERT and PubMedBERT have shown improved 
performance in understanding tasks, but effective modeling 
for generation tasks has remained underdeveloped. 

The model that stood out the most is Med-Gemini [21], 
achieving state-of-the-art performance with an impressive 
accuracy of 92%. Med-Gemini is the newest member of a 
family of multimodal models designed for medically 
targeted applications, which includes innovations like web 
search capabilities and customizable encoders, allowing for 
seamless adaptation to new data modalities. Med-Gemini 
delivers exceptionally high performance, achieving SoTA on 
10 out of 14 medical benchmarks, consistently 
outperforming the GPT-4 family on similar tasks [20]. 
Notably, it achieved 91.1% accuracy on the MedQA 
(USMLE) benchmark, a 4.6% improvement over Med-
PaLM 2, using an innovative uncertainty-guided search 
strategy. Advanced multimodal diagnostic tasks, such as 
those from the New England Journal of Medicine and 
GeneTuring benchmarks, further demonstrated its reliability, 
maintaining baseline test results while excelling in long-
context processing tasks like medical video question 
answering and retrieving large health records. Medical 
professionals using Med-Gemini surpassed human expert-
level performance in summarizing medical texts, drafting 
reference letters, and communicating in simplified layman 
language across various fields of medicine. The integration 
of self-training, web search, and customizable encoders 
enhances its potential for clinical reasoning and versatility 
across diverse data types. This represents a major milestone 
in AI-driven medicine, showcasing strong reasoning, 
multimodal integration, and long-context processing. Such 
groundbreaking advances reiterate Med-Gemini's potential 
to transform medical research, education, and clinical 
practice. 

6. CONCLUSIONS 
Artificial intelligence ignited a transformational spark 

across systems, stakeholders, and operations. At the systems 
level, AI perfects diagnostics, streamlines workflows, 
enables early disease detection, removes bottlenecks, and 
reduces costs while expanding care access. For healthcare 
professionals, AI places robust tools in their hands, 
automating routine tasks and enhancing decision-making in 
complex cases, while strengthening their connection to 
society. Additionally, wearables and personalized therapies 
empower patients to actively manage their health (RQ7). 
However, these advancements demand robust policies and 
regulations, ensuring ethical implementation, data 
protection, and equity in healthcare delivery. 

AI signals the advent of a data-driven and consumer-
oriented age in healthcare. Emerging technologies such as 
generative AI, digital twins, and predictive analytics promise 
to transform healthcare systems comprehensively. The future 
success of AI hinges on finding a balance between trade-offs 
and challenges, enabling its adaptive application to create an 
all-encompassing, efficient system. 

A potential bright future lies in merging human expertise 
with the immense processing power of machines, delivering 
more effective, accessible, and affordable healthcare. This 
must be achieved in an ethical and accountable manner, 
paving the way for a healthier and sustainable future, as 
emphasized by the critical changes required for seamless AI 
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integration in healthcare environments. 
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