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Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) are crucial in modern neurological diagnostics, enabling 
detailed analysis of brain structures and connectivity. This article presents a comprehensive approach to analysing MRI images 
using advanced tools such as the FSL software library. The proposed method leverages distributed web systems to enhance the 
scalability and accessibility of image processing and analysis across multiple medical facilities. Key steps, including noise reduction, 
artefact removal, and tensor reconstruction, are performed to improve diagnostic accuracy. Additionally, metrics such as 
fractional anisotropy (FA), mean diffusivity (MD), and axial diffusivity (AD) are evaluated to detect microstructural brain 
abnormalities. The integration of distributed web technologies facilitates real-time collaboration between specialists, accelerating 
diagnostic processes and enabling cross-hospital data sharing. This study highlights the potential of combining cutting-edge 
imaging techniques with scalable digital infrastructures to optimise medical decision-making and improve patient outcomes. 

1. INTRODUCTION 
Advancements in computational technologies have 

profoundly revolutionized medical image analysis, 
substantially enhancing the precision of neurological disease 
diagnosis and therapeutic interventions [1]. The fidelity of 
diagnostic outcomes is contingent upon sophisticated image 
processing methodologies capable of mitigating noise 
interference and artefactual distortions inherent in medical 
imaging acquisition. Techniques such as Diffusion Weighted 
Imaging (DWI) and Diffusion Tensor Imaging (DTI) 
facilitate an intricate examination of cerebral architecture 
and functional connectivity [2], providing profound insights 
into microstructural anomalies and the integrity of neuronal 
pathways [3]. 

DWI quantifies the diffusion dynamics of water molecules 
within cerebral tissues, a process modulated by biological 
impediments such as myelinated fiber tracts and cellular 
membranes [4,5]. In contrast, DTI leverages the 
mathematical framework of tensor calculus to delineate 
complex neuronal networks and assess the structural 
coherence of brain parenchyma [6]. These advanced 
neuroimaging modalities have become indispensable in 
diagnosing traumatic brain injuries, neurodegenerative 
pathologies, and a spectrum of neurological disorders [7]. 

Despite their diagnostic utility, MRI-based neuroimaging 
methodologies encounter significant challenges, including 
signal perturbations induced by patient motion, hardware-
induced distortions, and eddy current artifacts [8, 9]. Such 
imaging discrepancies, stemming from magnetization 
disparities between air-tissue interfaces and intrinsic scanner 
limitations, necessitate rigorous preprocessing strategies 
encompassing noise suppression, artifact correction, and 
spatial normalization [5,10]. Furthermore, quantitative 
imaging biomarkers—including fractional anisotropy (FA), 
mean diffusivity (MD), and axial diffusivity (AD)—serve as 
critical metrics for evaluating axonal integrity, cellular 
density variations, and neuroinflammatory processes, 
thereby contributing to a comprehensive assessment of 
cerebral health [11–13]. 

This study introduces a novel framework to optimize 
neurological diagnostics by synergistically integrating 
advanced diffusion imaging methodologies with distributed 

web systems. The proposed approach ensures rapid and 
secure computational resource allocation, minimizes 
preprocessing latency, and fosters real-time interdisciplinary 
collaboration. By augmenting diagnostic accuracy and 
streamlining medical workflows, this paradigm aims to 
advance the efficacy of neurological disease assessment and 
improve patient outcomes. 

2. LITERATURE REVIEW 

2.1 IMPORTANT WORKS IN THE SUBJECT AREA 
Soares' investigation underscores the pivotal role of 

diffusion tensor imaging (DTI) in the comprehensive 
evaluation of brain white matter and the diagnostic 
assessment of neurological disorders. Despite inherent 
challenges such as motion artifacts, recent advancements in 
tractography, coupled with its integration with functional 
magnetic resonance imaging (fMRI) and positron emission 
tomography (PET), have significantly enhanced its utility in 
brain connectivity research [14]. 

Muller et al. employed DTI in an extensive multicenter 
study to examine white matter alterations in amyotrophic 
lateral sclerosis (ALS), identifying structural modifications 
and their correlation with clinical symptomatology. Rigorous 
correction methods ensured the robustness and dependability 
of the data, further consolidating DTI's potential as a reliable 
tool for monitoring ALS progression [15]. 

Leung et al. introduced an automated system designed for 
reusing clinical MRI data in biomarker discovery, achieving 
an 82% success rate in studies on dementia and multiple 
sclerosis. This system facilitates large-scale research 
endeavors and reduces operational costs, emphasizing the 
necessity for standardized protocols in clinical research [16]. 

2.2 IMPORTANT AUTHORS IN THE SUBJECT AREA 
A comprehensive review of research on 'Diffusion Tensor 

Techniques and Distributed Web Systems' was conducted 
using a dynamic analytical method. The study utilized the 
'Dimensions.ai' platform for data collection and VOSviewer 
for analysis, identifying key contributors in the field. The 
dataset included 12,297 authors, with 235 meeting the 
criteria of five publications and five citations. The largest 
interconnected group comprised 220 authors (Fig. 1) [17].
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Fig. 1 – An author network map for ’diffusion tensor techniques and 

distributed web systems’ reveals key researchers and collaboration patterns. 

Using the same data set, we obtained the graph in Fig. 2, 
which shows which countries these authors are from. 

 
Fig. 2 – A country-based map of authors for ’Diffusion tensor techniques 

and distributed web systems’ shows the geographical distribution of 
research contributions. 

3. METHODOLOGY 

3.1 FSL - DEVELOPMENT AND ANALYSIS 
ENVIRONMENT 

For image analysis, we used FSL, one of the most popular 
image analysis and development environments that has 
gained its undisputed reputation following a considerable 
effort over two decades by a team and the enthusiasts around 
it from Oxford University, so-called The Analysis Group. 
FSL stands for FMRIB (functional magnetic resonance 
imaging of the brain) Software Library and is a plethora of 
tools for analysing brain functions, structures, and water 
diffusion. The library is written in C++ language and 
contains scripts in Unix format. Simply put, FSL statistically 
analyzes and interprets the images resulting from brain 
scans. It also creates a multitude of maps with the aim of 
being an aid to radiologists and doctors [18]. 

The images from the scan are not 100% clean, therefore, 
probabilistic modelling is required. The FSL development and 
analysis environment initially opted for frequentist inference. 
The frequency of the results determines the choice for one of 
the alternatives. Instead, in recent years, they have moved to 
Bayesian modelling that combines a priori knowledge from 
the field in question as well as from related fields, as well as a 
ranking of priorities in choosing the best option [19]. 

FSL addresses the brain from three perspectives: 
structural imaging, which analyses anatomical structures; 
functional imaging, which describes neural activity; and 

diffusion imaging, a combination of the first two, which 
investigates water diffusion in the brain and the connectivity 
of fibres between anatomical structures [20]. 

To perform a detailed and complete analysis, FSL can 
perform image registration, tissue segmentation, and 
geometric corrections in correlation with a priori 
probabilistic maps of the MNI152 type using the 
expectation-maximisation algorithm or the Markov random 
field model [21]. To detect various microlesions or 
hyperintensities in the white matter, FSL uses the K-NN 
algorithm [22]. 

FSL can perform analyses showing connectivity and 
functionality at the voxel level (the voxel is the digital unit 
of the MRI image) for the whole brain or at the node level 
for well-defined regions [23]. 

FSL can remove various artefacts (susceptibility-induced 
distortion, eddy current distortions, and motion distortions) 
resulting from the brain scanning process, remove unwanted 
anatomical parts from the analysis (skull), register the brain 
in standard spaces, create tensors (matrices) of voxel-level 
diffusion, fractional anisotropy comparisons between 
different subjects, and statistical inference both on the 
command line and via the GUI for those less familiar with 
programming [20]. 

3.2 IMAGE METADATA 
Understanding the metadata of the image obtained during 

the brain scan is a first step in imaging analysis.  

Table 1 
Metadata of DWI image. 

Parameter Value 
File Name sub-HC001_ses-01_acq-b700-

41_dir-AP_dwi.nii.gz 
data_type UINT16 

dim1  140 
dim2 
dim3 
dim4 

datatype 
pixdim1 
pixdim2 
pixdim3 
pixdim4 
cal_max 
cal_min 

file_type 

140 
93 
41 
512 
1.600000 
1.600000 
1.600000 
3.500000 
0.000000 
0.000000 
NIFTI-1+ 

 
The original image provided by the scan is in DICOM-

type format, which is converted to NIFTI-type format. The 
metadata in our example (see Table 1) tell us that there is a 
diffusion-weighted (DWI) image provided by the Human 
Connectome (HC) Project, which is a huge, worthy MRI 
dataset with 41 directions, a b-value of 700 (b700), and the 
phase encoding direction is anterior to posterior (AP). When 
obtaining this image, 41 volumes were used; that is, the brain 
was photographed in 41 different positions (dim 41), so one 
volume for each direction. A diffusion-weighted image is a 
4D image describing the three spatial axes, x, y, and z, as 
well as the time axis (how long the captures took). Our image 
is 140x140x93 mm in size. The unit of measurement of a 
DWI image is the voxel (3D pixel or volumetric pixel). In 
our example, each voxel is 1.60x1.60x1.60 mm, and the 
capture time is 3.5 seconds [24]. 

3.3 DIFFUSION-WEIGHTED IMAGING 
In the brain, water is an element that is found in 

abundance. Water diffusion describes a Brownian motion 
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and is not isotropic, i.e., equal in all directions. On its way, 
it meets fibres and other tissues that obstruct or even hinder 
it from circulating freely. Therefore, water diffusion has an 
anisotropic character. Water diffusion is recorded and 
controlled by certain parameters of the scanner. The 
description of the components of a scanner and the physics 
of magnetic fields are not the subject of this article, but we 
can say that the scanner is a couple of magnets that interact 
with the protons in the water molecules, capturing the 
snapshots of the brain [25]. 

Table 2 
B-vectors for x-axis, y-axis, z-axis, a triplet for each of 41. 

-0.57735, -0.37056, 0.927284, -0.0143399, 0.740277, 0.388725, 
0.189297, -0.781566, -0.233676, 0.70263, 0.874277, 0.354897, -

0.350543, 0.509768, -0.480401, -0.983627, -0.00898435, 0.814866, 
0.33586, 0.0108488 

-0.57735, -0.00766451, -0.00901573, 0.998641, 0.596954, -0.553321, 
0.626364, 0.583733, -0.694192, 0.57062, -0.0881863, 0.030659, 

0.756953, -0.814628, -0.876177, -0.165561, -0.296183, -0.4521, -
0.427093, -0.918334 

0.57735, 0.928777, 0.37425, 0.0501029, -0.309251, 0.736701, 
0.756198, 0.220024, 0.680804, 0.425093, -0.47735, 0.934402, 

0.55149, 0.276617, -0.0391146, 0.0711798, 0.955089, 0.362766, -
0.839518, 0.395657 

Table 3 
B-vectors 

5, 705, 700, 700, 700, 700, 705, 700, 700, 700, 700, 705, 700, 700, 700, 
700, 705, 700, 695, 700, 705, 700, 695, 700, 700, 695, 700, 705, 700, 

700, 695, 705, 695, 695, 700, 700, 700, 705, 695, 695, 695 
 
To obtain diffusion-weighted images (DWI), the scanner 

“manipulates” the water molecules in the brain by changing 
the magnetic field in certain directions represented by so-
called b-vectors (Table 2) and with a certain strength 
represented by so-called b-value (Table 3) with a certain 
frequency in a specified time interval [26]. 

3.4 PROCESSING THE IMAGE: FILTERING, 
ARTIFACT REMOVAL, AND MASKING 

The image produced by the scan needs to be prepared by 
cleaning noise and artefacts produced during the patient 
scan. Preprocessing includes 4 important steps: 
1. Noise removal: median filter, the weighted average 

filter, etc. 
2. Removal of artefacts: eddy current artefacts, 

susceptibility-induced distortions, motion artefacts, etc. 
3. Removal of anatomical structures useless in the 

analysis, like scalp, brain stem, etc. 
4. Creating masks to help in brain reconstruction. 

 
Fig. 3 – Removal of brain artifacts. 

It preserves the fine details and intervenes in the 
neighbouring pixels by replacing the values of these pixels 

with average intensity values to preserve the edges as 
accurately as possible. 

!
"
!
1 1 1
1 1 1
1 1 1

# , 𝑤 = !
1 1 1
1 1 1
1 1 1

#  [27] 
 

(1) 

On each pixel, a convolution mask is applied, usually of 
small sizes. The value of the respective pixel is replaced by 
the average of the pixels in the neighbourhood that 
correspond to the mask [27]. 

The removal of artefacts that can appear in scanning 
time, such as eddy current artefacts, induced magnetic fields, 
motion artefacts caused by moving the subject during the 
scan, or other distortions (see Fig. 3). 

It is necessary to remove the anatomical structures (see 
Fig. 4) that are not important in the analysis, such as the scalp 
and the brain stem, leaving the raw brain. 

 
Fig. 4 – Brain extracted. 

A binary mask (see Fig. 5) is useful because it delimits 
the area of interest and in cases where the images have 
certain defects. They are obtained from qualitative images. 
An analysis of the brain is time-consuming, and a mask saves 
time because it analyses what is useful. The mask is 
composed of voxels of value 1 and basically cuts out the area 
of interest. 

 

 
Fig. 5 – Binary mask. 

3.5 DIFFUSION TENSOR IMAGING: ROLE OF 
EIGENVALUES AND EIGENVECTORS 

Diffusion tensor imaging (DTI) technique describes 
tracts that are bundles of fibres found in white matter that can 
be seen like highways that connect central points of the brain. 
Diffusion of water is easy along these tracts, but it is 
restricted if it moves perpendicular to these tracts. The 
directions and orientations of the water are recorded 
mathematically at the level of each voxel in matrices called 
tensors [28]. 

Thus, the diffusion tensor characterises the direction and 
amplitude of diffusion on the one hand, and on the other 
hand, the tracts or bundles of nerve fibres. The tensor is 
characterised mathematically as a covariance matrix that 
describes the diffusion of water on the three x-, y-, and z-
axes, the main axis being the x-axis (see Eq. 2) [29]: 

𝐷 = (
𝐷## 𝐷#$ 𝐷#%
𝐷#$ 𝐷$$ 𝐷$%
𝐷#% 𝐷$% 𝐷%%

), 
 
(2) 
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where D is the diffusion coefficient, the main axes are Dxx, 
Dyy, and Dzz. 

The decomposition of the diffusion tensor, eq. (3), into 
eigenvectors (e1x, e2y, e3z) and eigenvalues (λ1, λ2, λ3) 
practically decomposes the respective tensor into the 
direction tensor that describes the diffusion directions and 
the magnitude tensor that describes the magnitude of the 
diffusion along the three main directions, the x-axis, the y-
axis, and the z-axis. In the case of tractography that analyses 
the directions of nerve fibers, we are interested in the 
direction tensor, and in the case of anomaly detection 
through metric analysis, we are interested in the magnitude 
tensor [31]. 

*
𝐷## 𝐷#$ 𝐷#%
𝐷′#$ 𝐷$$ 𝐷$%
𝐷#% 𝐷$% 𝐷%%

,-
ε!# ε&# ε'#
ε!$ ε&$ ε'$
ε!% ε&% ε'%

/	= 

-
ε!# ε&# ε'#
ε!$ ε&$ ε'$
ε!% ε&% ε'%

/	-
λ! 0 0
0 λ& 0
0 0 λ'

/. 

(3) 

MD (mean diffusivity) displays the membrane density 
[32]. MD is obtained by calculating the mean value of the λ1, 
λ2, and λ3 eigenvalues. It shows how large or not the 
diffusivity is without considering the orientation of water 
diffusion [31]: 

𝑀𝐷 =
λ! + λ& + λ'

3  (4) 

FA (fractional anisotropy) is calculated based on the λ1, 
λ2, and λ3 eigenvalues and MD. Its values range between 0, 
which means isotropic, and 1, which means anisotropic. The 
isotropic characteristic of diffusion in a region occurs when 
water flows unrestricted in all directions. In a healthy brain, 
the isotropy should only exist in the cerebrospinal fluid 
(CSF). Its existence in other parts of the brain is a signal of 
neurone damage. The anisotropic characteristic of diffusion 
means that one direction is preponderant [31]. FA displays 
the microstructural integrity [32]: 

𝐹𝐴 = 83
2	∗ 8

(λ −𝑀𝐷)&

λ!&
 (5) 

AD (axial diffusivity) shows smaller values in case of 
axonal damage [32]: 

𝐴𝐷 = λ! (6) 
RD (radial diffusivity) shows greater values in de- or 

demyelination of axons [32]: 

𝑅𝐷 =
λ& + λ'
2  

(7) 

The DTI analysis can discover abnormalities at the 
microstructural level, which makes DTI a very useful tool in 
the correct diagnosis of cerebral pathologies [33]. 

It is certain that detailed studies and experiments on large 
data sets are required. MD, RD, AD, and FA differ depending 
on the age and sex of the patient, the type of trauma, and the 
stage of the disease. It is certain that a trauma involves damage 
to neurones, which causes the values of these metrics to be, in 
general, lower than in normal subjects [34]. 

3.6 DISTRIBUTED WEB SYSTEM: SCALABILITY 
AND LOW-LATENCY MRI ANALYSIS 

With the increasing complexity of imaging analysis and the 
large volume of data generated in the medical field, traditional 
local processing solutions have become insufficient [35]. 
Distributed web systems represent an essential infrastructure 
for managing large-scale and ultra-high-resolution MRI 
datasets, thanks to container orchestration (e.g., Docker 
Swarm, Kubernetes), distributed file systems (e.g., Amazon 
S3, HDFS), and in-memory caching. These mechanisms 
enable low-latency data access and allow for near real-time 
processing regardless of input size [36]. 

A distributed web system offers significant advantages in 
neuroimaging analysis. scalability is essential, as 
computational resources can be adjusted as processing 
demands increase. Orchestration technologies, such as 
Docker Swarm and Kubernetes, allow for efficient 
distribution of processing tasks across multiple nodes in the 
network, thus ensuring optimal performance [37]. 

Another major benefit is distributed storage, which allows 
scanned images and metadata to be saved in cloud 
infrastructures. This guarantees fast access for specialists 
located in different locations. Solutions such as HDFS 
(Hadoop Distributed File System) or Amazon S3 offer 
support for handling large volumes of data, thus optimising 
the workflow [37]. 

.  
Fig. 6 – MRI image processing flow in a distributed web system. 

Interdisciplinary collaboration is enhanced by distributed 
systems, allowing simultaneous data access, enabling rapid 
image interpretation and decision-making in multidisciplinary 
teams [35]. 

Parallel processing is another important advantage. 
Various preprocessing algorithms, such as noise removal, 
artefact correction, or tissue segmentation, can be executed 
simultaneously on multiple nodes. This significantly reduces 
the time required to analyse a complex image, improving the 
efficiency of the medical workflow [38]. 

In terms of security and privacy, distributed web systems 
integrate advanced protocols for data protection. These 
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include data encryption in transit and at rest, user 
authentication, and access control. Compliance with data 
protection regulations, such as HIPAA or GDPR, is essential 
for protecting sensitive medical information [35]. 

The diagram (see Fig. 6) illustrates the data processing 
flow in a distributed medical system for MRI image analysis, 
ensuring fast and secure data handling through distribution 
and redundancy. The process involves acquiring MRI 
images sent to a distributed web system with load balancing, 
web servers, caching, and a database cluster for secure 
storage. Doctors then access and analyse the images for 
diagnosis and clinical decision-making. 

The graph in Fig. 7 compares image processing time on a 
single server versus distributed systems with 3 and 10 nodes. 
The distributed architecture provides significant 
performance improvements: complex data, such as MRI 
scans, which would take hours on a traditional server, can be 
processed in under 15 minutes with 10 nodes. This efficiency 
is due to parallel execution and optimal resource 
management. However, diminishing returns are observed as 
the number of nodes increases, due to network and 
synchronization overhead [39,40]. 

 

 
Fig. 7 – Image processing time graph. 

Implementing a distributed web system in neuroimaging 
analysis supports large-scale medical research, optimizes 
resource utilization, and improves patient clinical outcomes. 
Recent studies have demonstrated that such an infrastructure 
can reduce the costs associated with data acquisition and 
accelerate the detection of microstructural abnormalities by 
efficiently processing metrics, including fractional 
anisotropy (FA), mean diffusivity (MD), and axial 
diffusivity (AD). 

4. RESULTS AND DISCUSSIONS 
The proposed magnetic resonance image analysis 

methodology, utilizing advanced diffusion techniques (DWI 
and DTI), demonstrated high efficacy in detecting 
microstructural abnormalities, particularly in critical brain 
regions. Image processing, conducted with FSL software, 
incorporated median filtering and specialized artifact 
removal algorithms to mitigate distortions caused by 
magnetic fields or patient movement. Key metrics—
fractional anisotropy (FA), mean diffusivity, and axial 
diffusivity—offered precise insights into neuronal integrity, 
with FA reduction signaling potential white matter damage, 
aiding in the early diagnosis of neurodegenerative conditions 
like multiple sclerosis and Alzheimer’s disease. 

A distributed web processing system enabled parallel 
analysis across multiple institutions, enabling temporal-
spatial optimization of imaging data. This innovation 

drastically reduced processing time from hours on a single 
server to minutes using 10 distributed nodes. Comparative 
performance assessments underscored the system’s superior 
efficiency, facilitating real-time high-resolution imaging and 
enhancing clinical decision-making. 

These findings suggest that the proposed technology could 
become a cornerstone of modern medical infrastructure. Its 
accelerated and refined diagnostics ability underscores its 
potential to optimize neurological disease management. 
Furthermore, this research establishes a foundation for 
advancements in functional imaging and medical big data 
analytics. 

5. CONCLUSIONS 
The paper highlighted that integrating diffusion-weighted 

imaging techniques with web-based distributed systems can 
significantly improve diagnostic and monitoring processes in 
neurology. The main contributions of the research include 
reducing data processing times, increasing accessibility to 
computational resources, and facilitating collaboration 
between medical institutions. These improvements are 
critical in the current context, where large volumes of 
imaging data represent a significant challenge for traditional 
medical infrastructures.  

The study utilizes fractional anisotropy, mean diffusivity, 
and radial diffusivity indices to detect microstructural 
abnormalities efficiently. Results indicate significant 
differences between neurological patients and healthy 
controls, highlighting the value of advanced analysis for 
patient stratification and personalised treatment. The 
proposed methodology marks a key step toward the complete 
digitalization of the medical system. 

In the long term, this infrastructure can advance large-
scale medical research and personalised patient care. The 
study contributes to the development of sustainable, efficient 
technologies crucial for modern medicine. Future expansion 
to national healthcare networks could enhance collaboration 
for complex diagnostics and clinical studies. 
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