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The spiral dynamic algorithm (SDA) is a metaheuristic characterized by the setting of parameters (spiral radius and rotational 
angle). The drawback of all meta-heuristic methods is the premature convergence, which occurs when a trade-off between 
exploitation and exploration is not maintained. SDA provides a good exploitation phase because all points are attracted to the best 
solution. But the exploration phase is poor when the spiral parameters are set to constant values during the whole search process. 
To improve SDA performance and circumvent premature convergence, this paper proposes an enhanced SDA in which the 
parameter settings vary simultaneously according to nonlinear functions. The effectiveness of the enhanced SDA algorithm (ESDA) 
was proven by identifying the electrical and mechanical induction motor (IM) parameters. This is achieved using the reference 
model method, in which the estimated parameters correspond to the minimum of the objective function. A comparison is 
established between the ESDA, SDAs, genetic algorithm (GA), and particle swarm optimization (PSO). The developed program and 
the estimation approach are tested using simulated and measured data from an IM (1.5 kW). 

1. INTRODUCTION 
Optimization methods have attracted the attention of 

many researchers for solving many problems in various 
broad fields. In general, the deterministic methods 
converge to a local minimum [1]. Fortunately, meta-
heuristics are a technique for overcoming the drawbacks of 
these methods. They intend to be suitable for global 
optimization [2] due to their random nature, allowing a 
jump out of local minima. The meta-heuristic techniques 
such as balanced aquila optimiser (BAO) [3], artificial 
ecosystem-based optimisation (AEO) algorithm [4], genetic 
algorithm (GA) [5], firefly (FA) [6], marine predators 
optimizer (MPO) [7], particle swarm optimization (PSO) 
[8], Dragonfly algorithm (DA) [9], and spiral optimization 
technique [10] have led to its application to optimization 
problems of different engineering areas.  

This paper focuses on the spiral dynamic algorithm 
(SDA), which is inspired by spiral phenomena in nature 
[11]. This algorithm is a straightforward search method. It 
includes a set of points rotating around the best point 
represented as the common center. The SDA’s trajectory is 
characterized by the setting parameters (spiral radius r and 
rotational angle 𝜑). It has a good exploitation strategy and 
a poor exploration strategy when the spiral parameters are 
set to constant values during the whole search process [12]. 
For more, the good balance of exploration-exploitation will 
usually ensure that the global optimality is achieved. 

The drawback of all meta-heuristic methods is the 
premature convergence, which occurs when a trade-off 
between the exploitation and exploration is not maintained 
[13]. Much research has been conducted to enhance the 
performance of these methods, such as hybridizing 
optimization methods and primarily expanding adaptive 
methods or incorporating analytical functions into the 
algorithm [14–17]. In [14], an adaptive version of the spiral 
dynamics algorithm is presented. The spiral radius 
parameter is varied using analytical equations and an 
associated fuzzy logic strategy. Nazir et al. [15] presented a 
hybrid spiral dynamic bacterial. Hashim et al. [16] 
enhanced the search diversity of the SDA using a chaotic-
maps pattern. In [17], an improved SDA for nonparametric 
fuzzy logic is presented.  

To avoid a risk of premature convergence and enhance 

the effectiveness of SDA, this paper proposes an 
enhancement of SDA named ESDA, where the spiral radius 
and the rotational angle vary at a dynamic rate following 
nonlinear functions. This aims to keep the balance between 
exploration and exploitation strategies.  

To highlight the proposed SDA performance, it is 
compared to GA, PSO, and original SDA with different 
values of radius and angle from induction motor (IM) 
parameters identification based on the reference model 
method [5, 18, 19]. A comparison is established between 
the ESDA, GA, PSO, and SDAs. The developed programs 
and the identification approach are verified by using the 
simulated data, which is obtained for a given machine with 
known parameters. The assessment is performed on IM’s 
(1.5 kW) parameters estimation. 

The rest of the paper is organized in the following order. 
Section 2 describes a 2-dimensional spiral model for 
generalization to an n-dimensional spiral model. The 
original and enhanced SDA are detailed. Section 3 gives 
the IM model. Section 4 confirms the ESDA performance 
by the identification method with simulated and measured 
data. Finally, section 5 draws some conclusions.   

2. ORIGINAL AND ENHANCED SPIRAL DYNAMIC 
ALGORITHM 

This section presents the 2-dimensional spiral 
mathematical model, which allows for the introduction of 
the original SDA. The enhanced SDA is detailed.  

2.1 A TWO-DIMENSIONAL SPIRAL 
MATHEMATICAL MODEL 

A two-dimensional spiral mathematical model is based 
on two geometric transformations, as shown in Fig.1.  

 
Fig. 1 – Spiral transformation on x-y plane. 

The first transformation rotates a point (x1,y1)t 
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counterclockwise around the origin point (x0,y0)t by an 
angle φ!,#, resulting in another point (x0,y0)t. This point is 
then moved to a new position (x0,y0)t through a homothetic 
transformation.  

The spiral mathematical model can be expressed as 
follows: 

$
𝑥# − 𝑥$
𝑦# − 𝑦$( = 𝑟. 𝐑(#)-φ!,#. $

𝑥! − 𝑥$
𝑦! − 𝑦$(, 

$
𝑥#
𝑦#( = 𝑟. 𝐑(#)-φ!,#. $

𝑥!
𝑦!( − 𝑟. 𝐑

(#)-φ!,#. $
𝑥$
𝑦$( + $

𝑥$
𝑦$(. 

(1) 

It can be noticed that the point (x0,y0)t can be given by an 
identity matrix as below:

    $
𝑥$
𝑦$( = $1				00					1( $

𝑥$
𝑦$(. (2) 

So, the equation (1) can be rewritten as    

$
𝑥#
𝑦#( = 𝑟. 𝐑(𝟐)-φ!,#. $

𝑥!
𝑦!( − -𝑟. 𝐑

(𝟐)(φ!,#) − 𝐈. $
𝑥$
𝑦$(. (3) 

The rotation matrix is given by 

𝐑(#)-φ!,#. = 6
cosφ!,# −sinφ!,#
sinφ!,# cosφ!,#

<.  

where φ!,#	represents the rotation angle around the origin 
(𝑥$, 𝑦$	)( , -0 ≤ φ!,#	 ≤ 2π.. The subscripts of an angle φ!,# 
indicate the direction of rotation on the x-y plane from point 
(𝑥!, 𝑦!)( to point	(𝑥#* , 𝑦#* 	)(, and the sup script of the rotation 
matrix 𝐑(#) represents a 2-dimensional orthogonal coordinate 
system; I represents the identity matrix; r is the homothetic 
transformation rate, and it is bounded between 0 and 1. The 
homothetic transformation rate is also named the spiral radius. 
2.2 ORIGINAL SPIRAL DYNAMIC ALGORITHM (SDA) 

Tamura and Yasuda introduced the original SDA [10, 11]. 
It is a meta-heuristic method based on spiral patterns in 
nature. Its concept includes a set of points rotating around the 
best point, defined as the common center, followed by a 
homothetic transformation for each generation. Therefore, the 
SDA performance depends on the static setting parameters 
such as the spiral radius r and the rotational angle. The spiral 
radius determines the dynamic step size of the spiral 
trajectory from generation to generation. The rotational angle 
affects the space between two points in the spiral path and its 
shape [14]. The SDA mathematical model is obtained by the 
generalization of a 2-dimensional spiral mathematical model 
from an n-dimensional case given by eq. (4). All points move 
in a spiral trajectory from one position to a new one. 

𝑥+(𝑘 + 1) = 𝑟. 𝐑(,)-φ!,#, … , φ,-!,,.𝑥+(𝑘) − 
−-𝑟. 𝐑(,)-φ!,#, … , φ,-!,,. − 𝐼.𝑥./0((𝑘). 

(4) 

where 𝑥+(𝑘 + 1) is a new position of the ith point in the kth 
iteration; 𝑥+(𝑘) is the old position of ith point in the kth 
iteration; 𝑥./0((𝑘) is the best position in the kth iteration; 

 𝐑(,)-φ!,#, φ!,1, φ!,2… ,φ,-!,,.	represents the composition 
of the rotation matrix, 

𝐑(")"φ$,&, … , φ"'$,"& 		

=)*)𝐑"'(,")$'*
(")

(

*+$

"φ"'(,")$'*&+
"'$

(+$

. (5) 

An 𝑛-dimensional rotation matrix is written as follows:   

𝐑(,)-𝜑+,3.

=

⎣
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⎢
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⎥
⎥
⎥
⎥
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, 
(6) 

where φ!,#  represents the rotational angle in the i-j plane; 
SDA provides a good exploitation phase because all points 
are attracted to the best solution. But the exploration phase 
is poor when the spiral parameters are set to constant values 
during the whole search process. Then, the trade-off 
between exploitation and exploration is lost, and premature 
convergence halts the SDA’s success. The following 
section presents the enhanced SDA, which overcomes the 
drawback of the original approach. 

2.3 ENHANCED SPIRAL DYNAMIC ALGORITHM (ESDA) 
Initially, the ESDA generates a set of points randomly. 

The objective function evaluates the fitness value for each 
point. So, a set of points is rotating around the best point 
defined as the common center, followed by a homothetic 
transformation. The setting parameters are modified until 
the convergence criterion is satisfied. The ESDA proposes 
the spiral radius and the rotational angle evolving 
dynamically as the following expressions: 

𝑟(𝑖) = N
𝑟4 ,																																						𝑖 ≤ 𝐶!,
𝐴!(𝑖 − 𝐶#)# + 𝐵!,									𝐶! < 𝑖 ≤ 𝐶#,
𝑟5,																																						𝑖 > 𝐶#,

 (7) 

φ(𝑖) = N
φ4 ,																																				𝑖 ≤ 𝐶!,
𝐴#(𝑖 − 𝐶#)# + 𝐵#,									𝐶! < 𝑖 ≤ 𝐶#
φ5,																																				𝑖 > 𝐶#,

, (8) 

with 
𝐴! =

6!"6#
(7$	-7&)&

	.                    𝐵! = 𝑟4 , 

𝐴# =
8!"8#
(7$-7&)&

	.                    𝐵# = φ4. 
i designates the number of iterations; 𝑟4 , 𝑟5	represent the 
variation interval of the spiral radius; φ4 , φ5		represent the 
variation interval of the rotation angles; 𝐶! designates the 
starting point of the radius and angle of the proposed 
functions variation, and 𝐶# designates the final point of the 
radius and angle proposed functions variation. 

The ESDA aims to foster the abilities of the exploration 
and exploitation phases to find a global solution. Figure 2 
shows the proposed dynamical evolution of the radius and 
angle according to a nonlinear function. Figure 3 illustrates 
the flowchart of ESDA. 

 
(a) 
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(b) 

Fig. 2 – The proposed nonlinear functions for:  
(a) spiral radius; (b) rotational angle. 

The nonlinear functions give the exploration phase the 
possibility of progressing in time and scrutinizing the 
search space widely while associating itself with a good 
exploitation phase to achieve the best balance between 
exploration and exploitation. 

 

Fig. 3 – Flowchart of the ESDA. 

3. INDUCTION MACHINE MODEL 
The simplifying assumptions for establishing a dynamic 

model of IM are summarized as follows: 
• Neglected saturation effect  
• Neglected core losses  
• Neglected skin effect 
• Limitation to the first space harmonic 
• Constant air gap  

The IM equations [20] related to a reference linked to the 
stator are given by: 
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where: 

σ = 1 − 9:&

9;9<
,     𝑇6 =

9<
:<
,			𝑇0 =

9;
:;

,            (10) 

and P = [s, Tr Ls Ts J B]T represents the parameter vector. 
This vector is determined using only the measured current 

and the corresponding phase voltage, applied to the motor of 
a transient from standstill to steady state operation. 

4. RESULTS 
 To highlight the performance of the SDAs and ESDA, 

they are applied to perform, at the same time, the electrical 
and mechanical parameters of the IM. Then, the quadratic 
error S is minimized by the SDAs and ESDA. 

S = ∑ (𝐼;+ − 𝐼<+)#,,
+=!                        (11) 

where Imi is the measured current and Ici is the computed 
current. The above developed algorithms’ performances are 
tested using both simulated and measured data for the 
identification method [5]. 

4.1 SIMULATED DATA 
The developed program and identification approach are 

verified by using the simulated data, which is obtained for a 
given IM with known parameters and fed with a sine voltage. 
The simulated data are computed from the system (9) with the 
fourth-order Runge-Kutta method. The data are given by the 
sinusoidal voltage supply and the corresponding calculated 
current (Fig. 4). 

 
(a)                                                          (b) 

Fig. 4 – (a) Voltage supply; (b) Calculated stator current. 

Table 1 summarizes the setting parameters of ESDA and 
SDAs for different spiral radius and rotational angle values. 

Table 1 
ESDA and SDAs setting parameters for simulated data  

Algorithms Radius and angle Set of 
points 

Maximum number of 
iterations 

ESDA1 
 
  

200 100 

SDA1  200 100 
SDA2  200 100 
SDA3  200 100 
 
The parameter identification results using SDA1, SDA2, 

SDA3, ESDA1, GA, and PSO are given in Table 2. 

Table 2 
Results of simulated parameters. 

Parameters Given 
parameters ESDA1 SDA1 SDA2 SDA3 GA PSO 

s 0.09 0.09 0.032 0.033 0.033 0.029 0.089 
Tr (ms) 123 122.9 451.53 340.71 343.65 375.45 123.23 
Ts (ms) 159 158.9 422.17 383.65 452.14 488.93 159.21 
Ls (mH) 0.054 0.054 0.142 0.123 0.203 0.173 0.054 
J (kg.m2) 0.038 0.038 0.033 0.037 0.041 0.042 0.038 

B 
(N.m.s/Rd) 0.001 0.001 0.007 

 

0.015 0.045 0.001 0.001 

 
By the ESDA1, the estimated parameters are very close to 

the given parameters, as shown in Table 2. Then, the 
convergence of ESDA1 and PSO is confirmed. But the 
estimated electrical  parameters by SDA1, SDA2, SDA3, and 
GA are far from the given parameters. When their estimated 
mechanical parameters are near the given parameters. 
Consequently, the results showed premature convergence of 
SDA1, SDA2, SDA3, and GA, with all being trapped in 
local minima. Figure 5 (a-f) illustrates the estimated 

[ ] [ ]!"#$%&'# πθ =!!"
[ ] [ ]!"#$%&'# πθ =!"!#
[ ] [ ]!"#$%# &$ =!!
[ ] [ ]!"#$%&'# πθ =!
[ ] [ ]!"#$%&'# πθ =!
[ ] [ ]!"#$!%&# πθ =!
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parameters’ evolution versus the number of iterations. 

 
(a)                                                              (b) 

 
(c)                                                          (d) 

 
(e)                                                           (f) 

Fig. 5 – Estimated parameters evolution by SDA1, SDA2, SDA3, ESDA1, 
GA, and PSO. 

The estimated parameters evolution confirms the 
convergence of the ESDA1 and PSO, with the premature 
convergence of the SDA1, SDA2, SDA3, and GA. It can be 
noticed that the convergence of ESDA1 and PSO started 
from the 20th and 80th iteration, respectively. Then, the 
ESDA1 performance shows high convergence speed. 

4.2 MEASURED DATA 
Tests are performed on motor M, characterized by 4 

poles, 220/380 V, and 1.5 kW. The current and the phase 
voltage given in Fig.7 are simultaneously measured using 
the experimental setup given in Fig. 6. 

 

Fig. 6 – Measurement setup. 

 
(a)                                                            (b) 

Fig. 7 – Motor M: (a) Measured voltage; (b) Measured current. 

A motor parameters estimation method is based on the 
developed programs of ESDA and SDAs with different 
values of radius and angle given in Table 3. 

Table3 
ESDA and SDAs setting parameters for measured data. 

Algorithms Radius and angle Set of 
points 

Maximum number 
of iterations 

ESDA2  
  

200 100 

SDA1  200 100 
SDA2 

 
200 100 

SDA4  200 100 
Using the measured data, the estimated parameters for 
motor M are given in Table 4. 

Table 4 
Estimated parameters. 

Parameters ESDA2 SDA1 SDA2 SDA4 GA PSO 
s 0.069 0.072 0.0265 0.0209 0.024 0.069 

Tr (ms) 135.15 129.18 285.81 502.18 422.31 134.19 
Ts (ms) 189.55 182.43 535.21 586.64 560.38 188.82 
Ls (mH 87.21 83.58 38.14 31.14 26.33 87.01 

J (kg.m2) 0.0353 0.0350 0.0107 0.0083 0.0362 0.0354 
B 

(N.m.s/Rd) 0.0097 0.0102 0.0053 0.0028 0.0092 0.0097 

 
The estimated parameters evaluation is carried out using 

the comparison by superposition between the calculated 
current and the measured one. This evaluation shows the 
algorithm convergence. The estimated parameters represent 
the minimum of the quadratic output error between the 
measured and computed currents. The computed current is 
acquired by numerical resolution of the nonlinear system 
(9) by means of the fourth-order Runge-Kutta method using 
the estimated parameters given in Table 4.  

 

 
(a)                                                            (b) 

 
(c)                                                            (d) 

 
(e)                                                            (f) 

Fig. 8 – Superposition of the measured current and calculated one with the 
estimated parameters to motor M: (a) by ESDA2; (b) by SDA1; (c) by SDA2; 

(d) by SDA4; (e) by GA; (f) by PSO. 
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Figure 8 illustrates the matching of the measured current 
and the computed one with the identified parameters by 
ESDA2, SDA1, SDA2, SDA4, GA, and PSO for motor M. 
It allows us to show the convergence when the measured 
current and the computed one agree well in transient and 
steady states. Moreover, Fig. 8 shows the best matching of 
curves related to ESDA2 and SDA4 to ensure their 
convergence.  

About GA, the curve doesn’t match in the steady state 
only. But the curves related to SDA2 and SDA4 don’t 
agree well in the transient and steady state, and they are 
trapped in a local minimum. Also, the parameter variation 
versus the number of iterations for motor M, illustrated in 
Fig. 9, confirms the speed convergence. 

 

 
(a)                                                            (b) 

 
(c)                                                            (d) 

 
(e)                                                            (f) 

Fig. 9 – Parameters Evolution of motor M; (a) of leakage coefficient; 
(b) of Tr; (c) of Ls; (d) of Ts; (e) of J; (f) of B. 

The estimated parameters evolution confirms the 
convergence of the ESDA2, PSO, and SDA1. It can be 
noticed that the convergence of ESDA2, PSO, and SDA1 
started from the 15th, 40th, and 80th iteration, respectively. 
Then, the ESDA2 performance shows a higher convergence 
speed than SDA1 and PSO, where SDA2 and SDA4 are 
stuck in a local minimum. 

4.3 STATISTICAL STUDY 
Each algorithm is executed 10 times. As a termination 

criterion, the maximum number of iterations is considered, 
which has been set to 100. In all simulations, the population 
size has been configured to 200.  

To evaluate the performance of all algorithms, the 
statistical results are presented in Table 5 for the given IM, 
including the mean and standard deviation of fitness values. 

Table 5 
Simulated results obtained by GA, PSO, SDA1, SDA2, SDA3, and 

ESDA1using fitness values. 
Algorithms Mean Standard deviation 

GA 1.322369557603000e+03 7.236734422254997e+02 
PSO 55.145737770000004 84.733397754501425 

SDA1 3.935917006284000e+03 2.911851558895321e+03 
SDA2 1.411874686054546e+03 1.212562445739074e+03 
SDA3 5.928601770146000e+03 4.563489867739208e+03 

ESDA1 54.880410530999995 62.554968601056878 
 
The ESDA1 had the lowest standard deviation of 

62.554968601056878, resulting in robust performance 
among the algorithms. The standard deviation and mean 
comparisons are depicted in Fig. 10 (a, b).  

 
(a) 

 
(b) 

Fig. 10 – Standard deviation comparison of algorithms (a) 
Mean comparison of algorithms (b). 

6. CONCLUSIONS 
This paper proposes an enhancement of SDA named 

ESDA, where the spiral radius and the rotational angle vary 
at a dynamic rate following nonlinear functions.  This aims 
to realize the trade-off between the exploration and the 
exploitation phases. To highlight the ESDA performance, it 
is compared to GA, PSO, and original SDA with different 
values of radius and angle from IM parameters 
identification. So, these parameters are determined 
simultaneously from the measured current and the 
corresponding phase voltage. This procedure uses the 
reference model method and relies on the SDAs, ESDA, 
GA, and PSO as a minimization technique. 

Based on simulated data, the results obtained from the 
ESDA1 have shown that this method can be successfully 
applied to identify the model parameters with a high degree 
of accuracy. The convergence of ESDA1 and PSO started 
from the 20th and 80th iteration, respectively. The results 
also show that ESDA1 converges to an optimal solution 
much more quickly than PSO, whereas ESDA2 and 
ESDA3 are trapped in local minima.  

Using measured data, the convergence of ESDA2, PSO, 
and SDA1 started from the 15th, 40th, and 80th iteration, 
respectively. The ESDA2 performance shows higher 
convergence speed than SDA1 and PSO, where SDA2, GA, 
and SDA4 converge prematurely. The simulated and 
measured data demonstrate that the proposed SDA shows 
the best optimization effectiveness compared to GA, PSO, 
and the original SDAs in terms of convergence speed. 
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NOMENCLATURE 
Vdr, Vqr     d-q axes rotor voltage  
Vds, Vqs     d-q axes stator voltage 
Idr, Iqr          d-q axes rotor current  
Ids, Iqs          d-q axes stator current 
Rs, Rr      stator and rotor  
               resistances (Ω) 
Ω             mechanical velocity   
               (Rd/s) 
Lm          mutual inductance (H) 
Ls, Lr      stator and rotor    
               inductances (H) 
J              rotor inertia (kg.m2) 

B             viscous friction coefficient  
                (N.m.s/Rd) 
σ              leakage coefficient 
Tr             rotor time constant (s) 
Ts             stator time constant (s) 
Po             number of pole pairs 

Received on 12 February 2025 
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