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The spiral dynamic algorithm (SDA) is a metaheuristic characterized by the setting of parameters (spiral radius and rotational 

angle). The drawback of all meta-heuristic methods is the premature convergence, which occurs when a trade-off between 

exploitation and exploration is not maintained. SDA provides a good exploitation phase because all points are attracted to the best 

solution. But the exploration phase is poor when the spiral parameters are set to constant values during the whole search process. 

To improve SDA performance and circumvent premature convergence, this paper proposes an enhanced SDA in which the 

parameter settings vary simultaneously according to nonlinear functions. The effectiveness of the enhanced SDA algorithm (ESDA) 

was proven by identifying the electrical and mechanical induction motor (IM) parameters. This is achieved using the reference 

model method, in which the estimated parameters correspond to the minimum of the objective function. A comparison is 

established between the ESDA, SDAs, genetic algorithm (GA), and particle swarm optimization (PSO). The developed program and 

the estimation approach are tested using simulated and measured data from an IM (1.5 kW). 

1. INTRODUCTION 

Optimization methods have attracted the attention of 

many researchers for solving many problems in various 

broad fields. In general, the deterministic methods 

converge to a local minimum [1]. Fortunately, meta-

heuristics are a technique for overcoming the drawbacks of 

these methods. They intend to be suitable for global 

optimization [2] due to their random nature, allowing a 

jump out of local minima. The meta-heuristic techniques 

such as balanced aquila optimiser (BAO) [3], artificial 

ecosystem-based optimisation (AEO) algorithm [4], genetic 

algorithm (GA) [5], firefly (FA) [6], marine predators 

optimizer (MPO) [7], particle swarm optimization (PSO) 

[8], Dragonfly algorithm (DA) [9], and spiral optimization 

technique [10] have led to its application to optimization 

problems of different engineering areas.  

This paper focuses on the spiral dynamic algorithm 

(SDA), which is inspired by spiral phenomena in nature 

[11]. This algorithm is a straightforward search method. It 

includes a set of points rotating around the best point 

represented as the common center. The SDA’s trajectory is 

characterized by the setting parameters (spiral radius r and 

rotational angle 𝜑). It has a good exploitation strategy and 

a poor exploration strategy when the spiral parameters are 

set to constant values during the whole search process [12]. 

For more, the good balance of exploration-exploitation will 

usually ensure that the global optimality is achieved. 

The drawback of all meta-heuristic methods is the 

premature convergence, which occurs when a trade-off 

between the exploitation and exploration is not maintained 

[13]. Much research has been conducted to enhance the 

performance of these methods, such as hybridizing 

optimization methods and primarily expanding adaptive 

methods or incorporating analytical functions into the 

algorithm [14–17]. In [14], an adaptive version of the spiral 

dynamics algorithm is presented. The spiral radius 

parameter is varied using analytical equations and an 

associated fuzzy logic strategy. Nazir et al. [15] presented a 

hybrid spiral dynamic bacterial. Hashim et al. [16] 

enhanced the search diversity of the SDA using a chaotic-

maps pattern. In [17], an improved SDA for nonparametric 

fuzzy logic is presented.  

To avoid a risk of premature convergence and enhance 

the effectiveness of SDA, this paper proposes an 

enhancement of SDA named ESDA, where the spiral radius 

and the rotational angle vary at a dynamic rate following 

nonlinear functions. This aims to keep the balance between 

exploration and exploitation strategies.  

To highlight the proposed SDA performance, it is 

compared to GA, PSO, and original SDA with different 

values of radius and angle from induction motor (IM) 

parameters identification based on the reference model 

method [5, 18, 19]. A comparison is established between 

the ESDA, GA, PSO, and SDAs. The developed programs 

and the identification approach are verified by using the 

simulated data, which is obtained for a given machine with 

known parameters. The assessment is performed on IM’s 

(1.5 kW) parameters estimation. 

The rest of the paper is organized in the following order. 

Section 2 describes a 2-dimensional spiral model for 

generalization to an n-dimensional spiral model. The 

original and enhanced SDA are detailed. Section 3 gives 

the IM model. Section 4 confirms the ESDA performance 

by the identification method with simulated and measured 

data. Finally, section 5 draws some conclusions.   

2. ORIGINAL AND ENHANCED SPIRAL DYNAMIC 

ALGORITHM 

This section presents the 2-dimensional spiral 

mathematical model, which allows for the introduction of 

the original SDA. The enhanced SDA is detailed.  

2.1 A TWO-DIMENSIONAL SPIRAL 

MATHEMATICAL MODEL 

A two-dimensional spiral mathematical model is based 

on two geometric transformations, as shown in Fig.1.  

 

Fig. 1 – Spiral transformation on x-y plane. 

The first transformation rotates a point (x1,y1)t 
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counterclockwise around the origin point (x0,y0)t by an 

angle φ1,2, resulting in another point (x0,y0)t. This point is 

then moved to a new position (x0,y0)t through a homothetic 

transformation.  

The spiral mathematical model can be expressed as 

follows: 

(
𝑥2 − 𝑥0
𝑦2 − 𝑦0

) = 𝑟. 𝐑(2)(φ1,2) (
𝑥1 − 𝑥0
𝑦1 − 𝑦0

), 

(
𝑥2
𝑦2
) = 𝑟. 𝐑(2)(φ1,2) (

𝑥1
𝑦1
) − 𝑟.𝐑(2)(φ1,2) (

𝑥0
𝑦0
) + (

𝑥0
𝑦0
). 

(1) 

It can be noticed that the point (x0,y0)t can be given by an 

identity matrix as below:

    (
𝑥0
𝑦0
) = (

1    0
0     1

)(
𝑥0
𝑦0
). (2) 

So, the equation (1) can be rewritten as    

(
𝑥2
𝑦2
) = 𝑟. 𝐑(𝟐)(φ1,2) (

𝑥1
𝑦1
) − (𝑟. 𝐑(𝟐)(φ1,2) − 𝐈) (

𝑥0
𝑦0
). (3) 

The rotation matrix is given by 

𝐑(2)(φ1,2) = (
cosφ1,2 −sinφ1,2
sinφ1,2 cosφ1,2

).  

where φ1,2 represents the rotation angle around the origin 

(𝑥0, 𝑦0 )
𝑡 , (0 ≤ φ1,2 ≤ 2π). The subscripts of an angle φ1,2 

indicate the direction of rotation on the x-y plane from point 

(𝑥1, 𝑦1)
𝑡 to point (𝑥2

′ , 𝑦2
′  )𝑡, and the sup script of the rotation 

matrix 𝐑(2) represents a 2-dimensional orthogonal coordinate 

system; I represents the identity matrix; r is the homothetic 

transformation rate, and it is bounded between 0 and 1. The 

homothetic transformation rate is also named the spiral radius. 

2.2 ORIGINAL SPIRAL DYNAMIC ALGORITHM (SDA) 

Tamura and Yasuda introduced the original SDA [10, 11]. 

It is a meta-heuristic method based on spiral patterns in 

nature. Its concept includes a set of points rotating around the 

best point, defined as the common center, followed by a 

homothetic transformation for each generation. Therefore, the 

SDA performance depends on the static setting parameters 

such as the spiral radius r and the rotational angle. The spiral 

radius determines the dynamic step size of the spiral 

trajectory from generation to generation. The rotational angle 

affects the space between two points in the spiral path and its 

shape [14]. The SDA mathematical model is obtained by the 

generalization of a 2-dimensional spiral mathematical model 

from an n-dimensional case given by eq. (4). All points move 

in a spiral trajectory from one position to a new one. 

𝑥𝑖(𝑘 + 1) = 𝑟. 𝐑
(𝑛)(φ1,2, … , φ𝑛−1,𝑛)𝑥𝑖(𝑘) − 

−(𝑟. 𝐑(𝑛)(φ1,2, … , φ𝑛−1,𝑛) − 𝐼)𝑥𝑏𝑒𝑠𝑡(𝑘). 
(4) 

where 𝑥𝑖(𝑘 + 1) is a new position of the ith point in the kth 

iteration; 𝑥𝑖(𝑘) is the old position of ith point in the kth 

iteration; 𝑥𝑏𝑒𝑠𝑡(𝑘) is the best position in the kth iteration; 
 𝐑(𝑛)(φ1,2, φ1,3, φ1,4… ,φ𝑛−1,𝑛) represents the composition 

of the rotation matrix, 

𝐑(𝑛)(φ1,2, … , φ𝑛−1,𝑛)   

=∏(∏𝐑𝑛−𝑖,𝑛+1−𝑗
(𝑛)

𝑖

𝑗=1

(φ𝑛−𝑖,𝑛+1−𝑗))

𝑛−1

𝑖=1

. 
(5) 

An 𝑛-dimensional rotation matrix is written as follows:   

𝐑(𝑛)(𝜑𝑖,𝑗)

=

[
 
 
 
 
 
 
 
 
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

                   
0 ⋯
⋮ ⋮
0 ⋯

        
0 ⋯ 0
⋮ ⋮

⋯ 0
0 ⋯
⋮ ⋮
0 ⋯ 0

  
cosφ𝑖,𝑗 ⋯

⋮ ⋱ ⋮
⋯ 1

 
−sinφ𝑖,𝑗 ⋯ 0

⋮ ⋮
⋯ 0

⋯
⋮ ⋮
0 ⋯ 0

    
sinφ𝑖,𝑗 ⋯  

⋮ ⋮
0 ⋯ 0

   
cosφ𝑖,𝑗 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 1]

 
 
 
 
 
 
 
 

, 
(6) 

where φ𝑖,𝑗  represents the rotational angle in the i-j plane; 

SDA provides a good exploitation phase because all points 

are attracted to the best solution. But the exploration phase 

is poor when the spiral parameters are set to constant values 

during the whole search process. Then, the trade-off 

between exploitation and exploration is lost, and premature 

convergence halts the SDA’s success. The following 

section presents the enhanced SDA, which overcomes the 

drawback of the original approach. 

2.3 ENHANCED SPIRAL DYNAMIC ALGORITHM (ESDA) 

Initially, the ESDA generates a set of points randomly. 

The objective function evaluates the fitness value for each 

point. So, a set of points is rotating around the best point 

defined as the common center, followed by a homothetic 

transformation. The setting parameters are modified until 

the convergence criterion is satisfied. The ESDA proposes 

the spiral radius and the rotational angle evolving 

dynamically as the following expressions: 

𝑟(𝑖) = {

𝑟𝑙 ,                                      𝑖 ≤ 𝐶1,

𝐴1(𝑖 − 𝐶2)
2+ 𝐵1 ,         𝐶1 < 𝑖 ≤ 𝐶2,

𝑟𝑢 ,                                      𝑖 > 𝐶2,
 (7) 

φ(𝑖) = {

φ𝑙 ,                                    𝑖 ≤ 𝐶1,

𝐴2(𝑖 − 𝐶2)
2 + 𝐵2,         𝐶1 < 𝑖 ≤ 𝐶2

φ𝑢,                                    𝑖 > 𝐶2,
, (8) 

with 

𝐴1 =
𝑟𝑙−𝑟𝑢

(𝐶1 −𝐶2)2
 .                    𝐵1 = 𝑟𝑙 , 

𝐴2 =
φ𝑙−φ𝑢

(𝐶1−𝐶2)2
 .                    𝐵2 = φ𝑙 . 

i designates the number of iterations; 𝑟𝑙 , 𝑟𝑢  represent the 

variation interval of the spiral radius; φ𝑙 , φ𝑢   represent the 

variation interval of the rotation angles; 𝐶1 designates the 

starting point of the radius and angle of the proposed 

functions variation, and 𝐶2 designates the final point of the 

radius and angle proposed functions variation. 

The ESDA aims to foster the abilities of the exploration 

and exploitation phases to find a global solution. Figure 2 

shows the proposed dynamical evolution of the radius and 

angle according to a nonlinear function. Figure 3 illustrates 

the flowchart of ESDA. 

 
(a) 
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(b) 

Fig. 2 – The proposed nonlinear functions for:  

(a) spiral radius; (b) rotational angle. 

The nonlinear functions give the exploration phase the 

possibility of progressing in time and scrutinizing the 

search space widely while associating itself with a good 

exploitation phase to achieve the best balance between 

exploration and exploitation. 

 

Fig. 3 – Flowchart of the ESDA. 

3. INDUCTION MACHINE MODEL 

The simplifying assumptions for establishing a dynamic 

model of IM are summarized as follows: 

• Neglected saturation effect  

• Neglected core losses  

• Neglected skin effect 

• Limitation to the first space harmonic 

• Constant air gap  

The IM equations [20] related to a reference linked to the 

stator are given by: 

 

{
 
 
 
 

 
 
 
 
d𝐼𝑞𝑠

d𝑡
= −

1−σ

σ
𝑃0Ω𝐼𝑑𝑠 −

1

σ𝑇s
𝐼𝑞𝑠 −

1−σ

σ
𝑃0Ω𝐼𝑑𝑟

′ +
1−σ

σ.𝑇𝑟
𝐼𝑞𝑟
′ +

𝑉𝑞𝑠

σ𝐿𝑠
,

d𝐼𝑑𝑟
′  

d𝑡
=

1

σ𝑇𝑠
𝐼𝑑𝑠 −

1

σ
𝑃0Ω𝐼𝑞𝑠 −

1

σ𝑇𝑟
𝐼𝑑𝑟
′ −

1

σ
𝑃0Ω. 𝐼𝑞𝑟

′ −
𝑉𝑑𝑠

σ𝐿𝑠
,

d𝐼𝑑𝑠

d𝑡
= −

1

σ𝑇𝑠
𝐼𝑑𝑠 +

1−σ

σ
𝑃0Ω𝐼𝑞𝑠 +

1−σ

σ.𝑇𝑟
𝐼𝑑𝑟
′ +

1−σ

σ
𝑃0Ω𝐼𝑞𝑟

′ +
𝑉𝑑𝑠

σ𝐿𝑠
,

d𝐼𝑞𝑟
′

d𝑡
=

1

σ
𝑃0Ω𝐼𝑑𝑠 +

1

σ𝑇𝑠
𝐼𝑞𝑠 +

1

σ
𝑃0Ω𝐼𝑑𝑟

′ −
1

σ𝑇r
𝐼𝑞𝑟
′ −

𝑉𝑞𝑠

σ𝐿𝑠
,

dΩ

d𝑡
=

1

𝐽
(1 − σ)𝐿𝑠(𝐼𝑞𝑠𝐼𝑑𝑟

′ − 𝐼𝑑𝑠𝐼𝑞𝑟
′ ) −

𝐵Ω

𝐽
.

 (9) 

where: 

σ = 1 −
𝐿𝑚
2

𝐿𝑠𝐿𝑟
,     𝑇𝑟 =

𝐿𝑟

𝑅𝑟
,   𝑇𝑠 =

𝐿𝑠

𝑅𝑠
,            (10) 

and P = [, Tr Ls Ts J B]T represents the parameter vector. 

This vector is determined using only the measured 

current and the corresponding phase voltage, applied to the 

motor of a transient from standstill to steady state 

operation. 

4. RESULTS 

 To highlight the performance of the SDAs and ESDA, 

they are applied to perform, at the same time, the electrical 

and mechanical parameters of the IM. Then, the quadratic 

error S is minimized by the SDAs and ESDA. 

S = ∑ (𝐼𝑚𝑖 − 𝐼𝑐𝑖)
2,𝑛

𝑖=1                        (11) 

where Imi is the measured current and Ici is the computed 

current. The above developed algorithms’ performances are 

tested using both simulated and measured data for the 

identification method [5]. 

4.1 SIMULATED DATA 

The developed program and identification approach are 

verified by using the simulated data, which is obtained for a 

given IM with known parameters and fed with a sine voltage. 

The simulated data are computed from the system (9) with the 

fourth-order Runge-Kutta method. The data are given by the 

sinusoidal voltage supply and the corresponding calculated 

current (Fig. 4). 

 
(a)                                                          (b) 

Fig. 4 – (a) Voltage supply; (b) Calculated stator current. 

Table 1 summarizes the setting parameters of ESDA and 

SDAs for different spiral radius and rotational angle values. 
Table 1 

ESDA and SDAs setting parameters for simulated data  

Algorithms Radius and angle 
Set of 

points 

Maximum number of 

iterations 

ESDA1 

   3/,85.0,  =llr  
   2/,95.0,  =ulur  
   80,15, 21 =CC  

200 100 

SDA1    4/,95.0,  =r  200 100 

SDA2    2/,98.0,  =r  200 100 

SDA3    5/,85.0,  =r  200 100 

 

The parameter identification results using SDA1, SDA2, 

SDA3, ESDA1, GA, and PSO are given in Table 2. 

Table 2 

Results of simulated parameters. 

Parameters 
Given 

parameters 
ESDA1 SDA1 SDA2 SDA3 GA PSO 

 0.09 0.09 0.032 0.033 0.033 0.029 0.089 

Tr (ms) 123 122.9 451.53 340.71 343.65 375.45 123.23 

Ts (ms) 159 158.9 422.17 383.65 452.14 488.93 159.21 

Ls (mH) 0.054 0.054 0.142 0.123 0.203 0.173 0.054 

J (kg.m2) 0.038 0.038 0.033 0.037 0.041 0.042 0.038 

B 

(N.m.s/Rd) 
0.001 0.001 0.007 

 

0.015 0.045 0.001 0.001 

 

By the ESDA1, the estimated parameters are very close to 

the given parameters, as shown in Table 2. Then, the 

convergence of ESDA1 and PSO is confirmed. But the 

estimated electrical  parameters by SDA1, SDA2, SDA3, and 

GA are far from the given parameters. When their estimated 

mechanical parameters are near the given parameters. 

Consequently, the results showed premature convergence of 

SDA1, SDA2, SDA3, and GA, with all being trapped in 

local minima. Figure 5 (a-f) illustrates the estimated 
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parameters’ evolution versus the number of iterations. 

 
(a)                                                              (b) 

 
(c)                                                          (d) 

 
(e)                                                           (f) 

Fig. 5 – Estimated parameters evolution by SDA1, SDA2, SDA3, ESDA1, 

GA, and PSO. 

The estimated parameters evolution confirms the 

convergence of the ESDA1 and PSO, with the premature 

convergence of the SDA1, SDA2, SDA3, and GA. It can be 

noticed that the convergence of ESDA1 and PSO started 

from the 20th and 80th iteration, respectively. Then, the 

ESDA1 performance shows high convergence speed. 

4.2 MEASURED DATA 

Tests are performed on motor M, characterized by 4 

poles, 220/380 V, and 1.5 kW. The current and the phase 

voltage given in Fig.7 are simultaneously measured using 

the experimental setup given in Fig. 6. 

INDUCTION

MACHINE

VOLTAGE 

SENSOR

PC

CURRENT 

SENSOR

 INTERFACE

CARD (DSP)

KEYBOARD

Z

k

XY

N

 

Fig. 6 – Measurement setup. 

 
(a)                                                            (b) 

Fig. 7 – Motor M; (a) Measured voltage; (b) Measured current. 

A motor parameters estimation method is based on the 

developed programs of ESDA and SDAs with different 

values of radius and angle given in Table 3. 

Table3 

ESDA and SDAs setting parameters for measured data. 

Algorithms Radius and angle Set of 

points 

Maximum number 

of iterations 

ESDA2    5/,8.0,  =llr  
   2/,98.0,  =uur  

   80,10, 21 =CC  

200 100 

SDA1    4/,95.0,  =r  200 100 

SDA2    2/,98.0,  =r
 

200 100 

SDA4    5/,8.0,  =r  200 100 

Using the measured data, the estimated parameters for 

motor M are given in Table 4. 

Table 4 

Estimated parameters. 

Parameters ESDA2 SDA1 SDA2 SDA4 GA PSO 

 0.069 0.072 0.0265 0.0209 0.024 0.069 

Tr (ms) 135.15 129.18 285.81 502.18 422.31 134.19 

Ts (ms) 189.55 182.43 535.21 586.64 560.38 188.82 

Ls (mH 87.21 83.58 38.14 31.14 26.33 87.01 

J (kg.m2) 0.0353 0.0350 0.0107 0.0083 0.0362 0.0354 

B 
(N.m.s/Rd) 

0.0097 0.0102 0.0053 0.0028 0.0092 0.0097 

 

The estimated parameters evaluation is carried out using 

the comparison by superposition between the calculated 

current and the measured one. This evaluation shows the 

algorithm convergence. The estimated parameters represent 

the minimum of the quadratic output error between the 

measured and computed currents. The computed current is 

acquired by numerical resolution of the nonlinear system 

(9) by means of the fourth-order Runge-Kutta method using 

the estimated parameters given in Table 4.  

 

 
(e) 

Fig. 8 – Superposition of the measured current and calculated one with the 

estimated parameters to motor M; (a) ESDA2; (b) SDA4; (c) SDA2; (d) SDA1; 

(e) by PSO, by GA. 
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Figure 8 illustrates the matching of the measured current 

and the computed one with the identified parameters by 

ESDA2, SDA1, SDA2, SDA4, GA, and PSO for motor M. 

It allows us to show the convergence when the measured 

current and the computed one agree well in transient and 

steady states. Moreover, Fig. 8 shows the best matching of 

curves related to ESDA2 and SDA4 to ensure their 

convergence.  

About GA, the curve doesn’t match in the steady state 

only. But the curves related to SDA2 and SDA4 don’t 

agree well in the transient and steady state, and they are 

trapped in a local minimum. Also, the parameter variation 

versus the number of iterations for motor M, illustrated in 

Fig. 9, confirms the speed convergence. 

 

 

Fig. 9 – Parameters evolution of motor M; (a) of the leakage coefficient;  

(b) of Tr; (c) of Ls; (d) of Ts; (e) of J; (f) of B  

The estimated parameters evolution confirms the 

convergence of the ESDA2, PSO, and SDA1. It can be 

noticed that the convergence of ESDA2, PSO, and SDA1 

started from the 15th, 40th, and 80th iteration, respectively. 

Then, the ESDA2 performance shows a higher convergence 

speed than SDA1 and PSO, where SDA2 and SDA4 are 

stuck in a local minimum. 

4.3 STATISTICAL STUDY 

Each algorithm is executed 10 times. As a termination 

criterion, the maximum number of iterations is considered, 

which has been set to 100. In all simulations, the population 

size has been configured to 200.  

To evaluate the performance of all algorithms, the 

statistical results are presented in Table 5 for the given IM, 

including the mean and standard deviation of fitness values. 

Table 5 

Simulated results obtained by GA, PSO, SDA1, SDA2, SDA3, and 

ESDA1using fitness values. 

Algorithms Mean Standard deviation 

GA 1.322369557603000e+03 7.236734422254997e+02 

PSO 55.145737770000004 84.733397754501425 

SDA1 3.935917006284000e+03 2.911851558895321e+03 

SDA2 1.411874686054546e+03 1.212562445739074e+03 

SDA3 5.928601770146000e+03 4.563489867739208e+03 

ESDA1 54.880410530999995 62.554968601056878 

 

The ESDA1 had the lowest standard deviation of 

62.554968601056878, resulting in robust performance 

among the algorithms. The standard deviation and mean 

comparisons are depicted in Fig. 10 (a, b).  

 
(a) 

 
(b) 

Fig. 10 – Standard deviation comparison of algorithms (a) 
Mean comparison of algorithms (b). 

6. CONCLUSIONS 

This paper proposes an enhancement of SDA named 

ESDA, where the spiral radius and the rotational angle vary 

at a dynamic rate following nonlinear functions.  This aims 

to realize the trade-off between the exploration and the 

exploitation phases. To highlight the ESDA performance, it 

is compared to GA, PSO, and original SDA with different 

values of radius and angle from IM parameters 

identification. So, these parameters are determined 

simultaneously from the measured current and the 

corresponding phase voltage. This procedure uses the 

reference model method and relies on the SDAs, ESDA, 

GA, and PSO as a minimization technique. 

Based on simulated data, the results obtained from the 

ESDA1 have shown that this method can be successfully 

applied to identify the model parameters with a high degree 

of accuracy. The convergence of ESDA1 and PSO started 

from the 20th and 80th iteration, respectively. The results 

also show that ESDA1 converges to an optimal solution 

much more quickly than PSO, whereas ESDA2 and 

ESDA3 are trapped in local minima.  

Using measured data, the convergence of ESDA2, PSO, 

and SDA1 started from the 15th, 40th, and 80th iteration, 

respectively. The ESDA2 performance shows higher 

convergence speed than SDA1 and PSO, where SDA2, GA, 

and SDA4 converge prematurely. The simulated and 

measured data demonstrate that the proposed SDA shows 

the best optimization effectiveness compared to GA, PSO 

and the original SDAs in term of convergence speed. 
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NOMENCLATURE 
Vdr, Vqr     d-q axes rotor voltage  

Vds, Vqs     d-q axes stator voltage 

Idr, Iqr          d-q axes rotor current  

Ids, Iqs          d-q axes stator current 
Rs, Rr      stator and rotor  

               resistances (Ω) 

Ω             mechanical velocity   
               (Rd/s) 

Lm          mutual inductance (H) 

Ls, Lr      stator and rotor    

               inductances (H) 

J              rotor inertia (kg.m2) 

B             viscous friction coefficient  

                (N.m.s/Rd) 

σ              leakage coefficient 

Tr             rotor time constant (s) 
Ts             stator time constant (s) 

Po             number of pole pairs 
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