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ENHANCED SPIRAL DYNAMIC ALGORITHM WITH APPLICATION
TO INDUCTION MOTOR PARAMETERS IDENTIFICATION
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The spiral dynamic algorithm (SDA) is a metaheuristic characterized by the setting of parameters (spiral radius and rotational
angle). The drawback of all meta-heuristic methods is the premature convergence, which occurs when a trade-off between
exploitation and exploration is not maintained. SDA provides a good exploitation phase because all points are attracted to the best
solution. But the exploration phase is poor when the spiral parameters are set to constant values during the whole search process.
To improve SDA performance and circumvent premature convergence, this paper proposes an enhanced SDA in which the
parameter settings vary simultaneously according to nonlinear functions. The effectiveness of the enhanced SDA algorithm (ESDA)
was proven by identifying the electrical and mechanical induction motor (IM) parameters. This is achieved using the reference
model method, in which the estimated parameters correspond to the minimum of the objective function. A comparison is
established between the ESDA, SDAs, genetic algorithm (GA), and particle swarm optimization (PSO). The developed program and
the estimation approach are tested using simulated and measured data from an IM (1.5 kW).

1. INTRODUCTION

Optimization methods have attracted the attention of
many researchers for solving many problems in various
broad fields. In general, the deterministic methods
converge to a local minimum [1]. Fortunately, meta-
heuristics are a technique for overcoming the drawbacks of
these methods. They intend to be suitable for global
optimization [2] due to their random nature, allowing a
jump out of local minima. The meta-heuristic techniques
such as balanced aquila optimiser (BAO) [3], artificial
ecosystem-based optimisation (AEO) algorithm [4], genetic
algorithm (GA) [5], firefly (FA) [6], marine predators
optimizer (MPO) [7], particle swarm optimization (PSO)
[8], Dragonfly algorithm (DA) [9], and spiral optimization
technique [10] have led to its application to optimization
problems of different engineering areas.

This paper focuses on the spiral dynamic algorithm
(SDA), which is inspired by spiral phenomena in nature
[11]. This algorithm is a straightforward search method. It
includes a set of points rotating around the best point
represented as the common center. The SDA’s trajectory is
characterized by the setting parameters (spiral radius r and
rotational angle ¢). It has a good exploitation strategy and
a poor exploration strategy when the spiral parameters are
set to constant values during the whole search process [12].
For more, the good balance of exploration-exploitation will
usually ensure that the global optimality is achieved.

The drawback of all meta-heuristic methods is the
premature convergence, which occurs when a trade-off
between the exploitation and exploration is not maintained
[13]. Much research has been conducted to enhance the
performance of these methods, such as hybridizing
optimization methods and primarily expanding adaptive
methods or incorporating analytical functions into the
algorithm [14—17]. In [14], an adaptive version of the spiral
dynamics algorithm 1is presented. The spiral radius
parameter is varied using analytical equations and an
associated fuzzy logic strategy. Nazir et al. [15] presented a
hybrid spiral dynamic bacterial. Hashim et al. [16]
enhanced the search diversity of the SDA using a chaotic-
maps pattern. In [17], an improved SDA for nonparametric
fuzzy logic is presented.

To avoid a risk of premature convergence and enhance

the effectiveness of SDA, this paper proposes an
enhancement of SDA named ESDA, where the spiral radius
and the rotational angle vary at a dynamic rate following
nonlinear functions. This aims to keep the balance between
exploration and exploitation strategies.

To highlight the proposed SDA performance, it is
compared to GA, PSO, and original SDA with different
values of radius and angle from induction motor (IM)
parameters identification based on the reference model
method [5, 18, 19]. A comparison is established between
the ESDA, GA, PSO, and SDAs. The developed programs
and the identification approach are verified by using the
simulated data, which is obtained for a given machine with
known parameters. The assessment is performed on IM’s
(1.5 kW) parameters estimation.

The rest of the paper is organized in the following order.
Section 2 describes a 2-dimensional spiral model for
generalization to an n-dimensional spiral model. The
original and enhanced SDA are detailed. Section 3 gives
the IM model. Section 4 confirms the ESDA performance
by the identification method with simulated and measured
data. Finally, section 5 draws some conclusions.

2. ORIGINAL AND ENHANCED SPIRAL DYNAMIC
ALGORITHM

This section presents the 2-dimensional spiral
mathematical model, which allows for the introduction of
the original SDA. The enhanced SDA is detailed.

2.1 A TWO-DIMENSIONAL SPIRAL
MATHEMATICAL MODEL

A two-dimensional spiral mathematical model is based

on two geometric transformations, as shown in Fig.1.
y

.. ¥,
{x,2)
(xX1,)1)

X0, yo)

a=

X

Fig. 1 — Spiral transformation on x-y plane.

The first transformation rotates a point (xi,)1)
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counterclockwise around the origin point (xo,00) by an R™ (¢, ;)
angle ¢, ,, resulting in another point (xo,y0)". This point is 1 e 0 0 - 0 0
then moved to a new position (xo,10)' through a homothetic : : :
transformation. 0 1 0 0
The spiral mathematical model can be expressed as 0 - cos@;; - —sing@;; -+ 0 ©6)
follows: =1: : : : : ,
Xy — Xg X1 — X 0 0 1 0
(s - yo) =7 RO(@12) (5, -3, sing;, cos@; ; 0
(1 : : : N “od
0 .- 0 0 0 0 e 1

() = RO (0:2) (53) =R 012) () + 3)

It can be noticed that the point (xo,y0)' can be given by an
identity matrix as below:

G =G DG
So, the equation (1) can be rewritten as

() =7 R®(012)(;}) - (" RP(0: - D) (3). 3)

(@)

The rotation matrix is given by

RO (¢y,) = (COS“’LZ

—sing; ,
sing, ; '

COSQ1,2

where @ , represents the rotation angle around the origin
(%0,¥0 )5, (0 <@ < 211). The subscripts of an angle ¢ ,
indicate the direction of rotation on the x-y plane from point
(x1,¥1)¢ to point (x5, y5 ), and the sup script of the rotation
matrix R represents a 2-dimensional orthogonal coordinate
system; I represents the identity matrix; » is the homothetic
transformation rate, and it is bounded between 0 and 1. The
homothetic transformation rate is also named the spiral radius.

2.2 ORIGINAL SPIRAL DYNAMIC ALGORITHM (SDA)

Tamura and Yasuda introduced the original SDA [10, 11].
It is a meta-heuristic method based on spiral patterns in
nature. Its concept includes a set of points rotating around the
best point, defined as the common center, followed by a
homothetic transformation for each generation. Therefore, the
SDA performance depends on the static setting parameters
such as the spiral radius r and the rotational angle. The spiral
radius determines the dynamic step size of the spiral
trajectory from generation to generation. The rotational angle
affects the space between two points in the spiral path and its
shape [14]. The SDA mathematical model is obtained by the
generalization of a 2-dimensional spiral mathematical model
from an n-dimensional case given by eq. (4). All points move
in a spiral trajectory from one position to a new one.

xi(k+1)=r. R(n)((Pl,Z: ey (Pn—1,n)xi(k) - &)
—(T. R™ (‘Pl,z' T (Pn—l,n) - I)xhest (k).
where x;(k + 1) is a new position of the i point in the k™
iteration; x;(k) is the old position of i point in the k"
iteration; Xp.;(k) is the best position in the k” iteration;
R™ (12,913, @14 ., Pn_1,,) represents the composition
of the rotation matrix,

R(n)((Pl,z' R (pn—l,n)
= 1_[ R‘Eln—)i,n+1—j (‘Pn—i,n+1—j) .

An n-dimensional rotation matrix is written as follows:

)

where ; ; represents the rotational angle in the i/ plane;
SDA provides a good exploitation phase because all points
are attracted to the best solution. But the exploration phase
is poor when the spiral parameters are set to constant values
during the whole search process. Then, the trade-off
between exploitation and exploration is lost, and premature
convergence halts the SDA’s success. The following
section presents the enhanced SDA, which overcomes the
drawback of the original approach.

2.3 ENHANCED SPIRAL DYNAMIC ALGORITHM (ESDA)

Initially, the ESDA generates a set of points randomly.
The objective function evaluates the fitness value for each
point. So, a set of points is rotating around the best point
defined as the common center, followed by a homothetic
transformation. The setting parameters are modified until
the convergence criterion is satisfied. The ESDA proposes

the spiral radius and the rotational angle evolving
dynamically as the following expressions:
rl' i S Cl'
T(l) = Al(l - Cz)z + Bl' C1 <i < Cz, (7)
Tu' i > C2,
©y, i< Clv
(@) = {4,(i = C)* + By, (L <i<(Cy (®)
(pu, i > Cz,
with
—_N-"u —
L7 (- B, =m,
— P1-Pu _
2= (cll—cz)z . B, =q.

i designates the number of iterations; 7;,7;, represent the
variation interval of the spiral radius; @, ¢, represent the
variation interval of the rotation angles; C; designates the
starting point of the radius and angle of the proposed
functions variation, and C, designates the final point of the
radius and angle proposed functions variation.

The ESDA aims to foster the abilities of the exploration
and exploitation phases to find a global solution. Figure 2
shows the proposed dynamical evolution of the radius and
angle according to a nonlinear function. Figure 3 illustrates
the flowchart of ESDA.

r(i)
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Fig. 2 — The proposed nonlinear functions for:
(a) spiral radius; (b) rotational angle.

The nonlinear functions give the exploration phase the
possibility of progressing in time and scrutinizing the
search space widely while associating itself with a good
exploitation phase to achieve the best balance between
exploration and exploitation.

-

Generate an initial setof
points randomly
i=1. Nma

!

Evaluate fitness values of
each point

Generate new
Puoints by using *
Eq.(T) and (8}

Select commen center o be
the best point

—

Fig. 3 — Flowchart of the ESDA.

3. INDUCTION MACHINE MODEL

The simplifying assumptions for establishing a dynamic
model of IM are summarized as follows:
e Neglected saturation effect
e Neglected core losses
e Neglected skin effect
e Limitation to the first space harmonic
e Constant air gap
The IM equations [20] related to a reference linked to the
stator are given by:

dI, 1-o0 1 1-0 1-0 V,
-5 — _ "% _ = _ - ’ = Zas
I > Pyl 4 o lys . PoQly, + o, I + oLy’
dry, 1 1 1, 1 , Vs
dt oTs Ids c POQIqS oTy Idr c POQ' Iqr oLs’
dlas _ _ 1, 1o oy 1 p o Vas
a = on Iys + = PyQlys + o, Iy + - PoQlg, + oL’ 9)
dI,’I,- _1 1 1 ’ 1 . Vgs
P UPO.QIdS + cTSI‘IS + UPOQIdT py Loy oL’
do _ 1 , , BQ
w=;a- 0)Ls(Iysliy — Laslly) — -
where:
Lgn L‘r LS
0=1_LL’ TT=R_I TS:R_’ (10)
SHT T S

and P = [o, T, Ls T; J B]" represents the parameter vector.

This vector is determined using only the measured
current and the corresponding phase voltage, applied to the
motor of a transient from standstill to steady state
operation.

4. RESULTS

To highlight the performance of the SDAs and ESDA,
they are applied to perform, at the same time, the electrical
and mechanical parameters of the IM. Then, the quadratic
error S is minimized by the SDAs and ESDA.

S = Xt (mi — )%, (11)

where I,; is the measured current and /.; is the computed
current. The above developed algorithms’ performances are
tested using both simulated and measured data for the
identification method [5].

4.1 SIMULATED DATA

The developed program and identification approach are
verified by using the simulated data, which is obtained for a
given IM with known parameters and fed with a sine voltage.
The simulated data are computed from the system (9) with the
fourth-order Runge-Kutta method. The data are given by the
sinusoidal voltage supply and the corresponding calculated
current (Fig. 4).
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Fig. 4 — (a) Voltage supply; (b) Calculated stator current.

Table 1 summarizes the setting parameters of ESDA and

SDAs for different spiral radius and rotational angle values.
Table 1
ESDA and SDAs setting parameters for simulated data

Algorithms | Radius and angle Set. of Maxz@um n.umber of
points iterations

[n.6]=10.85, 7/3]

ESDAL [..0.]=[0.95, #/2] 200 100
[c..c,]=[15,80]

SDAI [6]=10.95, z/4] 200 100

SDA2 [r.6]=[0.98, /2] 200 100

SDA3 [r.0]=[0.85, /5] 200 100

The parameter identification results using SDA1, SDA2,
SDA3, ESDAI, GA, and PSO are given in Table 2.

Table 2
Results of simulated parameters.
Parameters Given ESDAI SDAI SDA2 | SDA3 GA PSO
parameters
- 0.09 0.09 0.032 0.033 | 0033 | 0029 | 0.089
Tr (ms) 123 122.9 45153 | 34071 | 34365 | 37545 | 12323
Ts (ms) 159 158.9 422.17 | 383.65 | 452.14 | 488.93 | 159.21
Ls (mH) 0.054 0.054 0.142 0123 | 0203 | 0.173 | 0.054
J (kgm?) 0.038 0.038 0.033 0.037 | 0041 | 0042 | 0.038
B

(Nm.s/Rd) 0.001 0.001 0.007 0015 | 0045 | 0001 | 0.001

By the ESDA1, the estimated parameters are very close to
the given parameters, as shown in Table 2. Then, the
convergence of ESDA1 and PSO is confirmed. But the
estimated electrical parameters by SDA1, SDA2, SDA3, and
GA are far from the given parameters. When their estimated
mechanical parameters are near the given parameters.
Consequently, the results showed premature convergence of
SDA1, SDA2, SDA3, and GA, with all being trapped in
local minima. Figure 5 (a-f) illustrates the estimated
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parameters’ evolution versus the number of iterations.

A motor parameters estimation method is based on the

= —om developed programs of ESDA and SDAs with different
) [===SDA1 a SDaz2 . . .
g% —soaz || 0% s values of radius and angle given in Table 3.
205 - ESDA1 s T een
goe g% Table3
%“ 3 o ESDA and SDAs setting parameters for measured data.
E D 028 " " "
3 [C? B LR SRR FSPRY PP s Algorithms Radius and angle Set of Maximum number
"0 """"""""""""" . points of iterations
a 20 40 60 80 10 0 20 40 . .;;p . B0 100 ESDA?2 [r,, ,]: [OAS, 71/5] 200 100
Number of feratons Number of farations [.6,]=[0.98, z/2]
(@) (b) [c..C,]=t0, 80]
—son SDA1 [r.6]=[0.95, 7/4] 200 100
S SDA2 Ir.0]=[0.98.z/2] 200 100
=2 SDA4 [r,6]=[0.8, /5] 200 100
Using the measured data, the estimated parameters for
PRRTTYD motor M are given in Table 4.
>>>>>>>>>>>>>>>>>>>>>>> Table 4
20 40 60 8 10 10 60 80 100 .
Number of teratons Number of erations Estimated parameters.
(d Parameters | ESDA2 | SDA1 | SDA2 | SDA4 | GA PSO
o = c 0.069 | 0.072 | 0.0265 | 0.0209 | 0.024 | 0.069
05 —son Tr (ms) 135.15 129.18 285.81 502.18 422.31 134.19
0 - ~£s0A1 Ts (ms) 189.55 182.43 535.21 586.64 560.38 188.82
g, 0 Ls(mH | 87.21 | 83.58 | 38.14 | 31.14 | 2633 | 87.01
g( r J (kg.m?) 0.0353 0.0350 0.0107 0.0083 0.0362 0.0354
2 5
e (N.m.s/Rd) 0.0097 0.0102 0.0053 0.0028 0.0092 0.0097
) 20 40 |l\) lll\l 100 ”l' z 20 a0 60 80 100
u..m(:; serations wm(f) The estimated parameters evaluation is carried out using
) ) . the comparison by superposition between the calculated
Fig. 5 — Estimated parameters evolution by SDA1, SDA2, SDA3, ESDAI, . .
GA. and PSO current and the measured one. This evaluation shows the

The estimated parameters evolution confirms the
convergence of the ESDA1 and PSO, with the premature
convergence of the SDA1, SDA2, SDA3, and GA. It can be
noticed that the convergence of ESDA1 and PSO started
from the 20" and 80" iteration, respectively. Then, the
ESDA1 performance shows high convergence speed.

4.2 MEASURED DATA

Tests are performed on motor M, characterized by 4
poles, 220/380 V, and 1.5 kW. The current and the phase
voltage given in Fig.7 are simultaneously measured using
the experimental setup given in Fig. 6.
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Fig. 7 — Motor M; (a) Measured voltage; (b) Measured current.
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algorithm convergence. The estimated parameters represent
the minimum of the quadratic output error between the
measured and computed currents. The computed current is
acquired by numerical resolution of the nonlinear system
(9) by means of the fourth-order Runge-Kutta method using
the estimated parameters given in Table 4.
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Fig. 8 — Superposition of the measured current and calculated one with the
estimated parameters to motor M; (a) ESDA2; (b) SDA4; (c) SDA2; (d) SDAL;
(e) by PSO, by GA.
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Figure 8 illustrates the matching of the measured current
and the computed one with the identified parameters by
ESDA2, SDAI, SDA2, SDA4, GA, and PSO for motor M.
It allows us to show the convergence when the measured
current and the computed one agree well in transient and
steady states. Moreover, Fig. 8 shows the best matching of
curves related to ESDA2 and SDA4 to ensure their
convergence.

About GA, the curve doesn’t match in the steady state
only. But the curves related to SDA2 and SDA4 don’t
agree well in the transient and steady state, and they are
trapped in a local minimum. Also, the parameter variation
versus the number of iterations for motor M, illustrated in
Fig. 9, confirms the speed convergence.
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Fig. 9 — Parameters evolution of motor M; (a) of the leakage coefficient;
(b) of Tr; (c) of Ls; (d) of Ts; (e) of J; (f) of B

The estimated parameters evolution confirms the
convergence of the ESDA2, PSO, and SDAI. It can be
noticed that the convergence of ESDA2, PSO, and SDA1
started from the 15", 40™ and 80" iteration, respectively.
Then, the ESDA2 performance shows a higher convergence
speed than SDA1 and PSO, where SDA2 and SDA4 are
stuck in a local minimum.

4.3 STATISTICAL STUDY

Each algorithm is executed 10 times. As a termination
criterion, the maximum number of iterations is considered,
which has been set to 100. In all simulations, the population
size has been configured to 200.

To evaluate the performance of all algorithms, the
statistical results are presented in Table 5 for the given IM,
including the mean and standard deviation of fitness values.

Table 5

Simulated results obtained by GA, PSO, SDA1, SDA2, SDA3, and
ESDA lusing fitness values.

Algorithms Mean Standard deviation
GA 1.322369557603000e+03 7.236734422254997e+02
PSO 55.145737770000004 84.733397754501425

SDAI 3.935917006284000e+03 2.911851558895321e+03
SDA2 1.411874686054546e+03 1.212562445739074¢+03
SDA3 5.928601770146000e+03 4.563489867739208e+03
ESDA1 54.880410530999995 62.554968601056878

The ESDA1 had the lowest standard deviation of
62.554968601056878, resulting in robust performance
among the algorithms. The standard deviation and mean
comparisons are depicted in Fig. 10 (a, b).
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Fig. 10 — Standard deviation comparison of algorithms (a)
Mean comparison of algorithms (b).

6. CONCLUSIONS

This paper proposes an enhancement of SDA named
ESDA, where the spiral radius and the rotational angle vary
at a dynamic rate following nonlinear functions. This aims
to realize the trade-off between the exploration and the
exploitation phases. To highlight the ESDA performance, it
is compared to GA, PSO, and original SDA with different

values of radius and angle from IM parameters
identification. So, these parameters are determined
simultaneously from the measured current and the

corresponding phase voltage. This procedure uses the
reference model method and relies on the SDAs, ESDA,
GA, and PSO as a minimization technique.

Based on simulated data, the results obtained from the
ESDAL1 have shown that this method can be successfully
applied to identify the model parameters with a high degree
of accuracy. The convergence of ESDA1 and PSO started
from the 20th and 80th iteration, respectively. The results
also show that ESDA1 converges to an optimal solution
much more quickly than PSO, whereas ESDA2 and
ESDA3 are trapped in local minima.

Using measured data, the convergence of ESDA2, PSO,
and SDAI1 started from the 15", 40% and 80" iteration,
respectively. The ESDA2 performance shows higher
convergence speed than SDAT1 and PSO, where SDA2, GA,
and SDA4 converge prematurely. The simulated and
measured data demonstrate that the proposed SDA shows
the best optimization effectiveness compared to GA, PSO
and the original SDAs in term of convergence speed.
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NOMENCLATURE

Var, Vo d-q axes rotor voltage B viscous friction coefficient
Vi, Vg d-q axes stator voltage (N.m.s/Rd)
Ig 1, d-q axes rotor current o leakage coefficient
Iy, 1, d-q axes stator current T, rotor time constant (s)
R, R.  stator and rotor Ty stator time constant (s)

resistances (£2) P, number of pole pairs
Q mechanical velocity

(Rd/s)
L, mutual inductance (H)
L, L, stator and rotor

inductances (H)
J rotor inertia (kg.m?)
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