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EFFECT OF DEFECT GEOMETRY IN A COMPOSITE ON
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This work focuses on the study of the effect of the physical properties of a random-type composite material and the geometric
shape of defects on the reliability analysis of an inspection device using non-destructive testing. Two types of defect
geometries are considered: rectangular and triangular. A stochastic finiteelement method (SFEM) was used to solve the 2D
electromagneticequation in a cylindrical structure. The differential sensor recovers the impedance change signal in the fault zone.
The signal isanalyzed and compared for the two types of geometries. Post-processing is started to assess the reliability of our
structure by determining the reliability index and the probability of failure. The results obtained for random rectangular and
triangular shapes are presented, along with a comparison between the stochastic finite element methodand the Monte Carlo
method. A good agreement is observed. The results show that the proposed SFEM model offers post-processing in addition to
analysis, compared to the Monte Carlo method, which requires numerous draws for analysis and relieson the inverse problem

to determine the actual values of the physical property considered.

1. INTRODUCTION

The engineering field, constantly evolving and seeking
innovation, is increasingly interested in an emerging material
that has become, in a few years, a significant class of
advanced materials for high-performance applications:
composite materials.

These materials are widely used in various industries,
including electronics, electrical engineering, construction,
aerospace, and the automotive sector. Composites are now
considered a viable alternative to traditional materials,
including metals, ceramics, and steel. However, these
conventional materials are gradually being replaced by
composites due to their many advantages, including their
lightweight properties, corrosion resistance, design flexibility,
high fatigue resistance, and reduced maintenance costs [1].

A composite material comprises two or more distinct
components that are bonded together, complementing each
other to achieve superior performance. Reinforcements are
embedded in a matrix that serves as a binder. The matrix can
be polymer, metallic, or ceramic [1,2].

Composites can come in various structural forms, such as
single-layer structures, which consist of one or more
identical layers assembled without a specific orientation.
Sandwich structures comprise two thin, rigid outer layers
enclosing a thick, fragile core. Laminates consist of several
layers with fibers oriented according to a defined reference
frame [3,4].

However, composite materials are likely to present defects
throughout their life cycle despite their advantages. Non-
destructive testing (NDT) methods are used for inspection and
monitoring to ensure the quality and integrity of materials.

These methods detect and characterize flaws in the

composite, such as delamination, porosity, and fiber
rupture [5,6].

There are numerous non-destructive testing (NDT)
methods, such as ultrasonic testing (UT), radiographic
testing (RT), and eddy current testing (ECT), which are
widely used for inspection to assess material quality without
causing any damage [7-9].

The study of practical systems, such as electromagnetic

systems, usually requires knowing the data input to obtain
the output information. Physical properties such as electrical
conductivity, magnetic permeability, and electrical
permittivity must be known at the beginning of problem
treatment [10-15].

The shapes of the defects are also needed in the inspection
process. In this situation, input data are often used with some
uncertainty [15].

The stochastic finite element method has several
advantages, particularly in the study and analysis of
subsystem sensitivity in a single step [13, 16].

The present work focuses on the study of the reliability of non-
destructive testing devices when the defect involves uncertainty
in electrical conductivity [17—19] and the defect shape (rectangle
and triangle), which are considered random variables and
expanded in a series of Hermite polynomials [8,13].

The originality of the intrusive SFEM method used in this
study, compared with the reference [14], lies in its direct
integration of the uncertainties of several random variables by
selecting those to be incorporated into the finite element
equations. The polynomial chaos is determined for each type
of random variable, and its use is an advanced technique for
better numerical efficiency. Implementing the model required
reformulating the mathematical model to accommodate the
number of random variables to be considered.

The novelty of this study lies in its treatment of two
random variables of physical and dimensional nature
simultaneously. The calculation code is more robust. It
addresses the reliability and the probability of failure for the
two geometric shapes of the defect, and comparisons are
made. The incidence of the defect's shape has been
highlighted.

The stochastic finite element code is developed under the
MATLAB package, considering the non-destructive testing
technique by eddy currents.

2. STOCHASTIC ELECTROMAGNETIC MODE
2.1 HERMITE POLYNOMIALS

If we consider the variable X of random type, having as
input parameters the vector & of P independent stochastic
variables. It can be shown that if X has a finite variance, then
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X can be written as a linear combination of multivariate
polynomials based on the Hermite polynomials
[10,13,20,22]

p-1
1
Y:Zajﬂj(zl,...,zn) o
=1

p, represents the degree of polynomial chaos, {H; (X),j=0...,

oo} are Hermite polynomials, {q;,j=0..., 0} are coefficients

of Hermite polynomials where & is a reduced centred

Gaussian random variable (R.C.G.R.V) with the following
density of probability [13—15]:

®(g) = p=e 7 . )

In eq. (1) a; are unknown coefficients to be determined.

We notice that all Hermite polynomials are orthogonal with

respect to the Gaussian measure according to the
orthogonally property [13].
E[H,(8(0)) Hyp (8(8))]=0  if nn# mm (3)

Here E [.] denotes the mathematical expectation. For the
computation of the coefficients of Hermite polynomials, the
work develops the method of projection. Thus, the
coefficients of Hermite polynomials are given by the
following expression [10,5].

_ ElgH(®)]
i! 4)
The identification of the Hermite polynomial coefficients

in the case of isoprobabilistic transformation is performed
using the next formula [13]:

a; = [ BT (@0)H; () @()dt )

2.2 RANDOM GEOMETRY DEFINITION
In the case of random geometry, the two random variables
Gheight a0d  Gyigen Of chaos polynomial of order 2 is
expressed as followis [8,13]:

i

‘gheight] _ [a01 a, 0 a, 0 0 ] %
apy 0 a, 0 0 ay Ei ) (6)
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5
When g follows a Gaussian law of average p,, and of
standard deviation a4, the calculation of the coefficients of
the development (6) is as follows:

g width

Ay = Ugy (7)
A1 = Opey ®
aj=0 if j£1 )

Qo1, 11, 412 and coefficients agy,, a;,, a,, are obtained
from (2), (3) and (4) for each random variable gpe;gn; and
Gwiane- The projection into the basis of the Hermite
polynomials of the dimensions of the defects, the height and
the width, leads to [13]:
= S0y Hj G B (10)

Gheight

Gwiaeh = Zjy Wy Hj (&, &), (11)

h; and w; are the random coefficients of defect geometry to
be searched [8].

3. STOCHASTIC SYSTEM CONSTRUCTION

3.1 DETERMINISTIC ELECTROMAGNETIC
FORMULATION

The electromagnetic formulation for the deterministic
problem is given as follows [13,20]:

(12)

rot A(vsTot A 4, ) + jo,wA, = J;,
ATZ: magnetic vector potential magnetic along the z direction
w = 2nf
v,: absolute magnetic reluctivity [H/m] !
f : frequency [Hz]
o,: electrical conductivity [S.m']
]S_Z): source current density next z [A / m?]

The finite element formulation leads, considering
homogeneous Dirichlet boundary conditions, to the matrix
system, whose elements are as follows:

[M] + jw[NDIA,] = [F] (13)

The elements associated with the matrix and vectors of the

system of equations are given by:

My; = [, v Va,Va; d Q, (14)
Nij = [f, o5 a;a;d Q, (15)
Fi = ffg a;Jsz A, (16)
[A,] = [Ag1, Azg, oo Agy]' (17)

3.2 PROJECTION OF RANDOM VARIABLES

The projection into the basis of Hermite polynomials of
random variables with the combination of eq. (10) and (11)
allow the construction of the stochastic linear system. The
non-destructive testing problem of interest is elaborated
considering that the current density of the source and the
electrical conductivity of the medium are given.

The stochastic linear finite element system is constructed
after having carried out the projection into the basis of the
Hermite polynomials of the random variables considered
below.

The vector potential A, is the unknown, and the electrical
conductivity o, . The projection in the basis of Hermite
polynomials gives the following expressions [13,15]

na (18)
A, = Z Ay Wi (&, 8m)
j=0
n

A (19)
Os = Z osi Wi(§1)
i=0

n,=p-—1
By exploiting eq. (10), (11), (18), (19), our stochastic
system is obtained as follows [13]:

(M + jw[N*D[43] = [F*],
FEE =S5 (M + joNE) Ay,

(20)

21



3 Zehor Mohellebi et al.

479

st _
Mj = x0ji Mo,

J (22)

t _ yp-1 t
Nje = X¥iso xij Ni°™. 23)

M Nji , Fgt are respectively the random linear matrices
and the source vector related to the resolution of the problem,
withk =0,...,p —1;

il k!
[+ k), (J*k—10\, (k+i—]),
2 ’ 2 ’ 2 ’
if i+j+k pairand ke [|i—j|,i+/]]
else 0

Cijk =

24

After integrating all the random, geometric and physical
variables given above, we obtain the following algebraic
system:

25
Lk = Mji + joNji @)
And the associated matrix system:
B 1% Lh)fAe] (R y
Lst Lst LSt A = | F. ( )
01 11 21 z1 1
Ly Ly L Al LR

3.3 ELECTRICAL CONDUCTIVITY

The electrical conductivity of a ply according to
referential is expressed by [10,18]:

OgL, 0 0
Ospli = [ 0 OsT 0
0 0

@7

Osz

4. STUDY DEVICE

The study device is a system consisting of a single-layer
laminated composite plate (CFRP) with a defect in a
differential sensor; the parameters associated with the device
are listed in Table 1[12]. The data presented in Table 1 are
provided by the JSAEM#Problem1 Benchmark, which was
used for the validation of the stochastic finite element model
for the CFRP composite [12,15].

Table 1
Parameters of the study device.

Parameters Value

Coil
1.2 mm
3.2 mm

Height | 0.8 mm
width | Imm
Number of turns | 140
Current and frequency | 1/140 A;150kHz

Plate
40 mm
40 mm
1.25 mm

Inner diameter
Outer diameter

Height
Width
Thickness
Electric conductivity | {o,, =5%10% 04;=100, 0,,=50} S/m
Lift-off | 0.5 mm
Rectangular Defect
Length | 10 mm
Width | 0.2 mm
Depth | 0.125 mm
Triangular Defect
Base | 10 mm
Side | Smm
Depth | 0.125 mm

The finite element method is used when the plate to be
tested is a tube. The 2D axisymmetric analysis is appropriate
for cylindrical geometries such as tubes, because it simplifies
the problem by reducing the dimensionality while capturing
the essential characteristics of the material behavior and
defects. The study was conducted in 2D axisymmetric as
shown in Fig. 1 [12,19].The characterization of the defect is
carried out using the non-destructive testing technique of
eddy currents (NDT-EC).

.+ CFRP Plate
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r{m) ! 00 _.=*" Differential
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ad -
kK
L |

Fig. 1 — 2D axisymmetric NDT-EC device.

After projecting the electrical conductivity gs,;; , which is
the Gaussian random variable with mean value 05,0, and
standard deviation E;., into the basis of Hermite
polynomials, we arrive at the stochastic matrix of electrical
conductivity given as follows [14,15]:

OsL, Ogp, * Ec 0 (28)
Ospli = |OsL * Ey Ost 2% ag * B |,
0 2 x a5 * Eq. 2 %0y,

with gy, = Osplimoy>

The calculation of the impedance is obtained from the
electromagnetic energy of the coil,

The number of solutions for A and Z is equal to p (degree
of the polynomial chaos. The formulas for the real and
imaginary parts of Z are [13-15]:

N? (29)
Re(Z) = —]SZSCZa)ﬂSZT[r Im(A)dS,
N,? (30)
Im(Z) =]sz5c2 wﬂ; 2nrRe(A)dS,

The reliability index f is calculated from the limit state
function G. The latter is obtained from the healthy state of
the plate and the solutions obtained in the presence of defects
by the stochastic finite element method [8,13],[20]

B = Min\G, S

p—-1
. (32)
G =2y= ) 2P0 Emae
=0

Zo. Impedance of healthy plaque
Z ]-‘°: impedances with defect from stochastic calculation as a function of
the rank of the Hermite polynomial [13-20]

5. RESULTS AND DISCUSSION

This section aims to analyze and evaluate the performance
of the system under consideration. By exploiting the
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stochastic model constructed with the two random variables,
geometry and electrical conductivity, we obtain the
following simulation results:

The resolution is done by meshing the domain illustrated
in Fig. 2, then the distribution of the magnetic vector
potential A for p=0, one of the three stochastic solutions is
represented in Fig. 2.
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Fig. 2 — Geometric mesh. (a) triangular, (b) rectangular.

Figure 3 represents the distribution of the magnetic vector
potential A, which is the solution of our resolution system.
In (a), we observe the behavior of the solution A for a
rectangular shape defect, on the other hand in (b), we see the
distribution of the vector potential A, for the triangular shape
of the defect. The distribution in both cases of geometry is
consistent and meets the criteria of the distribution of a
magnetic vector potential.
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Fig. 3 — Magnetic vector potential distribution A,. (a) rectangular,
(b) triangular.

The electrical conductivity is distributed randomly
throughout the material for both geometries, with the aim of
comparing the influence of the geometric shape of the defect
on the variation of the impedance. Figure 4 illustrates this
influence. The impedance variation is provided in reduced
values between zero and 1 to be able to quantify the
difference between the two geometric shapes of the defect.
For the triangular shape of the defect, the impedance
variation is lower than for the rectangular shape.
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Fig. 4 — Impedance variation for two types of faults.

Figure 5 illustrates the evolution of the reliability index
when the sensor moves along the crack. It is noted that the
reliability index value is greater than 3 for the triangular
geometry. The recommended reliability index value in the
absence of defects should be greater than 4 [23,24].

According to Fig. 5, it is noted that the reliability index for
the rectangular shape of the defect is less than 3 in most of
the defect area, except for the 3 mm and 5 mm distances,
which results in a higher probability of the presence of the
defect.
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Fig. 5 — Reliability index B for triangle and rectangle defect shape.

Figure 6 compares the evolution of the probability of
failure in the zone of the defect for the two types of
geometries studied.

The reliability index results obtained for a triangular
defect are between 3.35 and 3.50, indicating a very small
probability of failure. But when the defect is rectangular, the
reliability index is essential and yields a critical value of the
likelihood of failure.

o7 ! ! ! .

I
Triangular defect
Rectangular defect

Probability of failure Pr

1 1.6 2 25 3 358 4
Reliability of Index

Fig. 6 — Probability of failure for both types of geometries

6. CONCLUSION

Given the current inspection and characterization of
composite materials, the relevance of proposing a defect
detection approach led us to develop a stochastic finite
element calculation code in a MATLAB environment.

This stochastic approach enables the distribution of
electrical conductivity in the suspected area to be represented
as a tensor, which is essentially a stochastic matrix. The latter
is composed of coefficients calculated from stochastic
polynomial chaos. The calculation code enables you to
obtain three solutions for a rank of two.

The results obtained for two types of defect geometries
enable us to conclude that when the standard deviation is
large, the electrical conductivity decreases, as evidenced by
a substantial variation in impedance, which characterizes the
presence of a defect due to a material deficiency compared
to a healthy sample.

The developed stochastic finite element model considers
the dimensions of the defect randomly, and simultaneously,
the physical parameter, electrical conductivity, is also
randomly distributed.

The computation times are extremely short compared to
other stochastic methods, such as the Monte Carlo method.

The comparison in terms of computation has been carried
out in previously published works whose references are
[14,15].

For a single sensor position, the stochastic finite element
code simulation consumes 38.21 s of time for 5810 nodes
and 10955 elements with a PC Intel Core i5-7500 (3.4 GHz)
and 8 GB of RAM. On the other hand, for the same operation
with the Monte Carlo simulation, the time is approximately
five times longer. Added is the need to go to the inverse
problem to recover the input data.

Our stochastic finite element model treats the sensitivity
and the probability of failure in a single step.
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