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This work focuses on the study of the effect of the physical properties of a random-type composite material and the geometric 

shape of defects on the reliability analysis of an inspection device using non-destructive testing. Two types of defect 

geometries are considered: rectangular and triangular. A stochastic finite element method (SFEM) was used to solve the 2D 

electromagnetic equation in a cylindrical structure. The differential sensor recovers the impedance change signal in the fault zone. 

The signal is analyzed and compared for the two types of geometries. Post-processing is started to assess the reliability of our 

structure by determining the reliability index and the probability of failure. The results obtained for random rectangular and 

triangular shapes are presented, along with a comparison between the stochastic finite element method and the Monte Carlo 

method. A good agreement is observed. The results show that the proposed SFEM model offers post-processing in addition to 

analysis, compared to the Monte Carlo method, which requires numerous draws for analysis and relies on the inverse problem 

to determine the actual values of the physical property considered. 

1. INTRODUCTION 

The engineering field, constantly evolving and seeking 

innovation, is increasingly interested in an emerging material 

that has become, in a few years, a significant class of 

advanced materials for high-performance applications: 

composite materials. 

These materials are widely used in various industries, 

including electronics, electrical engineering, construction, 

aerospace, and the automotive sector. Composites are now 
considered a viable alternative to traditional materials, 

including metals, ceramics, and steel. However, these 

conventional materials are gradually being replaced by 

composites due to their many advantages, including their 

lightweight properties, corrosion resistance, design flexibility, 

high fatigue resistance, and reduced maintenance costs [1]. 

A composite material comprises two or more distinct 

components that are bonded together, complementing each 

other to achieve superior performance. Reinforcements are 

embedded in a matrix that serves as a binder. The matrix can 

be polymer, metallic, or ceramic [1,2]. 

Composites can come in various structural forms, such as 

single-layer structures, which consist of one or more 

identical layers assembled without a specific orientation. 

Sandwich structures comprise two thin, rigid outer layers 

enclosing a thick, fragile core. Laminates consist of several 

layers with fibers oriented according to a defined reference 

frame [3,4]. 

However, composite materials are likely to present defects 

throughout their life cycle despite their advantages. Non-

destructive testing (NDT) methods are used for inspection and 

monitoring to ensure the quality and integrity of materials. 

These methods detect and characterize flaws in the 

composite, such as delamination, porosity, and fiber 

rupture [5,6].  

There are numerous non-destructive testing (NDT) 

methods, such as ultrasonic testing (UT), radiographic 

testing (RT), and eddy current testing (ECT), which are 

widely used for inspection to assess material quality without 

causing any damage [7–9].  

 The study of practical systems, such as electromagnetic 

systems, usually requires knowing the data input to obtain 

the output information. Physical properties such as electrical 

conductivity, magnetic permeability, and electrical 

permittivity must be known at the beginning of problem 

treatment [10–15].  

The shapes of the defects are also needed in the inspection 

process. In this situation, input data are often used with some 

uncertainty [15]. 
The stochastic finite element method has several 

advantages, particularly in the study and analysis of 

subsystem sensitivity in a single step [13, 16]. 

The present work focuses on the study of the reliability of non-

destructive testing devices when the defect involves uncertainty 

in electrical conductivity [17–19] and the defect shape (rectangle 

and triangle), which are considered random variables and 

expanded in a series of Hermite polynomials [8,13].  

The originality of the intrusive SFEM method used in this 

study, compared with the reference [14], lies in its direct 

integration of the uncertainties of several random variables by 

selecting those to be incorporated into the finite element 

equations. The polynomial chaos is determined for each type 

of random variable, and its use is an advanced technique for 

better numerical efficiency. Implementing the model required 

reformulating the mathematical model to accommodate the 

number of random variables to be considered. 

The novelty of this study lies in its treatment of two 

random variables of physical and dimensional nature 

simultaneously. The calculation code is more robust. It 

addresses the reliability and the probability of failure for the 

two geometric shapes of the defect, and comparisons are 

made. The incidence of the defect's shape has been 

highlighted. 

The stochastic finite element code is developed under the 

MATLAB package, considering the non-destructive testing 

technique by eddy currents. 

2. STOCHASTIC ELECTROMAGNETIC MODE 

2.1 HERMITE POLYNOMIALS 

If we consider the variable X of random type, having as 

input parameters the vector ξ of P independent stochastic 

variables. It can be shown that if X has a finite variance, then 
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X can be written as a linear combination of multivariate 

polynomials based on the Hermite polynomials 

[10,13,20,22] 

𝑌 = ∑𝑎𝑗

𝑝−1

𝑗=1

𝐻𝑗(ξ1, . . . , ξ𝑛) 

 

(1) 

p, represents the degree of polynomial chaos,{Hi (X), j = 0…, 

} are Hermite polynomials, {𝑎𝑗, j = 0…, } are coefficients 

of Hermite polynomials where ξ is a reduced centred 

Gaussian random variable (R.C.G.R.V) with the following 

density of probability [13–15]: 

Φ(g) =
1

√2π
e

−σ𝑧
2

2 .                       (2) 

In eq. (1) 𝑎𝑖  are unknown coefficients to be determined. 

We notice that all Hermite polynomials are orthogonal with 

respect to the Gaussian measure according to the 

orthogonally property [13]. 

𝑬[𝑯𝒏𝒏(𝛏(𝛉)) H𝒎𝒎 (𝛏(𝛉))]= 0     if  nn ≠ 𝒎𝒎 (3) 

Here E [.] denotes the mathematical expectation. For the 

computation of the coefficients of Hermite polynomials, the 

work develops the method of projection. Thus, the 

coefficients of Hermite polynomials are given by the 

following expression [10,5]. 

The identification of the Hermite polynomial coefficients 

in the case of isoprobabilistic transformation is performed 

using the next formula [13]: 

2.2 RANDOM GEOMETRY DEFINITION 

In the case of random geometry, the two random variables 

𝑔ℎ𝑒𝑖𝑔ℎ𝑡  and  𝑔𝑤𝑖𝑑𝑡ℎ of chaos polynomial of order 2 is 

expressed as followis [8,13]: 

[
𝑔

ℎ𝑒𝑖𝑔ℎ𝑡

𝑔
𝑤𝑖𝑑𝑡ℎ

] = [
𝑎01 𝑎11 0 𝑎12 0 0

𝑎02 0 𝑎12 0 0 𝑎22
]
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(6) 

When g follows a Gaussian law of average 𝛍𝒂𝒗 and of 

standard deviation 𝒂𝒅𝒆𝒗, the calculation of the coefficients of 

the development (6) is as follows: 

𝒂𝟎 = 𝛍𝒂𝒗 (7) 

𝒂𝟏 = 𝛔𝑫𝒆𝒗 (8) 

𝒂𝒋 = 𝟎         𝐢𝐟   𝒋 ≠ 𝟏  (9) 

𝑎01, 𝑎11, 𝑎12 and coefficients 𝑎02, 𝑎12 , 𝑎22 are obtained 

from (2), (3) and (4) for each random variable 𝑔ℎ𝑒𝑖𝑔ℎ𝑡 and 

𝑔𝑤𝑖𝑑ℎ𝑡. The projection into the basis of the Hermite 

polynomials of the dimensions of the defects, the height and 

the width, leads to [13]: 

 𝑔ℎ𝑒𝑖𝑔ℎ𝑡 = ∑ ℎ𝑗
𝑝−1
𝑗=1 𝐻𝑗(𝜉1, . . . , ξ𝑛). (10) 

𝑔𝑤𝑖𝑑𝑡ℎ = ∑ 𝑤𝑗
𝑝−1
𝑗=1 𝐻𝑗(ξ1, . . . , ξ𝑛). (11) 

ℎ𝑗 and 𝑤𝑗 are the random coefficients of defect geometry to 

be searched [8]. 

3. STOCHASTIC SYSTEM CONSTRUCTION 

3.1 DETERMINISTIC ELECTROMAGNETIC 

FORMULATION 

The electromagnetic formulation for the deterministic 

problem is given as follows [13,20]: 

 

rot ⃗⃗ ⃗⃗ ⃗⃗   ˄(𝜈𝑠rot⃗⃗⃗⃗  ⃗ ˄ 𝐴𝑧
⃗⃗⃗⃗   ) + 𝑗𝜎𝑠𝜔𝐴𝑧

⃗⃗⃗⃗  = 𝐽𝑠𝑧⃗⃗ ⃗⃗   (12) 

 

𝐴 𝑧: magnetic vector potential magnetic along the z direction 

ω = 2π𝑓 

𝜈𝑠: absolute magnetic reluctivity [H/m] -1 

𝑓 : frequency [Hz] 

σ𝑠: electrical conductivity [S.m-1] 

 𝐽𝑠𝑧⃗⃗ ⃗⃗  : source current density next z [A / m2] 

 

The finite element formulation leads, considering 

homogeneous Dirichlet boundary conditions, to the matrix 

system, whose elements are as follows: 

[𝑀] + 𝑗𝜔[𝑁])[𝐴𝑧] = [𝐹] (13) 

 

The elements associated with the matrix and vectors of the 

system of equations are given by:  

𝑀𝑖𝑗 = ∬ 𝜈𝑠Ω 
∇⃗⃗ 𝛼𝑖∇𝛼⃗⃗⃗⃗  ⃗

𝑗  𝑑 Ω, (14) 

𝑁𝑖𝑗 = ∬ 𝜎𝑠Ω 
𝛼𝑖𝛼𝑗𝑑 Ω, (15) 

𝐹𝑖 = ∬ 𝛼𝑖Ω 
𝐽𝑠𝑧  𝑑 Ω, (16) 

[Az] = [Az1, Az2, … . . Azn]
T
.              (17) 

3.2 PROJECTION OF RANDOM VARIABLES 

The projection into the basis of Hermite polynomials of 

random variables with the combination of eq. (10) and (11) 

allow the construction of the stochastic linear system. The 

non-destructive testing problem of interest is elaborated 

considering that the current density of the source and the 

electrical conductivity of the medium are given. 

The stochastic linear finite element system is constructed 

after having carried out the projection into the basis of the 

Hermite polynomials of the random variables considered 

below.  

The vector potential 𝐴𝑧 is the unknown, and the electrical 

conductivity σ𝑠 . The projection in the basis of Hermite 

polynomials gives the following expressions [13,15] 

Az = ∑ Azj

nA

j=0

Ψj(ξ1,⋯ , ξM) 

(18) 

σs = ∑σsi

nA

i=0

Ψi(ξ1) 

(19) 

𝑛𝐴 = 𝑝 − 1. 

By exploiting eq. (10), (11), (18), (19), our stochastic 

system is obtained as follows [13]: 

([𝑀𝑆𝑡] + 𝑗𝑤[𝑁𝑆𝑡])[𝐴𝑧
𝑠 ] = [𝐹𝑆𝑡], (20) 

𝐹𝑘
𝑠𝑡 = ∑ (𝑀𝑗𝑘

𝑠𝑡 + 𝑗𝜔𝑁𝑗𝑘
𝑠𝑡)

𝑝−1
𝑗=0 𝐴𝑧𝑗, (21) 

𝑎𝑖 =
𝐸[𝑔𝐻𝑖(ξ)]

𝑖!
 

 

(4) 

𝑎𝑖 = ∫ 𝐹𝑔
−1(Φ(𝑡))𝐻𝑖(𝑡)𝑔

φ(𝑡)d𝑡  (5) 
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𝑀𝑗𝑘
𝑠𝑡 = 𝑥0𝑗𝑘𝑀0, (22) 

𝑁𝑗𝑘
𝑠𝑡 = ∑ 𝑥𝑖𝑗𝑘

𝑝−1
𝑖=0 𝑁𝑖

𝑠𝑡. 
 

(23) 

𝑀𝑗𝑘
𝑠𝑡,𝑁𝑗𝑘

𝑠𝑡 , 𝐹𝑘
𝑠𝑡  are respectively the random linear matrices 

and the source vector related to the resolution of the problem, 

with 𝑘 = 0, . . . , 𝑝 − 1;  

𝐶𝑖𝑗𝑘 =
𝑖! 𝑗! 𝑘!

(
𝑖 + 𝑗 − 𝑘

2 ) ! (
𝑗 + 𝑘 − 𝑖

2 ) ! (
𝑘 + 𝑖 − 𝑗

2 ) !
      

    𝑖𝑓   𝑖 + 𝑗 + 𝑘   𝑝𝑎𝑖𝑟 𝑎𝑛𝑑  𝑘 ∈ [|𝑖 − 𝑗|, 𝑖 + 𝑗]
𝑒𝑙𝑠𝑒     0

 

 

(24) 

After integrating all the random, geometric and physical 

variables given above, we obtain the following algebraic 

system: 

𝐿𝑗𝑘
𝑠𝑡 = 𝑀𝑗𝑘

𝑠𝑡 + 𝑗𝜔𝑁𝑗𝑘
𝑠𝑡 

(25) 

And the associated matrix system: 

[

𝐿00
𝑠𝑡      𝐿10

𝑠𝑡      𝐿20
𝑠𝑡

 

𝐿01
𝑠𝑡      𝐿11

𝑠𝑡      𝐿21
𝑠𝑡

𝐿02
𝑠𝑡      𝐿12

𝑠𝑡      𝐿22
𝑠𝑡

] [

𝐴𝑧0

𝐴𝑧1

𝐴𝑧2

] = [

𝐹0

𝐹1

𝐹2

] 

  

(26) 

3.3 ELECTRICAL CONDUCTIVITY 

The electrical conductivity of a ply according to 

referential is expressed by [10,18]: 

σspli = [

σsL 0 0
0 σsT 0
0 0 σsZ

]. 

 

(27) 

4. STUDY DEVICE 

The study device is a system consisting of a single-layer 

laminated composite plate (CFRP) with a defect in a 

differential sensor; the parameters associated with the device 

are listed in Table 1[12]. The data presented in Table 1 are 

provided by the JSAEM#Problem1 Benchmark, which was 

used for the validation of the stochastic finite element model 

for the CFRP composite [12,15].  

Table 1  

Parameters of the study device. 

Parameters Value 

Coil 

Inner diameter  
Outer diameter 

Height 

width 

Number of turns 

Current and frequency 

1.2 mm 
3.2 mm 

0.8 mm 

1mm 

140 

1/140 A;150kHz 

Plate 

Height 
Width 

Thickness 

Electric conductivity  

Lift-off 

40 mm 

40 mm 

1.25 mm 

{𝜎𝑠𝐿 =5*104, 𝜎𝑠T=100, 𝜎𝑠z=50} S/m 

0.5 mm 

Rectangular Defect 

Length 

Width  
Depth  

10 mm 

0.2 mm 
0.125 mm 

Triangular Defect 

Base  

Side  

Depth   

10 mm 

5mm 

0.125 mm 

The finite element method is used when the plate to be 

tested is a tube. The 2D axisymmetric analysis is appropriate 

for cylindrical geometries such as tubes, because it simplifies 

the problem by reducing the dimensionality while capturing 

the essential characteristics of the material behavior and 

defects. The study was conducted in 2D axisymmetric as 

shown in Fig. 1 [12,19].The characterization of the defect is 

carried out using the non-destructive testing technique of 

eddy currents (NDT-EC). 

 

Fig. 1 – 2D axisymmetric NDT-EC device. 

After projecting the electrical conductivity 𝜎𝑠𝑝𝑙𝑖 , which is 

the Gaussian random variable with mean value 𝜎𝑠𝑝𝑙𝑖𝑚𝑜𝑦 and 

standard deviation 𝐸𝑡𝑐, into the basis of Hermite 

polynomials, we arrive at the stochastic matrix of electrical 

conductivity given as follows [14,15]: 

𝜎𝑆𝑝𝑙𝑖 = [

𝜎𝑠𝐿  𝜎𝑠𝐿 ∗ 𝐸𝑐 0

𝜎𝑠𝐿 ∗ 𝐸𝑡𝑐 𝜎𝑠𝑇 2 ∗ 𝜎𝑠𝐿 ∗ 𝐸𝑡𝑐

0 2 ∗ 𝜎𝑠𝐿 ∗ 𝐸𝑡𝑐 2 ∗ 𝜎𝑠𝑧

], 

(28) 

with 𝜎𝑠𝐿 = 𝜎𝑠𝑝𝑙𝑖𝑚𝑜𝑦, 

The calculation of the impedance is obtained from the 

electromagnetic energy of the coil, 

The number of solutions for A and Z is equal to p (degree 

of the polynomial chaos. The formulas for the real and 

imaginary parts of Z are [13-15]: 

𝑅𝑒(𝑍) = −
𝑁𝑐

2

𝐽𝑠𝑧𝑆𝑐
2 𝜔 ∬2𝜋𝑟 𝐼𝑚(𝐴)𝑑𝑆𝑐

𝑆

 
(29) 

𝐼𝑚(𝑍) =
𝑁𝑐

2

𝐽𝑠𝑧𝑆𝑐
2  𝜔∬2𝜋𝑟𝑅𝑒(𝐴)𝑑𝑆𝑐

 

𝑆

 
(30) 

The reliability index 𝛽 is calculated from the limit state 

function G. The latter is obtained from the healthy state of 

the plate and the solutions obtained in the presence of defects 

by the stochastic finite element method [8,13],[20] 

𝛽 = 𝑀𝑖𝑛√𝐺, 
(31) 

𝐺 = 𝑍0 − ∑𝑍𝑗
𝑖0𝛹𝑗(𝜉1, 𝜉2)𝑚𝑎𝑥

𝑝−1

𝑗=0

 

 

(32) 

Z0: Impedance of healthy plaque 

𝑍𝑗
𝑖0: impedances with defect from stochastic calculation as a function of 

the rank of the Hermite polynomial [13-20] 

5. RESULTS AND DISCUSSION 

This section aims to analyze and evaluate the performance 

of the system under consideration. By exploiting the 
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stochastic model constructed with the two random variables, 

geometry and electrical conductivity, we obtain the 

following simulation results: 

The resolution is done by meshing the domain illustrated 

in Fig. 2, then the distribution of the magnetic vector 

potential A for p=0, one of the three stochastic solutions is 

represented in Fig. 2. 

 
(a) 

 
(b) 

Fig. 2 – Geometric mesh. (a) triangular, (b) rectangular. 

Figure 3 represents the distribution of the magnetic vector 

potential A, which is the solution of our resolution system. 

In (a), we observe the behavior of the solution A for a 

rectangular shape defect, on the other hand in (b), we see the 

distribution of the vector potential A, for the triangular shape 

of the defect. The distribution in both cases of geometry is 

consistent and meets the criteria of the distribution of a 

magnetic vector potential.  

 
(a) 

 
(b) 

Fig. 3 – Magnetic vector potential distribution A0. (a) rectangular,  

(b) triangular. 

The electrical conductivity is distributed randomly 

throughout the material for both geometries, with the aim of 

comparing the influence of the geometric shape of the defect 

on the variation of the impedance. Figure 4 illustrates this 

influence. The impedance variation is provided in reduced 

values between zero and 1 to be able to quantify the 

difference between the two geometric shapes of the defect. 

For the triangular shape of the defect, the impedance 

variation is lower than for the rectangular shape. 

 

Fig. 4 – Impedance variation for two types of faults. 

Figure 5 illustrates the evolution of the reliability index 

when the sensor moves along the crack. It is noted that the 

reliability index value is greater than 3 for the triangular 

geometry. The recommended reliability index value in the 

absence of defects should be greater than 4 [23,24]. 

According to Fig. 5, it is noted that the reliability index for 

the rectangular shape of the defect is less than 3 in most of 

the defect area, except for the 3 mm and 5 mm distances, 

which results in a higher probability of the presence of the 

defect. 
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Fig. 5 – Reliability index β for triangle and rectangle defect shape. 

Figure 6 compares the evolution of the probability of 

failure in the zone of the defect for the two types of 

geometries studied. 

The reliability index results obtained for a triangular 

defect are between 3.35 and 3.50, indicating a very small 

probability of failure. But when the defect is rectangular, the 

reliability index is essential and yields a critical value of the 

likelihood of failure. 

 

Fig. 6 – Probability of failure for both types of geometries 

6. CONCLUSION 

Given the current inspection and characterization of 

composite materials, the relevance of proposing a defect 

detection approach led us to develop a stochastic finite 

element calculation code in a MATLAB environment.  

This stochastic approach enables the distribution of 

electrical conductivity in the suspected area to be represented 

as a tensor, which is essentially a stochastic matrix. The latter 

is composed of coefficients calculated from stochastic 

polynomial chaos. The calculation code enables you to 

obtain three solutions for a rank of two.  

The results obtained for two types of defect geometries 

enable us to conclude that when the standard deviation is 

large, the electrical conductivity decreases, as evidenced by 

a substantial variation in impedance, which characterizes the 

presence of a defect due to a material deficiency compared 

to a healthy sample. 

The developed stochastic finite element model considers 

the dimensions of the defect randomly, and simultaneously, 

the physical parameter, electrical conductivity, is also 

randomly distributed. 

The computation times are extremely short compared to 

other stochastic methods, such as the Monte Carlo method. 

The comparison in terms of computation has been carried 

out in previously published works whose references are 

[14,15]. 

For a single sensor position, the stochastic finite element 

code simulation consumes 38.21 s of time for 5810 nodes 

and 10955 elements with a PC Intel Core i5-7500 (3.4 GHz) 

and 8 GB of RAM. On the other hand, for the same operation 

with the Monte Carlo simulation, the time is approximately 

five times longer. Added is the need to go to the inverse 

problem to recover the input data.  

Our stochastic finite element model treats the sensitivity 

and the probability of failure in a single step. 
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