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This paper proposes a novel methodology for fault detection and diagnosis (FDD) in photovoltaic (PV) systems that combines 

Fisher's linear discriminant (FLD) with the Mahalanobis distance. The approach utilizes FLD to reduce the dimensionality of 

operational data while maximising the separation between healthy and faulty states. The Mahalanobis distance is then used to 

detect anomalies by accounting for correlations among variables such as voltage, current, and temperature. The validity of the 

method was established using real-world data from a 20 MWp PV plant in Algeria. The results obtained demonstrate the efficacy 

of the proposed method in classifying various faults, including open-circuit, shading, and short-circuit faults. The approach 

demonstrates substantial improvements in detection accuracy, efficiency, and false-alarm reduction compared to conventional 

methodologies. The proposed FDD solution is robust and scalable, rendering it ideal for real-time monitoring of large-scale PV 

systems. 

1. INTRODUCTION 

Photovoltaic (PV) systems are considered pivotal to the 

global energy transition; however, concerns regarding their 

long-term viability have been raised. These concerns include 

various failures, such as shading, open circuits, short circuits, 

and critical ground faults [1–5]. These faults have been shown 

to have a significant impact on energy yield and pose a 

considerable safety risk. This emphasizes the critical 

importance of research into fault detection and diagnosis (FDD) 

for maintaining the system's reliability and efficiency [3]. 

The evolution of FDD has progressed through distinct 

methodological stages. Early approaches relied heavily on 

manual inspection (visual or infrared imaging), a method 

limited to superficial defects and not suitable for large 

installations [6–8]. The initial significant progression was 

marked by the advent of electrical-based methodologies, 

which predominantly concentrated on anomalies in the 

current-voltage (I-V) and power-voltage (P-V) 

characteristics [9,10]. Whilst these model-based techniques 

are indeed effective, they are also highly sensitive to 

fluctuations in operational conditions (irradiance and 

temperature), which frequently result in false alarms. 

To address this sensitivity, researchers used statistical 

methods – such as Principal Component Analysis (PCA) and 

t-tests –to better filter environmental noise and establish 

operational baselines [11–13]. Concurrently, the field 

embraced machine learning (ML) techniques such as 

artificial neural networks (ANNs) and support vector 

machines (SVMs) to model complex PV system behaviour 

and improve fault classification accuracy [14–16]. More 

recently, the field of deep learning (DL) has witnessed 

significant advances, particularly in convolutional neural 

networks (CNNs) and long short-term memory (LSTM) 

networks. These architectures have demonstrated 

remarkable efficacy in enhancing accuracy, often in 

conjunction with advanced data types such as infrared 

thermography [17–19]. 

Notwithstanding these advances, a considerable challenge 

remains: the development of an FDD methodology that 

offers high accuracy, noise immunity, and precise fault 

isolation across all operating conditions. Hybrid and 

intelligent systems show promise, but many still struggle 

with complex multivariate correlations in high-dimensional 

real-time data [19–21]. 

The present paper addresses this gap by presenting an 

innovative FDD methodology based on Fisher random 

matrix theory (RMT). The exploitation of multivariate 

statistical correlations within high-dimensional operational 

data is a key element of the methodology, enabling highly 

accurate, real-time fault detection. The employment of 

Fisher RMT confers this technique a distinct advantage in 

enhancing fault isolation and diagnosis while ensuring 

minimal sensitivity to environmental noise. The validity of 

the proposed method is demonstrated through the utilisation 

of real PV data, which shows substantial improvements in 

detection speed, accuracy, and false alarm mitigation 

compared to conventional I-V curves and extant FDD 

techniques. 

The remainder of this paper is organized as follows: 

Section 2 details the proposed methodology, including the 

theoretical background of Fisher random matrix and 

Mahalanobis distance. Section 3 describes the experimental 

setup and the validation dataset. Section 4 presents and 

discusses the results, demonstrating the efficacy of the 

proposed approach. Finally, Section 5 concludes the paper 

and outlines potential directions for future work. 

2. MATERIALS AND METHODS 

In the context of fault detection and diagnosis systems, 

particularly in photovoltaic (PV) systems, the use of a robust 

method is imperative for effectively distinguishing between 

normal and faulty operation. A methodology found to be 

effective involves using the Fisher random matrix in 

conjunction with the Mahalanobis distance, thereby 

facilitating the establishment of an effective threshold for 

fault detection. 

2.1 FISHER RANDOM MATRIX 

The Fisher random matrix is derived from Fisher's linear 

discriminant analysis (LDA), a method widely used for 

dimensionality reduction and classification. The objective of 

LDA is to project high-dimensional data onto a lower-

dimensional space while maximizing the separation between 

different classes, such as healthy and faulty states in a PV 

system. The Fisher random matrix is employed to transform 

the data in a manner that accentuates the disparities between 

these classes. 
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Mathematically, the Fisher criterion seeks to maximize the 

ratio of the between-class variance to the within-class 

variance. Specifically, for two classes (e.g., normal and faulty 

data), the between-class scatter matrix Sb and the within-class 

scatter matrix Sw are computed as outlined in [34]: 

𝑆𝑏 = (μ1 − μ2)(μ1 − μ2)T,                   (1) 

𝑆𝑤 = ∑(𝑥𝑖 − 𝜇1)(𝑥𝑖 − μ1)T

𝑛1

𝑖=1

+ ∑(𝑥𝑗 − μ2)(𝑥𝑗 − μ2)
T

,

𝑛2

𝑗=1

                    (2) 

where μ1 and μ2 represent the mean vectors of the two 

classes, and xi and xj are the individual data points within 

each class. The FRM is used to compute the optimal 

projection vector that maximizes class separability by 

maximizing the between-class variance and minimizing the 

within-class variance. 

Between-class variance is a measure of the distinctiveness 

of the different classes [22]. Within-class variance, 

conversely, is indicative of the extent to which data points 

are concentrated within each class. 

The objective is to project the data onto a new axis such 

that the ratio of between-class variance to within-class 

variance is maximised. This transformation is defined by the 

Fisher criterion [12]. 

𝐽(𝑤) =
𝑤T𝑆𝑏𝑤

𝑤T𝑆𝑤𝑤
 .                       (3) 

where: 

• Sb is the between-class scatter matrix, 

• Sw is the within-class scatter matrix, 

• w is the projection vector, 

• J(w) is the Fisher criterion to be maximized. 

2.2 USING THE FISHER RANDOM MATRIX IN 

FAULT DETECTION 

The Fisher random matrix (FRM) improves class 

separation, a critical advancement in fault detection. By 

maximising the distinction between healthy and faulty states, 

FRM improves anomaly detection in PV systems [23]. Key 

benefits of FRM include 

• Dimensionality reduction: PV system data often has 

high dimensionality (e.g. voltage, current, temperature, 

irradiance, power). FRM reduces data dimensionality 

while preserving essential classification information, 

enabling faster and more efficient fault detection [12]. 

Robustness to noise: FRM's random matrix elements 

enhance resilience to noise and data variations common in 

real PV systems, ensuring accurate fault detection under 

varying operating conditions [17]. 

• Scalability: FRM can handle large PV arrays, analysing 

data from hundreds or thousands of modules 

simultaneously [20]. 

After data is transformed using FRM, the Mahalanobis 

distance classifies new observations as normal or faulty. This 

distance measures deviations from the healthy class 

distribution, accounting for variable correlations common in 

PV monitoring [22]. 

 

Fig. 1 – Proposed flowchart for fault detection in photovoltaic power systems.  

As illustrated by Fig 1, the process of fault detection in 

photovoltaic (PV) power systems commences with the 

collection of data, encompassing parameters such as 

temperature, irradiance, voltage, current, and power. 

Subsequently, the collected data is segmented into training 

and testing datasets. The system then computes covariance 

matrices for both datasets and performs a decomposition of 

the eigenvalues to analyses the data. Theoretical bounds for 

the eigenvalues are derived to identify deviations. In the 

event of detected deviations, residuals are calculated to 

determine if the system is operating within normal 

parameters or if a fault has been detected. This process is 

instrumental in maintaining the reliability and efficiency of 

power systems by facilitating the swift identification and 

rectification of any faults. 

3. PV SYSTEM DESCRIPTION 

The validation of the fault detection strategy was 

conducted through experimental analysis, utilising real-

world data from a 20 MWp grid-connected photovoltaic 

(PV) plant situated in Adrar, Algeria, a region distinguished 

by its exceptional solar energy potential, with an average 

daily solar radiation of 5.7 kWh/m2. The plant, which has 

been in operation since March 2017, is a large-scale facility 
comprising 20 PV arrays rated at 1 MW each. 

The system's core components are as follows: 

• PV Modules: The array consists of 93 subarrays, each 

containing 44 YINGLI (YL245-29B) modules. 

• Inverters: The energy produced by the subarrays is 

supplied to SUNGROW (5SG 500MX) grid-connected 

inverters. 

• Transformer: A step-up transformer manufactured by 

SUNTEN is used to connect the inverters to the grid. 

The data for the study were collected at 10-minute 

intervals from January to March 2024 and managed by a 

supervisory control and data acquisition (SCADA) system. 

The system under scrutiny was designed to record electrical 

measurements (DC and AC) from the inverters and 

meteorological data from dedicated sensors. 

The following meteorological sensors were utilised in the 

study: 

• Solar irradiance: The instrument employed was a Kipp & 
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Zonen CMP21 pyranometer. 

• Temperature: The apparatus under consideration is a J-

type thermocouple. 

• Wind speed: The instrument employed was a WE-100 

sonic anemometer. 

The fault detection techniques were applied to a PV array 

that was under observation and comprised 44 YINGLI 

(YL245P-29B) modules arranged in two parallel strings of 

22 modules in series. The electrical parameters of these 

modules under Standard Test Conditions (STC: 1000 W/m² 

irradiance, 25°C) were also considered, as shown in Table 1. 

Table 1 

Electrical parameters of YINGLI (YL245p-29B) PV module at STC 

Peak 

power 

(W) 

Voltage at 

maximum 

power (V) 

Current at 

maximum 

power (A) 

Open 

circuit 

voltage (V) 

Short 

circuit 

current 

(A) 

245 29.6 8.28 37.5 8.83 

In this study, the data set includes five critical variables 

essential for monitoring and diagnosing PV system 

performance: voltage (V), current (A), power (W), 

temperature (°C) and irradiance (W/m²). Each parameter is 

essential for assessing system functionality and identifying 

potential faults. To explore the relationships between these 

variables, exploratory data analyses were performed, 

including correlation matrices, variable distributions and box 

plots. These methods provide insight into data patterns and 

interactions, aiding anomaly detection and system 

optimisation. 

 

Fig. 2 – Correlation matrix of training and testing data. 

The correlation matrix in Fig. 2 shows linear relationships 

between PV system parameters. Voltage and power show a 

very strong positive correlation (0.9986), indicating that 

power output increases significantly with higher voltages. 

Similarly, voltage and irradiance are highly correlated 

(0.9134), suggesting that irradiance has a strong effect on 

voltage output. In contrast, current and temperature have 

weaker correlations with other parameters, reflecting their 

more independent behavior under varying conditions. 

As illustrated by the box plots in Fig 3, the central 

tendency, spread, and presence of outliers for each variable 

are visually represented. For instance, voltage and power 

demonstrate wide variability, with notable interquartile 

ranges and a few extreme values. Conversely, temperature 

has a smaller range of variability, although one extreme 

outlier is observed below 0°C. These box plots serve to 

highlight potential outliers, variability in sensor 

measurements, and deviations that could be indicative of 

system anomalies or faults. 

 

Fig. 3 – Box plots of training and set data. 

This descriptive analysis establishes a clear understanding 

of the data prior to implementing the fault detection 

algorithms, ensuring that potential trends and irregularities 

are well accounted for. 

4. RESULTS AND DISCUSSION 

This section evaluates the performance of the Random 

Matrix Method (RMM) in detecting DC side faults in a PV 

system. Six fault types are investigated: 1) string faults, 2) 

partial shading, 3) module degradation, 4) line-line faults, 5) 

shorted PV modules, and 6) open circuits in the PV array (see 

Fig. 4). Experimental data was collected from the PV system 

described in Section 3. 

 

Fig. 4 – RFM-Mahalanobis fault detection and classification proposed in 

the PV systems flowchart. 

The study uses Fisher's linear discriminant (FLD) and 

Mahalanobis distance methods for fault detection and 
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diagnosis. Figure 4 outlines the RMT-Mahalanobis process, 

which includes several steps: 

1. Data collection: Parameters such as temperature, 

irradiance, power, voltage and current are collected. 

2. Preprocessing: Data is normalised and matrices are 

constructed. 

3. Random matrix analysis: Correlation matrices are 

constructed, and eigenvalue analysis is performed. 

4. Error detection: Mahalanobis distance identifies 

deviations from normal patterns. 

5. Fault classification: Detected anomalies are classified 

into fault types, including open circuit, short circuit, 

ground fault, shading fault, line-to-line fault, MPPT fault, 

ACC fault and degradation fault. 

6. Monitoring and visualisation: A dashboard displays 

residuals, eigenvalue distributions and other metrics for 

comprehensive system monitoring and fault 

management. 

This process ensures robust fault detection and 

classification, improving PV system reliability and 

efficiency. The integration of FLD and Mahalanobis distance 

methods provides a powerful tool for identifying and 

managing a wide range of faults, as demonstrated by the 

experimental results. 
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Fig. 5 – Considered faults. 

 

Fig 6 – Scatter plot of Mahalanobis distances and fault type. 

This section is devoted to evaluating the performance of 

RFM to detect faults on the DC side of a PV system. In this 

study, six types of anomalies are examined: 1) string fault; 

2) partial shading; 3) module degradation; 4) line-line faults; 

5) PV modules short-circuited; and 6) Open circuit in the PV 

array in Fig. 5. Experimental data were collected from the 

PV system described in this section. 

The scatter plot in Fig. 6 demonstrates the efficacy of the 

proposed methodology in multivariate fault classification 

using the Mahalanobis distance metric. This distance is 

indicative of the deviation of real-time operational data from 

the healthy system model, with a higher distance 

corresponding to a greater anomaly severity. The distribution 

of data points across the plot demonstrates robust fault 

discrimination. Specifically, the open circuit faults (yellow 

points) register the highest distances (peaking above 8), 

clearly setting them apart from the baseline noise and other 

fault types (blue points). This visualisation confirms that the 

method cannot only detect an abnormality but also use the 

magnitude of the multivariate deviation to accurately isolate 

and differentiate between distinct system failure modes. 

4.1 FISHER'S LINEAR DISCRIMINANT FOR  

FAULT DETECTION 

Fisher's linear discriminant (FLD) is a dimensionality 

reduction technique that aims to find the optimal hyperplane 

that maximises the separation between classes while 

minimising the intra-class variance. It projects high-

dimensional data into a lower-dimensional space while 

preserving class separability. In PV systems, FLD improves 

fault detection by efficiently distinguishing between healthy 

and faulty states. By projecting data onto a one-dimensional 

line, FLD maximises the separation between faulty and 

healthy classes, thereby improving detection accuracy. 

 

Fig. 7 – Current, temperature, irradiance Time series with detected faults.  

A key observation is that Fisher's RM model's 

performance depends on the separability between faulty and 

healthy data points. As shown in Fig. 6, applying FLD to PV 

system data yields clear class separation, thereby enhancing 

the model's diagnostic capabilities. This highlights the 

model's reliability in detecting even subtle anomalies. 

Mahalanobis distance measures the distance between a 

point and a distribution, accounting for correlations among 

variables. It is highly effective at detecting outliers and 

anomalies in multivariate systems. In PV systems, as shown 

in Fig. 7, faults are identified by analyzing variations in 

current, temperature, and irradiance across different fault 

scenarios, including open-circuit, short-circuit, line-to-line, 

partial shading, and MPPT faults. Red circles indicate fault 

locations, and fault parameters are defined by thresholds. 
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As shown in Fig. 9, the system excels in real-time 

monitoring, detecting a wide range of fault conditions 

through detailed analysis of power, temperature, and 

irradiance data. This allows timely corrective action to 

prevent further damage or energy loss. The practical utility 

of the method in maintaining the reliability and efficiency of 

PV systems underlines its importance for real-time fault 

detection and system optimization. 

 

 

Fig. 8 – Mahalanobis distance threshold categories: fault detected. 

The Mahalanobis distance is used in PV systems to detect 

faults by measuring the multivariate distance of each sample 

from a healthy reference state, as illustrated in Fig. 8. The 

distance, measured on the y-axis, is then compared against 

fault-specific thresholds. Peaks that exceed these thresholds 

are indicative of defects, with larger peaks indicating severe 

problems and smaller ones minor anomalies. Under typical 

operating conditions, the distance fluctuates around a 

baseline, but deviations caused by faults trigger alerts for 

investigation. 

This method facilitates real-time monitoring by 

establishing customised thresholds for various faults, thereby 

ensuring early detection and diagnosis. The efficacy of the 

method is illustrated in Fig. 9, where multivariate distance 
successfully differentiates between fault types. The method 

involves comparing data points to a reference distribution to 

identify deviations from normal operation. The primary 

advantages of this system include the capacity to detect 

minor defects, such as partial shading and degradation, at an 

early stage. This capability facilitates the implementation of 

preventive maintenance measures, thereby minimising 

periods of downtime. The apparatus under scrutiny in this 

study has been demonstrated to possess the capability of 

accurately identifying faults of a serious nature, including 

but not limited to open circuits, short circuits, and arc faults. 

This capacity is instrumental in preventing potential damage. 

The Mahalanobis distance-based approach is robust and 

reliable, using customised thresholds for accurate fault 

detection and minimising false positives. The system's 

adaptability facilitates the implementation of specific 

monitoring procedures tailored to the characteristics of each 

system. The efficacy of the system in detecting a wide range 

of faults has been well documented, including electrical 

problems (e.g. open and short circuits) and operational 

problems (e.g. MPPT failures, component degradation). The 

capacity of this system to enhance system reliability, reduce 

energy dissipation, and ensure safety is further substantiated 

by Fig. 8 and 9. 

 

Fig. 9 – Mahalanobis distance vs. multi-classification faults type. 

5. CONCLUSIONS AND FUTURE WORKS 

The paper introduces and validates a highly effective Fault 

Detection and Diagnosis strategy for Photovoltaic systems 

by integrating Fisher's Linear Discriminant with the 

Mahalanobis Distance Metric (DM). 

The proposed methodology has been demonstrated to 

deliver superior performance by systematically addressing 

key challenges in PV monitoring. 

• Dimensionality and separation: The FLD model has 

been shown to effectively maximise the separation 

between healthy operation and fault states, while 

concomitantly reducing the dimensionality of complex, 

high-dimensional data. This simplification enhances 

the model's computational efficiency and clarity. 

• Robust diagnosis: The Mahalanobis distance builds on 

this data structure by accounting for multivariate 

correlations. This approach facilitated precise 

classification and a nuanced understanding of diverse 

fault types, including open circuit, shading, and short 

circuit failures. 

The utilisation of a combined FLD-DM approach results 

in the generation of a robust and reliable FDD solution. This 

solution is distinguished by its capacity to manage correlated 

inputs and preserve remarkably low false negative rates. This 

integration results in the creation of a powerful, practically 

applicable tool that is essential for safeguarding the 

reliability and efficiency of large-scale PV installations. 

To build upon the success of the integrated FLD-DM 

approach, future research will focus on the following key 

areas: 

• Real-time edge implementation: The objective of this 

project is to develop and test a lightweight version of 

the FLD-DM model that is suitable for deployment 

directly onto edge computing devices, such as inverters 

or local data loggers. This will facilitate expedited 

decision-making and mitigate the latency associated 

with cloud-based analytics. 
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• Adaptive Thresholding and machine learning 

integration: It is imperative to implement an adaptive 

mechanism that can dynamically adjust the DM fault 

thresholds in accordance with real-time environmental 

conditions, such as irradiance and temperature. 

Furthermore, the integration of FLD-reduced features 

into deep learning classifiers should be investigated to 

enhance the accuracy of distinguishing between subtle 

fault subtypes and degradation patterns. 

• Localization and remediation: The FDD framework is 

to be extended to include fault localization capabilities 

(e.g., identifying the specific string or module 

affected). Future research should also encompass the 

development of recommended remediation actions for 

operators to transition the system from a rudimentary 

diagnostic capacity to a comprehensive, intelligent 

maintenance platform. 

ACKNOWLEDGEMENTS 

The authors would like to express their sincere gratitude 

to Ahmed Draia University – Adrar for providing the 

necessary resources and support to conduct this research. 

Special thanks to the LDDI Laboratory for their technical 

assistance and collaboration. We extend our thanks to the 

anonymous reviewers for their constructive comments, 

which have helped enhance the quality of this manuscript. 

CREDIT AUTHORSHIP CONTRIBUTION 

STATEMENT 

Ahmed Saidi: data collection, conceptualization, methodology, 

writing - Original Draft, Formal Analysis, Software, and validation. 

Draoui Abdelghani: data curation, visualization, software, 

validation. 

Abdelouahed Touhami: investigation, writing – review & editing, 

resources 

Received 12 January 2025 

REFERENCES 

1. B. Gong et al., Fault diagnosis of photovoltaic array with multi-module 
fusion under hyperparameter optimization, Energy Conversion and 

Management, 319 (2024). 

2. B. Ponnuswamy, C. Columbus, S.R. Lakshmi, and J. Chithambaram, 

Wind turbine fault modeling and classification using cuckoo-

optimized modular neural networks, Rev. Roum. Sci. Techn. – 
Électrotechn. et Énerg., 68, 4, pp. 369–374 (2023). 

3. C. Saiprakash et al., Improved fault detection and classification in PV 

arrays using Stockwell transform and data mining techniques, 

Results in Engineering, 23 (2024). 

4. K. Ding et al., Feature extraction and fault diagnosis of photovoltaic 
array based on current–voltage conversion, Applied Energy, 353 

(2024). 

5. F. Harrou, A. Saidi, Y. Sun, and S. Khadraoui, Monitoring of 

Photovoltaic Systems Using Improved Kernel-Based Learning 

Schemes, IEEE Journal of Photovoltaics, 11, 3, pp. 806–818 
(2021). 

6. E.Q.J. M. and V. Subramanian, Strategic load flow assessment for a 

ship microgrid with photovoltaic power integration, Rev. Roum. 

Sci. Techn. – Électrotechn. et Énerg., 70, 3, pp. 397–402 (2025). 

7. A. Saidi, B. Cherif, and B. Chellali, Fuzzy intelligent control for 
solar/wind hybrid renewable power system, EEA - Electrotehnica, 

Electronica, Automatica, 65, 4 (2017). 

8. R. Tang et al., Fault classification of photovoltaic module infrared 

images based on transfer learning and interpretable convolutional 

neural network, Solar Energy, 276 (2024). 
9. Z. Hu et al., Improved multistep ahead photovoltaic power prediction 

model based on LSTM and self-attention with weather forecast 

data, Applied Energy, 359 (2024). 

10. M. Jalal et al., Deep learning approaches for visual faults diagnosis of 

photovoltaic systems: State-of-the-Art review, Results in 
Engineering, 23 (2024). 

11. A. Keddouda et al., Photovoltaic module temperature prediction using 

various machine learning algorithms: Performance evaluation, 

Applied Energy, 363 (2024). 

12. D. Li et al., Sensing anomaly of photovoltaic systems with sequential 
conditional variational autoencoder, Applied Energy, 353 (2024). 

13. Q. Qi et al., Development assessment of regional rooftop photovoltaics 

based on remote sensing and deep learning, Applied Energy, 375 

(2024). 
14. T. Peng et al., An integrated framework of Bi-directional long-short 

term memory (BiLSTM) based on sine cosine algorithm for hourly 

solar radiation forecasting, Energy, 221 (2021). 

15. J. Zhang et al., Fast object detection of anomaly photovoltaic (PV) cells 

using deep neural networks, Applied Energy, 372 (2024). 
16. H. Wang et al., Multi-prediction of electric load and photovoltaic solar 

power in grid-connected photovoltaic system using state transition 

method, Applied Energy, 353 (2024). 

17. E.A. Ramadan et al., An innovative transformer neural network for fault 

detection and classification for photovoltaic modules, Energy 
Conversion and Management, 314 (2024). 

18. M.F. Tahir et al., Enhancing PV power forecasting with deep learning 

and optimizing solar PV project performance with economic 

viability: A multi-case analysis of 10 MW Masdar project in UAE, 

Energy Conversion and Management, 311 (2024). 
19. A. Słowik et al., An efficient approach to parameter extraction of 

photovoltaic cell models using a new population-based algorithm, 

Applied Energy, 364 (2024). 

20. L.-A. Mustaţǎ, G.-D. Sorea, and E. Helerea, Monitoring and control 

software for a standalone house supply system, Rev. Roum. Sci. 
Techn. – Électrotechn. et Énerg., 70, 2, pp. 169–174 (2025). 

21. E.Q.J. M. and V. Subramanian, Strategic load flow assessment for a 

ship microgrid with photovoltaic power integration, Rev. Roum. 

Sci. Techn. – Électrotechn. et Énerg., 70, 3, pp. 397–402 (2025). 

22. L. Khettache, M.R. Rezoug, A. Saadi, and L. Sahraoui, A novel design 
of a photovoltaic system based on a linear induction motor and a 

reciprocating pump, Rev. Roum. Sci. Techn. – Électrotechn. et 

Énerg., 70, 1, pp. 3–8 (2025).

 


