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FAULT DETECTION AND DIAGNOSIS IN PHOTOVOLTAIC POWER
SYSTEMS USING FISHER RANDOM MATRIX APPROACH
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This paper proposes a novel methodology for fault detection and diagnosis (FDD) in photovoltaic (PV) systems that combines
Fisher's linear discriminant (FLD) with the Mahalanobis distance. The approach utilizes FLD to reduce the dimensionality of
operational data while maximising the separation between healthy and faulty states. The Mahalanobis distance is then used to
detect anomalies by accounting for correlations among variables such as voltage, current, and temperature. The validity of the
method was established using real-world data from a 20 MWp PV plant in Algeria. The results obtained demonstrate the efficacy
of the proposed method in classifying various faults, including open-circuit, shading, and short-circuit faults. The approach
demonstrates substantial improvements in detection accuracy, efficiency, and false-alarm reduction compared to conventional
methodologies. The proposed FDD solution is robust and scalable, rendering it ideal for real-time monitoring of large-scale PV

systems.

1. INTRODUCTION

Photovoltaic (PV) systems are considered pivotal to the
global energy transition; however, concems regarding their
long-term viability have been raised. These concerns include
various failures, such as shading, open circuits, short circuits,
and critical ground faults [1-5]. These faults have been shown
to have a significant impact on energy yield and pose a
considerable safety risk. This emphasizes the critical
importance of research into fault detection and diagnosis (FDD)
for maintaining the system's reliability and efficiency [3].

The evolution of FDD has progressed through distinct
methodological stages. Early approaches relied heavily on
manual inspection (visual or infrared imaging), a method
limited to superficial defects and not suitable for large
installations [6—8]. The initial significant progression was
marked by the advent of electrical-based methodologies,
which predominantly concentrated on anomalies in the
current-voltage  (I-V) and  power-voltage  (P-V)
characteristics [9,10]. Whilst these model-based techniques
are indeed effective, they are also highly sensitive to
fluctuations in operational conditions (irradiance and
temperature), which frequently result in false alarms.

To address this sensitivity, researchers used statistical
methods — such as Principal Component Analysis (PCA) and
t-tests —to better filter environmental noise and establish
operational baselines [11-13]. Concurrently, the field
embraced machine learning (ML) techniques such as
artificial neural networks (ANNs) and support vector
machines (SVMs) to model complex PV system behaviour
and improve fault classification accuracy [14—16]. More
recently, the field of deep learning (DL) has witnessed
significant advances, particularly in convolutional neural
networks (CNNs) and long short-term memory (LSTM)
networks. These architectures have demonstrated
remarkable efficacy in enhancing accuracy, often in
conjunction with advanced data types such as infrared
thermography [17-19].

Notwithstanding these advances, a considerable challenge
remains: the development of an FDD methodology that
offers high accuracy, noise immunity, and precise fault
isolation across all operating conditions. Hybrid and
intelligent systems show promise, but many still struggle
with complex multivariate correlations in high-dimensional

real-time data [19-21].

The present paper addresses this gap by presenting an
innovative FDD methodology based on Fisher random
matrix theory (RMT). The exploitation of multivariate
statistical correlations within high-dimensional operational
data is a key element of the methodology, enabling highly
accurate, real-time fault detection. The employment of
Fisher RMT confers this technique a distinct advantage in
enhancing fault isolation and diagnosis while ensuring
minimal sensitivity to environmental noise. The validity of
the proposed method is demonstrated through the utilisation
of real PV data, which shows substantial improvements in
detection speed, accuracy, and false alarm mitigation
compared to conventional I-V curves and extant FDD
techniques.

The remainder of this paper is organized as follows:
Section 2 details the proposed methodology, including the
theoretical background of Fisher random matrix and
Mabhalanobis distance. Section 3 describes the experimental
setup and the validation dataset. Section 4 presents and
discusses the results, demonstrating the efficacy of the
proposed approach. Finally, Section 5 concludes the paper
and outlines potential directions for future work.

2. MATERIALS AND METHODS

In the context of fault detection and diagnosis systems,
particularly in photovoltaic (PV) systems, the use of a robust
method is imperative for effectively distinguishing between
normal and faulty operation. A methodology found to be
effective involves using the Fisher random matrix in
conjunction with the Mahalanobis distance, thereby
facilitating the establishment of an effective threshold for
fault detection.

2.1 FISHER RANDOM MATRIX

The Fisher random matrix is derived from Fisher's linear
discriminant analysis (LDA), a method widely used for
dimensionality reduction and classification. The objective of
LDA is to project high-dimensional data onto a lower-
dimensional space while maximizing the separation between
different classes, such as healthy and faulty states in a PV
system. The Fisher random matrix is employed to transform
the data in a manner that accentuates the disparities between
these classes.
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Mathematically, the Fisher criterion seeks to maximize the
ratio of the between-class variance to the within-class
variance. Specifically, for two classes (e.g., normal and faulty
data), the between-class scatter matrix Sy and the within-class
scatter matrix S,y are computed as outlined in [34]:
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where p; and p, represent the mean vectors of the two
classes, and x; and x; are the individual data points within
each class. The FRM is used to compute the optimal
projection vector that maximizes class separability by
maximizing the between-class variance and minimizing the
within-class variance.

Between-class variance is a measure of the distinctiveness
of the different classes [22]. Within-class variance,
conversely, is indicative of the extent to which data points
are concentrated within each class.

The objective is to project the data onto a new axis such
that the ratio of between-class variance to within-class
variance is maximised. This transformation is defined by the
Fisher criterion [12].

Jw) = s G)

where:
e S, is the between-class scatter matrix,
e S, is the within-class scatter matrix,
e wis the projection vector,
e J(w) is the Fisher criterion to be maximized.

2.2 USING THE FISHER RANDOM MATRIX IN
FAULT DETECTION

The Fisher random matrix (FRM) improves class
separation, a critical advancement in fault detection. By
maximising the distinction between healthy and faulty states,
FRM improves anomaly detection in PV systems [23]. Key
benefits of FRM include
e Dimensionality reduction: PV system data often has

high dimensionality (e.g. voltage, current, temperature,
irradiance, power). FRM reduces data dimensionality
while preserving essential classification information,
enabling faster and more efficient fault detection [12].

Robustness to noise: FRM's random matrix elements
enhance resilience to noise and data variations common in
real PV systems, ensuring accurate fault detection under
varying operating conditions [17].

e Scalability: FRM can handle large PV arrays, analysing
data from hundreds or thousands of modules
simultaneously [20].

After data is transformed using FRM, the Mahalanobis
distance classifies new observations as normal or faulty. This
distance measures deviations from the healthy class
distribution, accounting for variable correlations common in
PV monitoring [22].

Compute Test
5 noe

[

c
Matrix
A

o
[ T T

MNormal
(P ) [

Fig. 1 — Proposed flowchart for fault detection in photovoltaic power systems.

As illustrated by Fig 1, the process of fault detection in
photovoltaic (PV) power systems commences with the
collection of data, encompassing parameters such as
temperature, irradiance, voltage, current, and power.
Subsequently, the collected data is segmented into training
and testing datasets. The system then computes covariance
matrices for both datasets and performs a decomposition of
the eigenvalues to analyses the data. Theoretical bounds for
the eigenvalues are derived to identify deviations. In the
event of detected deviations, residuals are calculated to
determine if the system is operating within normal
parameters or if a fault has been detected. This process is
instrumental in maintaining the reliability and efficiency of
power systems by facilitating the swift identification and
rectification of any faults.

3. PV SYSTEM DESCRIPTION

The validation of the fault detection strategy was
conducted through experimental analysis, utilising real-
world data from a 20 MWp grid-connected photovoltaic
(PV) plant situated in Adrar, Algeria, a region distinguished
by its exceptional solar energy potential, with an average
daily solar radiation of 5.7 kWh/m?. The plant, which has
been in operation since March 2017, is a large-scale facility
comprising 20 PV arrays rated at | MW each.

The system's core components are as follows:

e PV Modules: The array consists of 93 subarrays, each
containing 44 YINGLI (YL245-29B) modules.

e Inverters: The energy produced by the subarrays is
supplied to SUNGROW (5SG 500MX) grid-connected
inverters.

e Transformer: A step-up transformer manufactured by
SUNTEN is used to connect the inverters to the grid.

The data for the study were collected at 10-minute
intervals from January to March 2024 and managed by a
supervisory control and data acquisition (SCADA) system.
The system under scrutiny was designed to record electrical
measurements (DC and AC) from the inverters and
meteorological data from dedicated sensors.

The following meteorological sensors were utilised in the
study:

e Solar irradiance: The instrument employed was a Kipp &
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Zonen CMP21 pyranometer.

e Temperature: The apparatus under consideration is a J-
type thermocouple.

e Wind speed: The instrument employed was a WE-100
sonic anemometer.

The fault detection techniques were applied to a PV array
that was under observation and comprised 44 YINGLI
(YL245P-29B) modules arranged in two parallel strings of
22 modules in series. The electrical parameters of these
modules under Standard Test Conditions (STC: 1000 W/m?
irradiance, 25°C) were also considered, as shown in Table 1.

Table 1
Electrical parameters of YINGLI (YL245p-29B) PV module at STC
Peak Voltage at Current at Open Short
power maximum maximum circuit circuit
(W) power (V) power (A) voltage (V) current
(A)
245 29.6 8.28 37.5 8.83

In this study, the data set includes five critical variables
essential for monitoring and diagnosing PV system
performance: voltage (V), current (A), power (W),
temperature (°C) and irradiance (W/m?). Each parameter is
essential for assessing system functionality and identifying
potential faults. To explore the relationships between these
variables, exploratory data analyses were performed,
including correlation matrices, variable distributions and box
plots. These methods provide insight into data patterns and
interactions, aiding anomaly detection and system
optimisation.
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Fig. 2 — Correlation matrix of training and testing data.

The correlation matrix in Fig. 2 shows linear relationships
between PV system parameters. Voltage and power show a
very strong positive correlation (0.9986), indicating that
power output increases significantly with higher voltages.
Similarly, voltage and irradiance are highly correlated
(0.9134), suggesting that irradiance has a strong effect on
voltage output. In contrast, current and temperature have
weaker correlations with other parameters, reflecting their
more independent behavior under varying conditions.

As illustrated by the box plots in Fig 3, the central
tendency, spread, and presence of outliers for each variable
are visually represented. For instance, voltage and power
demonstrate wide variability, with notable interquartile
ranges and a few extreme values. Conversely, temperature
has a smaller range of variability, although one extreme
outlier is observed below 0°C. These box plots serve to
highlight potential outliers, variability in sensor
measurements, and deviations that could be indicative of

system anomalies or faults.
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Fig. 3 — Box plots of training and set data.

This descriptive analysis establishes a clear understanding
of the data prior to implementing the fault detection
algorithms, ensuring that potential trends and irregularities
are well accounted for.

4. RESULTS AND DISCUSSION

This section evaluates the performance of the Random
Matrix Method (RMM) in detecting DC side faults in a PV
system. Six fault types are investigated: 1) string faults, 2)
partial shading, 3) module degradation, 4) line-line faults, 5)
shorted PV modules, and 6) open circuits in the PV array (see
Fig. 4). Experimental data was collected from the PV system
described in Section 3.
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Fig. 4 — RFM-Mahalanobis fault detection and classification proposed in
the PV systems flowchart.

The study uses Fisher's linear discriminant (FLD) and
Mahalanobis distance methods for fault detection and
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diagnosis. Figure 4 outlines the RMT-Mahalanobis process,

which includes several steps:

1. Data collection: Parameters such as temperature,
irradiance, power, voltage and current are collected.

2. Preprocessing: Data is normalised and matrices are
constructed.

3. Random matrix analysis: Correlation matrices are
constructed, and eigenvalue analysis is performed.

4. Error detection: Mahalanobis distance identifies
deviations from normal patterns.

5. Fault classification: Detected anomalies are classified
into fault types, including open circuit, short circuit,
ground fault, shading fault, line-to-line fault, MPPT fault,
ACC fault and degradation fault.

6. Monitoring and visualisation: A dashboard displays
residuals, eigenvalue distributions and other metrics for

comprehensive  system  monitoring and  fault
management.

This process ensures robust fault detection and
classification, improving PV system reliability and

efficiency. The integration of FLD and Mahalanobis distance
methods provides a powerful tool for identifying and
managing a wide range of faults, as demonstrated by the
experimental results.

String 1

String 2

Inverter

Eé PV Module (YINGLI « YL245P-29b »)
% Series fuse for overcurrent protection

F1 : Open circuit fault

F2, F3 : Short-circuit faults
F4: Degradation fault

F5: Line-line fault

F6, F7: Partial shading

Fig. 5 — Considered faults.
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Fig 6 — Scatter plot of Mahalanobis distances and fault type.

This section is devoted to evaluating the performance of
RFM to detect faults on the DC side of a PV system. In this
study, six types of anomalies are examined: 1) string fault;
2) partial shading; 3) module degradation; 4) line-line faults;
5) PV modules short-circuited; and 6) Open circuit in the PV
array in Fig. 5. Experimental data were collected from the
PV system described in this section.

The scatter plot in Fig. 6 demonstrates the efficacy of the
proposed methodology in multivariate fault classification
using the Mahalanobis distance metric. This distance is
indicative of the deviation of real-time operational data from
the healthy system model, with a higher distance
corresponding to a greater anomaly severity. The distribution
of data points across the plot demonstrates robust fault
discrimination. Specifically, the open circuit faults (yellow
points) register the highest distances (peaking above 8),
clearly setting them apart from the baseline noise and other
fault types (blue points). This visualisation confirms that the
method cannot only detect an abnormality but also use the
magnitude of the multivariate deviation to accurately isolate
and differentiate between distinct system failure modes.

4.1 FISHER'S LINEAR DISCRIMINANT FOR
FAULT DETECTION

Fisher's linear discriminant (FLD) is a dimensionality
reduction technique that aims to find the optimal hyperplane
that maximises the separation between classes while
minimising the intra-class variance. It projects high-
dimensional data into a lower-dimensional space while
preserving class separability. In PV systems, FLD improves
fault detection by efficiently distinguishing between healthy
and faulty states. By projecting data onto a one-dimensional
line, FLD maximises the separation between faulty and
healthy classes, thereby improving detection accuracy.
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Fig. 7 — Current, temperature, irradiance Time series with detected faults.

A key observation is that Fisher's RM model's
performance depends on the separability between faulty and
healthy data points. As shown in Fig. 6, applying FLD to PV
system data yields clear class separation, thereby enhancing
the model's diagnostic capabilities. This highlights the
model's reliability in detecting even subtle anomalies.

Mabhalanobis distance measures the distance between a
point and a distribution, accounting for correlations among
variables. It is highly effective at detecting outliers and
anomalies in multivariate systems. In PV systems, as shown
in Fig. 7, faults are identified by analyzing variations in
current, temperature, and irradiance across different fault
scenarios, including open-circuit, short-circuit, line-to-line,
partial shading, and MPPT faults. Red circles indicate fault
locations, and fault parameters are defined by thresholds.
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As shown in Fig. 9, the system excels in real-time
monitoring, detecting a wide range of fault conditions
through detailed analysis of power, temperature, and
irradiance data. This allows timely corrective action to
prevent further damage or energy loss. The practical utility
of the method in maintaining the reliability and efficiency of
PV systems underlines its importance for real-time fault
detection and system optimization.
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Fig. 8 — Mahalanobis distance threshold categories: fault detected.

The Mahalanobis distance is used in PV systems to detect
faults by measuring the multivariate distance of each sample
from a healthy reference state, as illustrated in Fig. 8. The
distance, measured on the y-axis, is then compared against
fault-specific thresholds. Peaks that exceed these thresholds
are indicative of defects, with larger peaks indicating severe
problems and smaller ones minor anomalies. Under typical
operating conditions, the distance fluctuates around a
baseline, but deviations caused by faults trigger alerts for
investigation.

This method facilitates real-time monitoring by
establishing customised thresholds for various faults, thereby
ensuring early detection and diagnosis. The efficacy of the
method is illustrated in Fig. 9, where multivariate distance
successfully differentiates between fault types. The method
involves comparing data points to a reference distribution to
identify deviations from normal operation. The primary
advantages of this system include the capacity to detect
minor defects, such as partial shading and degradation, at an
early stage. This capability facilitates the implementation of
preventive maintenance measures, thereby minimising
periods of downtime. The apparatus under scrutiny in this
study has been demonstrated to possess the capability of
accurately identifying faults of a serious nature, including
but not limited to open circuits, short circuits, and arc faults.
This capacity is instrumental in preventing potential damage.

The Mahalanobis distance-based approach is robust and
reliable, using customised thresholds for accurate fault
detection and minimising false positives. The system's
adaptability facilitates the implementation of specific
monitoring procedures tailored to the characteristics of each
system. The efficacy of the system in detecting a wide range
of faults has been well documented, including electrical
problems (e.g. open and short circuits) and operational
problems (e.g. MPPT failures, component degradation). The
capacity of this system to enhance system reliability, reduce
energy dissipation, and ensure safety is further substantiated
by Fig. 8 and 9.
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Fig. 9 — Mahalanobis distance vs. multi-classification faults type.

5. CONCLUSIONS AND FUTURE WORKS

The paper introduces and validates a highly effective Fault
Detection and Diagnosis strategy for Photovoltaic systems
by integrating Fisher's Linear Discriminant with the
Mahalanobis Distance Metric (DM).

The proposed methodology has been demonstrated to
deliver superior performance by systematically addressing
key challenges in PV monitoring.

e Dimensionality and separation: The FLD model has
been shown to effectively maximise the separation
between healthy operation and fault states, while
concomitantly reducing the dimensionality of complex,
high-dimensional data. This simplification enhances
the model's computational efficiency and clarity.

e Robust diagnosis: The Mahalanobis distance builds on
this data structure by accounting for multivariate
correlations. This approach facilitated precise
classification and a nuanced understanding of diverse
fault types, including open circuit, shading, and short
circuit failures.

The utilisation of a combined FLD-DM approach results
in the generation of a robust and reliable FDD solution. This
solution is distinguished by its capacity to manage correlated
inputs and preserve remarkably low false negative rates. This
integration results in the creation of a powerful, practically
applicable tool that is essential for safeguarding the
reliability and efficiency of large-scale PV installations.

To build upon the success of the integrated FLD-DM
approach, future research will focus on the following key
areas:

e Real-time edge implementation: The objective of this
project is to develop and test a lightweight version of
the FLD-DM model that is suitable for deployment
directly onto edge computing devices, such as inverters
or local data loggers. This will facilitate expedited
decision-making and mitigate the latency associated
with cloud-based analytics.
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e Adaptive Thresholding and machine learning
integration: It is imperative to implement an adaptive
mechanism that can dynamically adjust the DM fault
thresholds in accordance with real-time environmental
conditions, such as irradiance and temperature.
Furthermore, the integration of FLD-reduced features
into deep learning classifiers should be investigated to
enhance the accuracy of distinguishing between subtle
fault subtypes and degradation patterns.

e Localization and remediation: The FDD framework is
to be extended to include fault localization capabilities
(e.g., identifying the specific string or module
affected). Future research should also encompass the
development of recommended remediation actions for
operators to transition the system from a rudimentary
diagnostic capacity to a comprehensive, intelligent
maintenance platform.
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