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This paper details the development of a robust solution for route optimization tailored for commercial vehicle fleets, with a 
particular emphasis on the specific requirements of small and medium-sized enterprises (SMEs). Our innovative platform 
integrates several components, including a data ingestion service for real-time GPS data, an integration layer for seamless 
connectivity with existing customer applications, a sophisticated route optimization engine, and user-friendly interfaces for both 
web and mobile platforms. A key distinguishing feature of our approach is the incorporation of machine learning (ML) techniques 
to validate historical route data. This process mitigates the impact of known road hazards, leading to an average reduction of 
19.6 % in distance traveled and 14.2 % in route duration when comparing differences between planned and executed routes. 
Adjusting the optimal route necessitates reliable historical tracks, thus requiring the automatic validation of these tracks with 
minimal human intervention. In this paper, we describe the implementation of several machine-learning classification models over 
historical trips and compare the results to select the most suitable model.

1. INTRODUCTION 
Routing optimization is critical in logistics and 

transportation, helping companies manage the challenges of 
cost efficiency, delivery time, and customer satisfaction. The 
Vehicle Routing Problem (VRP) is a central model for 
optimizing routes, aiming to solve constraints like vehicle 
capacity, time windows, and cost while dynamically 
adjusting to real-time traffic and delivery demands [1,2]. 
Traditional VRP solutions, using algorithms like Genetic 
Algorithms (GA) and Ant Colony Optimization (ACO), lay 
a strong foundation but face limitations in dynamic, real-time 
scenarios [3,4]. Recent advancements in adaptive and 
machine learning-based algorithms have demonstrated 
improvements in VRP, allowing for continual optimization 
and response to fluctuating conditions [5]. 

This paper proposes a machine-learning classification 
module for historical track validation to enhance VRP 
solutions. This module aims to determine route validity 
based on historical data and human-validated examples, 
using data-driven classification models to reduce manual 
route verifications. This approach could significantly 
streamline routing operations by automating route 
validation, thus enhancing the efficiency of adaptive routing 
algorithms that rely on historical data [6,7].  

The study objective is to propose an advanced routing 
solution that merges standard VRP methodologies with 
adaptive algorithms and an ML-powered classification 
component to ensure the inclusion of high-quality historical 
routes. Additionally, usability testing will assess how well 
this comprehensive solution meets end-user needs. 

The solution presented results from an extensive three-
year international research and development project that the 
European Union founded through the Eureka Network 
program from 2020 to 2023. More information about the 
solution is available on the project website [8]. 

This paper is structured as follows: section 2 describes an 
overview of related work and background information, while 
section iii describes a high-level view of the solution’s 
components. In section 4, we compare selected ML methods 
used to categorize the tracks. Section 5 presents the results 
and discusses them, and section vi concludes the paper with 

conclusions about the research work. 

2. LITERATURE REVIEW 
The VRP addresses various operational constraints to 

identify optimal vehicle routes, and traditional VRP 
solutions use metaheuristic algorithms to find feasible 
routes. However, modern applications often demand real-
time adjustments, leading to the development of dynamic 
VRP algorithms, such as adaptive extensive neighborhood 
search (ALNS), which can modify the routes based on live 
data [9]. Incorporating machine learning into VRP 
frameworks allows solutions to "learn" from previous 
patterns and human input, making routing decisions that are 
both automated and contextually aware [6,10]. 

2.1 GATHERING USER REQUIREMENTS 
User requirements are critical to designing efficient 

customer-oriented software solutions. Organizations can 
gather structured data on routing priorities for a route 
optimization solution by conducting quantitative surveys, 
such as minimizing costs or ensuring consistent delivery 
times. This data helps tailor routing solutions to operational 
needs, while surveys highlight user expectations for features 
like route adaptability and predictive accuracy [11]. 

2.2 ARCHITECTURE OF A ROUTE OPTIMIZATION 
SOLUTION 

The architecture of a routing optimization system must 
support real-time data processing, modular scalability, and 
robust computing power. Often structured as a multi-layered 
or distributed system, routing solutions integrate real-time 
data, such as GPS and traffic updates, to optimize routes 
dynamically. Such an architecture allows continuous data 
integration across dispersed nodes and enables centralized 
control for complex routing decisions [12]. Distributed 
processing models, which split the problem into smaller, 
manageable tasks, are increasingly favored due to their 
scalability and adaptability, essential in urban logistics 
where route conditions change frequently [13,14]. 

2.3 TRADITIONAL VRP ALGORITHMS 
Traditional VRP algorithms, including GA, ACO, and 

Simulated Annealing, are core methods for solving static 
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VRPs. GA uses evolutionary principles to improve solutions 
by combining "parent" solutions, while ACO, inspired by ant 
foraging behavior, enhances routes based on historical paths 
[3]. Though effective for specific scenarios, these algorithms 
face challenges in dynamic VRP settings, where real-time 
decision-making and adaptability are essential [15]. 

2.4 ADAPTIVE ALGORITHMS BASED ON 
HISTORICAL TRACKS 

Adaptive algorithms represent a significant advancement 
in VRP, allowing solutions to incorporate real-time 
adjustments based on live data and historical performance 
[16]. These algorithms can respond to dynamic factors such 
as traffic or weather, which is critical in urban logistics. For 
example, the adaptive extensive neighborhood search 
(ALNS) framework has been extended to handle real-time 
constraints, helping organizations optimize routes with 
fluctuating conditions by adjusting strategies according to 
ongoing evaluations [17]. Evolutionary and reinforcement 
learning techniques are also used to update route plans based 
on historical performance continuously and predicted traffic 
patterns, further improving efficiency in dynamic settings 
[18,19]. 

Recent adaptive methods leverage deep learning to 
enhance VRP solutions further. They employ neural 
networks to predict traffic patterns and optimize routes in 
response to these predictions [20]. Such advancements 
demonstrate significant promise, as they reduce computation 
times and increase solution robustness, making them suitable 
for complex, large-scale routing systems [21,22]. 

2.5 MACHINE LEARNING CLASSIFICATION 
The machine-learning classification module is designed to 

automatically assess the validity of historical routes by 
comparing them to human-validated patterns, ensuring that 
only high-quality routes are incorporated into adaptive 
routing algorithms. Classification algorithms, such as 
support vector machines (SVM) and ensemble methods, are 
effective for analyzing historical data and distinguishing 
between valid and invalid tracks. For example, an optimized 
SVM model can reduce misclassifications and improve the 
selection accuracy of historical routes by analyzing relevant 
features and minimizing redundancy [23,24]. 

Recent studies demonstrate the efficacy of ML 
classification in handling imbalanced datasets standard in 
routing, where valid and invalid routes may not be equally 
represented [25]. This module can identify route validity 
patterns by leveraging historical data and employing methods 
like feature selection and clustering, supporting improved 
adaptive decision-making [26]. Reinforcement learning-based 
classifiers have also shown promise in optimizing routes based 
on learned behaviors from historical data, enhancing the 
overall adaptability of routing solutions [27]. 

2.6 USABILITY EVALUATION OF THE SOLUTION 
Usability evaluation is essential to ensure that routing 

solutions are operationally effective and user-friendly. 
Usability assessments evaluate the interface’s intuitiveness, 
ease of operation, and functionality. Feedback from these 
assessments allows designers to refine the system based on 
actual user needs, which may include features like real-time 
route modification, interactive visualizations, and error 
management [28]. Iterative usability testing ensures that the 

solution aligns with operational needs and supports efficient 
decision-making, increasing user satisfaction and solution 
reliability in the field [29]. 

Among the contributions made by our research, we can 
mention: a) an integrated solution for logistics companies 
that need to manage their vehicle fleets with software that 
can show a comparison between planned and executed 
routes, manages to minimize the difference between them by 
analyzing historical tracks and automatically learns to 
validate new trips; b) An adaptive algorithm that offers more 
realistic planned routes; c) getting user feedback in all the 
phases of the project: user requirements, testing of the 
optimization engine, and the usability of the final solution. 
To achieve higher scalability, techniques presented in [30] 
will be implemented in the future. 

3. METHODS – PROJECT IMPLEMENTATION 
The iRoute solution includes several technologies, from 

GPS data ingestion and processing to delivering status in real 
time and integrating with external customer solutions. All are 
presented in web and mobile user interfaces. 

The iRoute solution engages four primary actors to support 
efficient data handling and route management. First, the GPS 
device collects data through a telematics system and sensors 
installed in vehicles, which then sends this information to 
iRoute’s data acquisition endpoint. This endpoint processes 
the data, presenting it in maps and reports that help validate 
the route execution and assist in plan adjustments according to 
real-field conditions. Second, customer applications like ERP, 
WMS, and SFA systems communicate directly with iRoute 
through web services, facilitating automated data exchanges 
with minimal human intervention. 

The solution includes mobile and web application users to 
manage route execution and oversight. As mobile app users, 
drivers access the planned routes, view the sequence of visits, 
and provide feedback on each delivery or collection. They can 
also address deviations, such as updating incorrect locations 
or selecting reasons for order rejections. As web app users, 
dispatchers manage the planning of imported customer 
resources and orders, adjust plans as needed, and track route 
execution. They also generate reports to analyze and improve 
planning outcomes. 

3.1 USER REQUIREMENTS 
Before developing the software solution, we performed a 

study to identify essential features and requirements, drawing 
from the constraints highlighted by potential users in the 
transportation industry [31]. A key challenge identified was the 
restricted number of stops the optimization algorithm could 
handle, posing issues for managing more intricate delivery 
routes. Additionally, many existing solutions limit dispatchers in 
assigning vehicles to optimized routes, particularly when 
configuring delivery time windows. The absence of tailored 
options often prevents companies from fully aligning the 
solution with their specific operational needs. In contrast, 
insufficient integration features with customer solutions 
complicate the generation of optimized routes in real time. 

3.2 SOLUTION ARCHITECTURE 
Our solution organizes data across three layers: the External 

Data Layer, the Application Core Layer, and the Presentation 
Layer. These layers interact with external data sources and users 
(Fig. 1). 
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The External Data Layer gathers and processes information 
from GPS and telematics sensors in vehicles, which is then 
transmitted to the central database. It supports remote 
configuration and provides real-time insights through 
bidirectional data connections, facilitating efficient planning and 
execution adjustments. This layer includes modules like Vehicle 
Data and Integration, which handle orders, resources, plan 
parameters, and route execution metrics. 

In the Application Core Layer, the central database, built on 
Microsoft SQL Server, is the foundation, storing data across 
categories like telematics, metadata, operations, and reporting. 
The Processing Services module cleans and transforms data for 
usability, while the User Profile module allows clients to set 
optimization preferences like time windows, vehicle types, and 

map settings. The Optimization Engine applies the VROOM 
algorithm, utilizing OpenStreetMap data, to create optimized 
routes that reduce costs and enhance efficiency. The data flow 
here supports custom configurations, adapting routes 
dynamically to meet clients' needs. 

The Presentation Layer provides data access through both 
web and mobile applications. The web app includes essential 
features for administrators and dispatchers, such as 
authentication, system management, and report generation. The 
mobile app lets drivers view daily routes, track client locations, 
and provide feedback on field operations. This feedback loop 
enhances client-driver relationships and contributes to ongoing 
system improvements. 

 
Fig. 1 – Solution's architecture. 

Each module across these layers integrates seamlessly to 
optimize route planning, real-time monitoring, and dynamic 
adaptation, providing an effective and user-friendly tool for 
managing logistics and route execution. 

3.3 ADAPTED ROUTE OPTIMIZATION ALGORITHM 
In a previous article [28], we introduced a prototype for an 

adapting route optimization algorithm in the iRoute solution. 
The algorithm includes specific variables – user profile, 
customer locations, orders, driver and vehicle work 
schedules, delivery and route constraints, and planning 
parameters – that can contribute to even more effective 
optimization outcomes. By factoring in these elements, 
recurring road segments within routes can be reused to refine 
the optimal route offered by the algorithm. 

The iRoute solution optimizes day-by-day operational 
routes by using real road conditions that drivers face on each 
delivery. For instance, when driving multiple times on a 
delivery route - each one with a different duration, distance, 
or road sequence used when comparing to the original 
optimal route - drivers are likely to favor alternative routes 
based on road familiarity, personal driving preferences (e.g., 
choosing non-urban roads), or other practical conditions 
affecting the route’s completion. When drivers must follow 
an overly theoretical route plan, they may struggle to follow 
it effectively, noting discrepancies due to unaccounted-for 
local factors like traffic, community characteristics, and road 
network peculiarities. This prompted us to leverage 
historical routes and incorporate driver insights, yielding a 

refined route that more closely aligns the plan with actual 
execution. This adaptation minimizes plan-execution 
differences while ensuring that all destinations on the route 
are covered. Dispatchers can also validate route execution or 
specific segments, ensuring drivers don’t take extended 
paths without justification. Invalid historical segments are 
excluded from the final adapted route. 

Route segment similarity was determined using the Curve 
Matching library. This approach involved normalizing each road 
sequence using Fréchet distance and Procrustes analysis between 
the polylines to compare route segments effectively, Fig. 2. 

 
Fig. 2 – Fréchet distance (F.D.) for three tracks. 

We’ve tested our algorithm on over 400 routes with fleets that 
involved more than 25 vehicles and obtained reduced duration 
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and distance differences between what was planned and what 
was executed: an average of less than 19.6 % distance difference 
and less than 14.2 % duration difference [32]. 

3.4 AUTOMATIC VALIDATION OF HISTORICAL 
TRACKS WITH MACHINE LEARNING 

The proposed adaptive algorithm depends on high-quality 
input data to achieve optimal results. An essential part of this 
process is validating historical route data, which can be 
particularly labor-intensive and time-consuming for dispatchers 
managing large fleets. This requirement has often led business 
owners and dispatchers to perceive our solution as potentially 
challenging to integrate into routine operations. 

To address this concern and streamline validation, we 
incorporated a machine-learning classification approach to 
automate the validation of historical route data. For model 
development and evaluation, Python scripts were used to prepare 
and train several candidate models. The optimal model selection 
involved testing various classification algorithms to identify the 
best fit for the unique attributes of our dataset. Details of the 
model selection process and performance comparisons are 
outlined in Section IV. This automation improves data accuracy 
and enhances the feasibility of deploying the solution at a scale. 

3.5 USABILITY EVALUATION 
We assessed the usability of the iRoute solution using a 

methodology derived from the WAMMI testing approach, with 
modifications tailored for evaluating a web application designed 
for dispatchers and fleet managers. These users are the primary 
beneficiaries of such solutions, as their main objective is to 
effectively plan and optimize vehicle routes to minimize costs 
and enhance overall operational efficiency. It is crucial to ensure 
greater truck availability with minimal downtime, prioritizing 
this over minor savings in fuel consumption. 

The usability questionnaire contained questions for user 
profiling, general feedback, usability feedback, and perceived 
efficiency feedback. 

The evaluation was conducted over an extensive one-year 
period, with 112 respondents who completed the feedback form 
at the end of the test. The results were promising for the first 
version of the solution, with positive ratings for usability (3.79 
out of 5) and perceived efficiency (3.67 out of 5), Fig. 3. 

 

Fig. 3 – Average usability feedback. 

4. COMPARING MACHINE LEARNING MODELS 
FOR VALIDATING TRACKS 

As mentioned in section 3, we implemented several 
Machine Learning models to automatically classify historical 
tracks as valid or not valid. 

First, we gathered a collection of historical tracks 
previously validated by manual feedback from some of our 
potential customers. The collection contained 65354 samples. 

Before using the dataset, several operations were needed: 

– Pre-process the data – summarizing nine 
different tables of data into a single table with all 
the useful information 

– Eliminating irrelevant columns 
– Converting data into a more ML-friendly format: 

Datetime converted in Timestamp, Percentage 
converted in Numeric. 

After the pre-processing data, we had the following 
information for each track (Table 1). 

Table 1 
Dataset columns. 

Column Type Description 
TrackID Integer Unique code, identity of track 
RouteID Integer The ID of a planned route (if 

any) that contained that track 
Stationary Bit 1 – the track is stationary; 0 – 

the track is a movement of the 
vehicle 

EngineOn Bit 1 – the track is for vehicle with 
engine on; 0 – the track is for 
vehicle with engine off 

StartLatitude Numeric (9,6) The latitude of the start point 
StartLongitude Numeric (9,6) The longitude of the start point 

EndLatitude Numeric (9,6) The latitude of the stop point 
EndLongitude Numeric (9,6) The longitude of the stop point 
StartRecord Timestamp The timestamp for the start of 

the track 
EndRecord Timestamp The timestamp of the end of the 

track 
Distance Integer The distance of the track in 

meters 
AvgDistance Integer The average truncated distance 

of similar tracks (same start, 
end) 

Duration Integer The duration of the track in 
seconds 

AvgDuration Integer The average truncated duration 
of similar tracks (same start, 
end) 

SimilarTracks Integer Number of similar tracks (same 
start, end) 

MaxSpeed Integer The maximum speed recorded 
on the track 

AvgSpeed Integer The truncated average speed 
recorded on the track 

MaxStopDuration Integer The truncated duration of the 
longest stop of the vehicle 
during the track  

StationaryPoints Integer The number of GPS positions 
that were recorded as stationary 
during the track 

TotalPoints Integer The total number of GPS 
positions recorded during the 
track 

MaxSegment Integer The truncated length of the 
biggest segment (two 
consecutive GPS positions) that 
was recorded on the track 

Valid Bit 1 = track was valid; 0 = track 
was not valid – value used for 
training and testing 

 
To evaluate the performance of the models, we split the 

dataset into training and testing subsets. This approach 
ensures the model is trained on most of the data sample while 
evaluating its performance on significant untrained data: 

– 80 % of the samples were allocated for training. 
– 20 % of the samples were allocated for testing. 

We tested the following models: 
– Support Vector Machine (SVM): a classifier that 

attempts to find a hyperplane separating valid 
and invalid routes. SVM is particularly effective 
in high-dimensional spaces and is well-suited for 
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tasks where classes are separable. 
– XGBoost: Extreme Gradient Boosting, known 

for its ability to handle non-linear relationships, 
providing robust regularization to avoid 
overfitting, and it benefits from parallel 
processing, making it efficient for large 
datasets.[33] 

– Random Forest: An ensemble of decision trees 
that reduces overfitting and is particularly 
effective for handling large, complex 
datasets.[34] 

– K-Nearest Neighbors (KNN): An instance-based 
learning model that works well for smaller 
datasets with localized clusters. 

– Logistic Regression: A linear model ideal for 
binary classification when the correspondence 
between input features and outcomes is linear. 

– Decision Tree: An intuitive model that splits data 
into decision nodes, making it interpretable and 
effective for more straightforward datasets with 
clear decision boundaries. 

We used Python scripts to manage the models, separating 
preprocessing data from training and testing it, as seen in 
Fig. 4. The results of testing each model are detailed in 
section 5.  

 
Fig. 4 – Training and testing ML models. 

After training and testing the above models, we compare the 
accuracy and select the best one to use in production for real-
time validation of tracks. 

5. RESULTS OF ML TRAINING ON DIFFERENT 
MODELS AND DISCUSSIONS 

To evaluate the performance of each classification model, 
accuracy was computed based on the predictions made on 
the test set. Table 2 summarizes each model accuracy, along 
with a brief description of when it is most suitable: 

The XGBoost model emerged as the top performer, 

achieving an accuracy of 98.20 %, making it the most 
suitable model for this dataset. Its capture of complex, non-
linear relationships allowed it to outperform other models. 

The Random Forest model performed with a similar 
accuracy of 98.17 %, slightly trailing behind XGBoost. This 
suggests that ensemble methods like XGBoost and Random 
Forest are highly effective for this dataset. 

Table 2 
Machine Learning Classification Models Testing Results 

Model Accuracy 
(%) 

Description and where to use 

XGBoost 98.20 Ensemble learning method using 
boosting. Best for large, complex 
datasets with non-linear relationships. 

SVM 
(Support 
Vector 

Machine) 

76.09 Effective in high-dimensional spaces 
for classification tasks. Ideal for 
smaller datasets with distinct class 
boundaries. 

Random 
Forest 

98.17 Ensemble of decision trees, good for 
avoiding overfitting. Works well with 
large datasets and mixed feature types. 

K-Nearest 
Neighbors 

(KNN) 

88.77 Instance-based learning method. 
Suitable for datasets with locally 
clustered data, emphasizes 
interpretability. 

Logistic 
Regression 

77.78 Simple, linear model for binary 
classification. Best when the 
relationship between features and 
outcomes are linear. 

Decision 
Tree 

97.38 Intuitive model that splits data into 
branches. Good for simple datasets 
with clear decision boundaries. 

The Decision Tree model also performed well, with an 
accuracy of 97.38 %, indicating it can handle more 
straightforward datasets effectively, although it slightly 
underperformed compared to the ensemble models. 

The K-Nearest Neighbors (KNN) model showed a 
reasonable accuracy of 88.77 %, proving it helpful when the 
data has localized clusters or interpretable patterns.  

Finally, models like Logistic Regression and SVM 
struggled to capture the complexity in the data, achieving an 
accuracy of 77.78 %. 

6. CONCLUSIONS 
Small and medium-sized enterprises (SMEs) operating 

transportation fleets mainly focus on minimizing operational 
costs. However, they often encounter challenges when 
implementing existing algorithms to optimize vehicle routes. 
Many affordable routing solutions have significant 
limitations, including restrictions on the number of delivery 
locations and routes that can be planned simultaneously and 
a lack of integration with current customer applications, 
reducing their usability in real business scenarios. 

In this article, we introduced a new, scalable solution 
featuring an optimized algorithm to generate more realistic 
route plans, resulting in route execution times that closely 
align with planned durations. Our tests revealed a reduction 
in route duration by 14.2 % and a decrease in average 
distance by 19.6 % when comparing planned with execution, 
demonstrating the effectiveness of our approach. 

To improve the adoption of the iRoute solution, we 
developed and evaluated several machine learning (ML) 
models designed to automate the validation of historical 
tracks. The results from these tests were encouraging, 
demonstrating that the models achieved an accuracy rate 
exceeding 98 % in correctly validating the tracks. 

The iRoute platform offers a complete software and 
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hardware solution by equipping customers with an essential 
toolkit to increase their delivery or collection transportation 
business performance. 
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