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This paper proposes a new method for verifying arithmetic circuit operations based on the Vedic mathematics Sutra (formulae) 

“Gunita Samuccaya”. According to this sutra, our proposed method verifies arithmetic operations, e.g., c = a + b, by checking 

whether the sum of 'a' and 'b' digits equals the sum of digits of 'c' for correct computation. In contrast to built-in self-test (BIST) 

schemes, our approach is simpler, eliminating traditional test pattern generators and output analyzers while achieving 100% fault 

coverage for simple arithmetic operations. Our system, designed in Verilog hardware description language (HDL), is real-time, 

memoryless, and scalable. This proposed testing method revolutionizes arithmetic circuit verification, guaranteeing the integrity 

of intricate digital systems where mathematical precision is vital. 

 

1. INTRODUCTION 

The importance of arithmetic unit verification has 

increased significantly due to the widespread use of 

arithmetic modules in demanding applications like 

multimedia, signal processing, and encryption within 

embedded systems. Although certain Electronic Design 

Automation (EDA) vendors offer tools to ensure arithmetic 

components are "correct by construction," validating non-
standard, bit-optimized embedded arithmetic circuits 

remains a complex task. To tackle this challenge, a range of 

verification methods and tools, including formal and 

simulation methodologies, are utilized. As very large scale 

integration (VLSI) design complexity increases, field 

programmable gate arrays (FPGAs) are being used more 

often to quickly prototype control units and arithmetic 

circuits. FPGA implementation has the advantage of fast 

deployment, especially when a significant amount of design 

time is taken up by debugging logic designs. Despite this, 

layout principles have a significant impact on circuit 

performance, even with minor changes to the circuit 

structure [19]. In [1], a debugging technique for arithmetic 

circuits that focuses on specific circuit adjustments to 

accelerate redesign efforts is proposed. Debugging time is 

reduced by examining the circuit, identifying flaws, and 

replacing problematic components with suitable circuit parts. 

The need to start design verification and debugging early in 

the design process is highlighted by the increasing size and 

complexity of digital systems. A key hurdle in assessing such 

complex systems involves managing mathematical data 

paths and their elements, like multipliers and dividers. While 

many hardware verification tools rely on bit-level strategies 

such as satisfiability or binary decision diagrams solvers, 

these techniques encounter challenges in addressing 

scalability issues when handling intricate arithmetic circuits 

[2-3]. In the early twentieth century, Swami Bharati Krishna 

Tirtha advocated and popularized Vedic Mathematics, based 

on India's oldest scriptures, the Vedas. This ancient Indian 

mathematical system includes various techniques and 

principles to efficiently solve complex mathematical 

problems. By using Vedic mathematics in this work, we 

propose a verification method for the basic arithmetic 

circuits. In contemporary times, Vedic mathematics has 

undergone a revival in several technological fields, including 

computer science, data analytics, cryptography, and artificial 

intelligence. A significant application of Vedic mathematics 

lies in algorithm optimization and complexity analysis [21].  

The techniques of Vedic mathematics can aid in the design 

of efficient algorithms for solving intricate computational 
problems [4]. Vedic mathematics, a traditional Indian system 

of mathematics, contains 16 sutras that facilitate quick 

problem-solving in most areas of mathematics in 

contemporary computing environments. One obvious thing 

is that the suggested square utilizes the Ekadhikena Purvena 

sutra, meaning "one more than the former." Classically used 

to square decimal numbers terminating in 5, we extend and 

modify this sutra for effective squaring of binary numbers, 

demonstrating its flexibility and possibilities for creative use 

in digital computation. The Squarer proposed illustrates 

large benefits, with nearly 50% area savings and a 50% delay 

reduction, performing better than the duplex squarer in the 

32-bit configurations [22]. In this paper, we propose that 

Vedic mathematics supports the testing of arithmetic circuits 

by providing efficient methods that aid in verifying their 

accuracy and functionality, thereby contributing to the 

overall reliability of arithmetic operations within digital 

systems.  

Our proposed testing method using Vedic mathematics 

involves providing immediate inputs to the circuit under test 

and verifying its output simultaneously, rather than storing 

the reference signatures in a large memory space for 

comparing them to find faults.  

1.1 CONVENTIONAL BIST ARCHITECTURE 

The built-in self-test is a conventional technique, as shown 

in Fig. 1, that allows an integrated Circuit to achieve self-

testing, and it includes three main components: output 

Analyzer (OA), test pattern generator (TPG), and circuit 

under test (CUT). The TPG uses a linear feedback shift 

register (LFSR) to generate the required input vectors for the 

CUT during testing. The OA consists of a memory unit and 

a comparator. It stores the standard output values (known as 

golden or reference signatures) from the CUT in memory. 
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The comparator then checks the output produced by the CUT 

against the standard output values stored in memory. If the 

circuit is functioning correctly, the outputs will match. If 

there are any defects in the circuit, the actual outputs will 

differ from the expected ones. 

 
Fig. 1 - Conventional BIST Architecture. 

1.2. PROPOSED VEDIC TESTING ARCHITECTURE 

The proposed testing strategy (Fig.2.) takes the circuit's 

inputs and outputs and uses them in the Vedic testing 

module. This module is based on the Vedic principle of 

Gunita Samuccayah. This approach aims to improve the 

accuracy and reliability of our testing process and differs 

from the traditional BIST method because it checks the 

circuit under test using immediate inputs and their 

corresponding outputs, without the need to store reference or 

golden signatures in a large memory.  

 
Fig. 2 – Basic block diagram of proposed testing method. 

The proposed testing methodology is illustrated in Fig. 3. 

In this methodology, the inputs provided to and the outputs 

from the circuit under test are sufficient to evaluate its 

correctness of operation when it is further processed in the 

Vedic testing module. 

 

Fig. 3 - Proposed Vedic testing architecture. 

We initially tested the Vedic testing module with a set of 

input values for all arithmetic operations to ensure it was 

working correctly. Following that, we tested it with different 

input sizes for addition, multiplication, subtraction, and 

division operations. The details of the testing process are 

illustrated in Section 3. 

We initially tested the Vedic testing module with a set of 

input values for all arithmetic operations to ensure it was 

working correctly. After that, we tested it with different input 

sizes for addition, multiplication, subtraction, and division. 

The details of the testing process are illustrated in Section 3. 

2. RELATED WORK 

Arithmetic circuits are fundamental to digital computing 

systems, making their accuracy and reliability crucial for 

optimal performance. There are various techniques available 

for testing these circuits, each with its own advantages and 

applications. Verifying arithmetic circuits, especially 

multipliers, remains a significant challenge despite 

advancements. The primary approach is to represent the 

circuit using computer algebra as a set of pseudo-Boolean 

polynomials. For converting the circuit to a specific 

mathematical problem, it must be checked whether the 

circuit polynomials imply the given word-level specification. 

Solving this problem is essential to confirm that the circuit 

functions as intended. [5]. Recent techniques for multiplier 

circuit verification use computer algebra and SAT solving to 

model the circuit as polynomials and generate a Gröbner 

basis for verification. Complex final-stage adders are 
addressed using satisfiability (SAT) solvers, while adder 

substitution simplifies the verification process [6].  

The verification method for arithmetic circuits utilizing 

output signature (OS) and input signature (IS) polynomials 

based on symbolic computer algebra (SCA) was presented in 

[7]. To verify the end polynomial with respect to the IS, the 

method analyzes the backward step-by-step substitution of 

the gate polynomials within output polynomials according to 

the topologically reversed order of the circuit. Further, it 

discusses the design of arithmetic blocks, such as the Partial 

product generator (PPG), final sum adder (FSA), and partial 

product accumulator (PPA), as well as the conversion of 

binary moment diagrams (BMDs) from binary decision 

diagrams (BDDs). 

In [8], a methodology for verifying arithmetic circuits using 

Taylor expansion diagram (TED) data structures and a 

technique that merges an inverter graph (AIG) and an adder 

tree to verify the correctness of arithmetic functions is 

proposed. It aims to achieve fewer phases and a reduced area 

compared to existing methods, using a backward rewriting 

technique for function extraction. Verifying gate-level divider 

circuits is challenging due to the need for extensive gate-level 

verification and the limitations of traditional Boolean 

approaches. To address this, an extended algebraic model is 

utilized to prove the accuracy of the division algorithm 

without requiring a reference design [9]. This technique 

demonstrates the functionality of gate-level divider circuits, 

building on successful methods used for other arithmetic 

circuits. As the complexity of VLSI design increases, FPGAs 

are increasingly used to quickly prototype control units and 

arithmetic circuits. The advantage of FPGA implementation is 

its fast deployment, particularly for arithmetic circuits in 

embedded systems, which can pose challenges for debugging 

due to their complexity and non-standard implementations. 

This approach automates the generation of directed tests by 

assigning input variables in a particular way, ensuring the 

remainder is non-zero. Bug localization and correction are 

facilitated by analyzing remainder patterns and test activations 
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[10]. In their paper [11], the authors have provided a thorough 

formalization of polynomial reasoning and introduced a new 

column-wise verification technique for validating gate-level 

multipliers without reducing a full word-level specification. 

This approach demonstrates the precision and 

comprehensiveness of using exact formalization. The 

experiments demonstrate that simple multipliers can be easily 

analyzed using standard computer algebra methods, but more 

complex and optimized multipliers require more advanced 

procedures. The procedure presented in [12] extends to mere 

verification; it can reveal the exact mathematical function 

performed by the circuit by examining its outputs (i.e., it 

extracts the arithmetic function).  

The research [13] delves into the validation of arithmetic 

operations performed by a circuit by discovering a distinct 

mathematical formula, known as a bit-level polynomial 

function, that is embedded in the circuit’s gates. This method 

identifies the test circuit’s main arithmetic function by 

extrapolating the input signature from the output signature. 

On the other hand, Function Identification uses the extracted 

input signature to reveal the circuit's arithmetic operation 

when its mathematical function is not initially known. The 

goal of the study [14] was to identify logic errors in a 
synthesized circuit caused by the incorrect gate (also known 

as a "gate replacement" error). Initial findings support the 

effectiveness of the proposed approach in addressing 

practical issues, with a future focus on optimizing cut 

generation for improved efficiency. One possible strategy is 

to sample the circuit with specific cuts and confirm their 

signatures using a "binary search" technique [20].  

To validate carry signals, this method [15] requires a 

detailed analysis of different Exclusive-Or (XOR) tree 

topologies, resulting in an exponential runtime cost. 

Conversely, another verification technique outlined in 

another reference uses a reverse-engineering approach to 

quickly synthesize a network of HAs (half-adders) from a 

gate-level description. The extraction process uses a BLA 

(Bit-level adder) representation, which is well known for its 

reliability across different arithmetic circuit topologies. [16]. 

Performing transformations from primary outputs to primary 

inputs in reverse topological order is the method suggested 

in this paper [17]. The method checks for equivalence using 

canonical data structures such as TED or BMD. In the event 

of mismatches, SAT/ satisfiability modulo theories (SMT) 

problems can be solved to identify bugs. The algorithm 

works on basic Boolean gates but can handle complex gates 

by writing equations for each internal signal. Once the input 

signature is computed, it is compared against the expected 

specification to assess correctness. The method for verifying 

large arithmetic circuits efficiently is proposed in [18]. This 

method appears to involve extracting Boolean polynomials 

from the gate-level implementation, computing a Groebner 

basis, and reducing the polynomials for verification.  

3. PROPOSED METHOD 

The method we used for testing arithmetic circuits was 

inspired by the Vedic sutra Gunita Samuccaya, originally 

used to validate polynomial factorization. We applied this 

verification approach to basic arithmetic operations and 

found that it was effective. 

3.1 GUNITA SAMUCCAYAH FOR VERIFYING 

FACTORIZATION RESULTS 

Gunita Samuccayah-Samuccaya Gunitah' is a sub-sutra in 

Vedic mathematics that is intended to verify the correctness 

of obtained answers in factorization. It says that: “The POS 

(Product of Sum) of the coefficients in the factors is equal to 

the sum of the coefficients in the polynomial equation”. 

Equation (1) represents a third-order polynomial equation 

and its factorization. Let us verify the factorization result 

using the principle of Gunita Samuccayah-Samuccaya 

Gunitah. 

 

y 3 + 10 y2 + 11 y – 70 = (y + 5) (y + 7) (y – 2). (1) 

 

By finding the sum of the coefficients of the polynomial 

equation at the left-hand side (LHS) & POS of the coefficients 

in the factors at the right-hand side (RHS), we get, 

1 + 10 + 11 – 70 = (1 + 5) (1 + 7)(1 – 2). 

By simplifying, 

22 – 70 = 6 × 8 × –1, 

-48 = -48 verified. 

LHS = RHS 

Therefore, the given factorization is a valid representation 
of the polynomial equation. 

For further understanding, one more example is given 

below: 

 y2 + 5 y + 6 = (y + 3)(y + 2) 

Now, 1 + 5 + 6 = (1 + 3)(1 +2) 

12 = 4 × 3 

12 = 12 

LHS = RHS 

Thus, the given factors are valid, where y is the 

polynomial variable 

We discovered that the Gunita Samuccaya-Samuccaya 

Gunitah Vedic sutra can also verify the correctness of other 

mathematical operations, such as addition, division, 

squaring, cubing, and more. The numerical verification is 

provided below by summing the digits on both sides. 

3.2 GUNITA SAMUCCAYAH FOR VERIFYING 

OTHER ARITHMETIC OPERATIONS 

i. Addition 

Let us consider this addition example, 

 98473 + 54672 = 153145 

By finding the sum of the digits on both sides, 

(9+8+4+7+3) + (5+4+6+7+2) = 1+5+3+1+4+5 

 (3+1) + (2+4) = 1+9 

4 + 6 = 10 

10 = 10 

1+0 = 1+0 

1= 1 

LHS= RHS 

Thus, the addition result is verified to be correct. 

If the single-digit sum of the LHS and RHS is the same, 

then we can conclude that the adder circuit is working 

correctly. A similar verification procedure is followed for 

other arithmetic operations, as in ii, iii, and iv.  

ii. Subtraction 

Let us consider this subtraction example, 

98473 - 54672   

Instead of direct subtraction, 9's complement addition is 

used below:  
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98473 + 45327 * = 143800 

By finding the sum of the digits on both sides, 

(9+8+4+7+3) + (4+5+3+2+7) = 1+4+3+8 

(3+1) + (2+1) = 1+6 

4 + 3 = 7 

7 = 7 

LHS = RHS 

Thus, the subtraction result is verified to be correct. 

*The subtrahend is 54672. Its 9's complement is  

99999 - 54672 = 45327. 

iii. Multiplication 

Let us consider this multiplication example, 

  98473 × 54672 = 5383715856 

By finding the sum of the digits on both sides, 

(9+8+4+7+3) × (5+4+6+7+2) = 5+3+8+3+7+1+5+8+5+5+6 

(3+1) × (2+4) = 5+1 

 4 × 6 = 6 

(2+4) = 6 

 6 = 6 

 LHS = RHS 

Thus, the multiplication result is verified to be correct. 

iv. Division 

For example, the given division problem & the results are: 
98473 ÷ 54672 => Quotient = 1; Remainder = 43801  

The division rule is verified using the formula: 

Dividend = (Divisor × Quotient) + Remainder   

Let us verify it using the principle of Gunita Samuccayah-

Samuccaya Gunitah. 

(9+8+4+7+3) = [(5+4+6+7+2) × 1]    + (4+3+8+0+1)  

 (3+1) = [(2+4) × 1] + (1+6) 

 4 = 6 + 7 

 4 = (1+3) 

4 = 4 

LHS = RHS 

Thus, the division result is verified to be correct. 

For all verifications, when there are no errors in the circuit 

or process being tested, the values on the LHS must match 

those on the RHS.  

Table 1 shows the proposed Gunita Samuccayah 

verification for the different arithmetic operations. 

Table 1 

Proposed Gunita Samuccayah Verification 

Operation Verification Formula 

Addition (∑a(digits) + ∑b(digits)) =∑sum(digits) 
Subtraction (∑a(digits) - ∑b(digits)) =∑difference(digits) 

Multiplication (∑a(digits) * ∑b(digits)) =∑product(digits) 

Division (∑dividend(digits) = [∑divisor(digits) * 

∑quotient(digits)] –∑remainder(digits) 

Cubing ∑a(digits)^2 =∑result(digits) 
Squaring ∑a(digits)^3 =∑result(digits) 

3.3. ALGORITHM OF PROPOSED VERIFICATION 

METHOD 

In the proposed method of testing, to test the correctness 

of the circuit, the inputs and the results of the circuit under 

test viz., adder, subtractor, multiplier, divider, squaring 

circuit, cubing circuit, etc., are given to the testing circuit and 

undergone the following processes: 

Step 1: Separate the digits of the input values (LHS) given to 

CUT as well as the results (RHS) from them.  

Step 2: On both sides, add the separated digits and calculate 

the sum. If the sum is a single digit, the addition should stop. 

If not, repeat steps 1 and 2 until the sum becomes a single 

digit.  

Step 3: Perform the required operation 

(addition/multiplication) on the single-digit at the LHS as per 

the circuit requirements.  

Step 4: Find the difference between the single-digit value of 

the LHS and the single-digit sum value of the RHS. 

If the difference is zero, determine that the circuit under test 

is error-free. If the difference is non-zero, then the circuit 

under test is faulty. The above processing steps are shown in 

the flow diagram in Fig. 4 and apply to all circuits listed in 

Table 2, except for division. For the division process 

verification, we need to use the dividend, divisor, quotient, and 

remainder. We must use the division formula from Table 1 for 

verification. The process flow for division is shown in Fig. 5. 

 

Fig. 4 – Process flow diagram of addition, subtraction, and  

Multiplication verification. 

Table 2  

Area and Power of Proposed Testing Technique for 8-bit Inputs 

Sl. No. Arithmetic Circuit Area (LEs) Total Power (mW) 

1 Addition 124 134.48 

2 Subtraction 216 151.52 
3 Multiplication 746 137.78 

4 Division 543 136.47 

 

 

Fig. 5 – Process flow diagram of division verification. 

4. RESULTS AND DISCUSSION 

In this section, we confer the practical implementation and 

verification of the Gunita Samuccayah Vedic sutra for 



5 Devi Poonguzhali, et al. 523 

 

verifying arithmetic circuits. This was accomplished using 

Verilog HDL programming, through which we determined 

the area and total power dissipation of the circuits. 

4.1 SIMULATION RESULTS 

Currently, there is a lack of real-time testing for the Gunita 

Samuccayah from the perspective of arithmetic circuit 

verification. Therefore, we present the execution results of 

our proposed technique below. The software implementation 

results for 4, 8, 16, 32, and 64-bit arithmetic operations are 

provided in Tables 2 to 5. 

The conventional built-in self-test experiment was conducted 

for various types of adders, including the ripple carry adder 

(RCA), carry look-ahead adder (CLA), and carry select adder 

(CSA). Additionally, different multiplier types were examined, 

such as the Array multiplier, Booth multiplier, and Urdhva 

Tiryagbhyam (UT) sutra-based Vedic multiplier. The 

performance analyses were done for 4, 8, 16, and 32 bits. 

Table 3  

Area and Power of Proposed Testing Technique for 16-bit Inputs 

Sl. No. Arithmetic Circuit Area (LEs) Total Power (mW) 

1 Addition 717 141.81 

2 Subtraction 769 161.28 
3 Multiplication 1226 143.67 

4 Division 1016 143.54 

Table 4 

Area and Power of Proposed Testing Technique for 32-bit Inputs 

Sl. No. Arithmetic Circuit Area (LEs) Total power (mW) 

1 Addition 2071 149.36 

2 Subtraction 2165 168.25 

3 Multiplication 2677 151.32 

4 Division 2483 151.11 

Table 5  

Area and Power of Proposed Testing Technique for 64-bit Inputs 

Sl. No. Arithmetic Circuit Area (LEs) Total Power (mW) 

1 Addition 5043 163.23 

2 Subtraction 5237 183.68 
3 Multiplication 5786 164.45 

4 Division 5534 164.12 

 

Tables 6 and 7 present the BIST testing results for 4-bit 

and 32-bit configurations. In BIST, as the number of bits 

increases, the dynamic memory required to store the test 

vectors also increases proportionally. For BIST-based adder 

testing, the dynamic memory requirements for storing test 

vectors are as follows: 160 bits for 4 bits, 4608 bits for 8 bits, 

2176 KB for 16 bits, and 264 TB for 32 bits. Similarly, for 

multipliers, the requirements are 2408 bits for 4 bits, 512 KB 

for 8 bits, 68 GB for 16 bits, and 553648128 TB for 32 bits.  

Table 6 

BIST-based adder testing results. 

No. of bits 4 32 

Adder Type RCA CLA CSA RCA CLA CSA 

Dynamic 

Power(mW) 

12.15 15.18 17.13 62.24 65.85 71.24 

Total 

memory bits 
160 264 GB 

However, when the proposed verification method based 

on Vedic Sutra 'Gunita Samuccaya' is applied to adders and 

multipliers of the same size and type, there is no requirement 

to store the test vectors separately. Consequently, the 

dynamic memory requirement across all cases is effectively 

zero, which represents the novel contribution of this paper. 

Table 7 

BIST based multiplier testing results 

No. of bits 4 32 

Adder Type Array Booth Vedic Array Booth Vedic 

Dynamic 
Power(mW) 

33.12 22.98 21.12 33.12 22.98 21.12 

Total 

memory bits 
2048 553648128 TB 

5. CONCLUSION AND FUTURE WORK 

The proposed novel test methodology for arithmetic 

circuit verification provides a revolutionary solution to real-

time verification of sophisticated functional blocks. The 

eschewal of large memory demands, e.g., 264 GB for testing 

the 32-bit adder and 553648128 TB for testing the 32-bit 

multiplier, is a point well-taken regarding the important 

benefit of our method. Our novel method of testing using 

Vedic mathematics promises to transform computation and 

mathematical applications, speeding up, improving 

efficiency, and enhancing reliability in testing arithmetic 

circuits. Furthermore, this testing is an optimized approach 

for periodic testing, typically performed to detect and resolve 

the potential problems that can develop over time, e.g., 

performance degradation, aging effects, or manufacturing 

flaws. Therefore, our research makes a significant 

contribution to the field, opening the door to future 

innovation in digital system design and testing. 
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