
Rev. Roum. Sci. Techn.– Électrotechn. et Énerg.

Vol. 70, 4, pp. 519–524, Bucarest, 2025

Électronique et transmission de l’information

Electronics and Information Technology

1 Electronic and Communication Engineering, SASTRA Deemed University, Thanjavur, Tamil Nadu, India.
2 Faculty of Electronic and Communication Engineering, SASTRA Deemed University, Thanjavur, Tamil Nadu, India.
3 Department of Electronic and Communication Engineering, Sri Eshwar College of Engineering, Coimbatore, Tamil Nadu, India.

 E-mails: dpfi0423011686@sastra.ac.in, prabakar@ece.sastra.edu, lakshmi@cse.sastra.edu, ramkumar.s@sece.ac.in

 DOI: 10.59277/RRST-EE.2025.70.4.15

REAL-TIME VEDIC MATHEMATICS BASED MEMORYLESS

ARITHMETIC CIRCUITS VERIFICATION TECHNIQUE

SINGARAVELU DEVI POONGUZHALI1, THAMMAMPATTI NATARAJAN PRABAKAR2,

BALASUBRAMANIAN LAKSHMI1, SUNDARAM RAMKUMAR3

Keywords: Testing; Formal verification; Vedic mathematics; Arithmetic circuits; Test vectors; Very large scale integration (VLSI).

This paper proposes a new method for verifying arithmetic circuit operations based on the Vedic mathematics Sutra (formulae)

“Gunita Samuccaya”. According to this sutra, our proposed method verifies arithmetic operations, e.g., c = a + b, by checking

whether the sum of 'a' and 'b' digits equals the sum of digits of 'c' for correct computation. In contrast to built-in self-test (BIST)

schemes, our approach is simpler, eliminating traditional test pattern generators and output analyzers while achieving 100% fault

coverage for simple arithmetic operations. Our system, designed in Verilog hardware description language (HDL), is real-time,

memoryless, and scalable. This proposed testing method revolutionizes arithmetic circuit verification, guaranteeing the integrity

of intricate digital systems where mathematical precision is vital.

1. INTRODUCTION

The importance of arithmetic unit verification has

increased significantly due to the widespread use of

arithmetic modules in demanding applications like

multimedia, signal processing, and encryption within

embedded systems. Although certain Electronic Design

Automation (EDA) vendors offer tools to ensure arithmetic

components are "correct by construction," validating non-
standard, bit-optimized embedded arithmetic circuits

remains a complex task. To tackle this challenge, a range of

verification methods and tools, including formal and

simulation methodologies, are utilized. As very large scale

integration (VLSI) design complexity increases, field

programmable gate arrays (FPGAs) are being used more

often to quickly prototype control units and arithmetic

circuits. FPGA implementation has the advantage of fast

deployment, especially when a significant amount of design

time is taken up by debugging logic designs. Despite this,

layout principles have a significant impact on circuit

performance, even with minor changes to the circuit

structure [19]. In [1], a debugging technique for arithmetic

circuits that focuses on specific circuit adjustments to

accelerate redesign efforts is proposed. Debugging time is

reduced by examining the circuit, identifying flaws, and

replacing problematic components with suitable circuit parts.

The need to start design verification and debugging early in

the design process is highlighted by the increasing size and

complexity of digital systems. A key hurdle in assessing such

complex systems involves managing mathematical data

paths and their elements, like multipliers and dividers. While

many hardware verification tools rely on bit-level strategies

such as satisfiability or binary decision diagrams solvers,

these techniques encounter challenges in addressing

scalability issues when handling intricate arithmetic circuits

[2-3]. In the early twentieth century, Swami Bharati Krishna

Tirtha advocated and popularized Vedic Mathematics, based

on India's oldest scriptures, the Vedas. This ancient Indian

mathematical system includes various techniques and

principles to efficiently solve complex mathematical

problems. By using Vedic mathematics in this work, we

propose a verification method for the basic arithmetic

circuits. In contemporary times, Vedic mathematics has

undergone a revival in several technological fields, including

computer science, data analytics, cryptography, and artificial

intelligence. A significant application of Vedic mathematics

lies in algorithm optimization and complexity analysis [21].

The techniques of Vedic mathematics can aid in the design

of efficient algorithms for solving intricate computational
problems [4]. Vedic mathematics, a traditional Indian system

of mathematics, contains 16 sutras that facilitate quick

problem-solving in most areas of mathematics in

contemporary computing environments. One obvious thing

is that the suggested square utilizes the Ekadhikena Purvena

sutra, meaning "one more than the former." Classically used

to square decimal numbers terminating in 5, we extend and

modify this sutra for effective squaring of binary numbers,

demonstrating its flexibility and possibilities for creative use

in digital computation. The Squarer proposed illustrates

large benefits, with nearly 50% area savings and a 50% delay

reduction, performing better than the duplex squarer in the

32-bit configurations [22]. In this paper, we propose that

Vedic mathematics supports the testing of arithmetic circuits

by providing efficient methods that aid in verifying their

accuracy and functionality, thereby contributing to the

overall reliability of arithmetic operations within digital

systems.

Our proposed testing method using Vedic mathematics

involves providing immediate inputs to the circuit under test

and verifying its output simultaneously, rather than storing

the reference signatures in a large memory space for

comparing them to find faults.

1.1 CONVENTIONAL BIST ARCHITECTURE

The built-in self-test is a conventional technique, as shown

in Fig. 1, that allows an integrated Circuit to achieve self-

testing, and it includes three main components: output

Analyzer (OA), test pattern generator (TPG), and circuit

under test (CUT). The TPG uses a linear feedback shift

register (LFSR) to generate the required input vectors for the

CUT during testing. The OA consists of a memory unit and

a comparator. It stores the standard output values (known as

golden or reference signatures) from the CUT in memory.

520 Memoryless arithmetic circuits verification techniques 2

The comparator then checks the output produced by the CUT

against the standard output values stored in memory. If the

circuit is functioning correctly, the outputs will match. If

there are any defects in the circuit, the actual outputs will

differ from the expected ones.

Fig. 1 - Conventional BIST Architecture.

1.2. PROPOSED VEDIC TESTING ARCHITECTURE

The proposed testing strategy (Fig.2.) takes the circuit's

inputs and outputs and uses them in the Vedic testing

module. This module is based on the Vedic principle of

Gunita Samuccayah. This approach aims to improve the

accuracy and reliability of our testing process and differs

from the traditional BIST method because it checks the

circuit under test using immediate inputs and their

corresponding outputs, without the need to store reference or

golden signatures in a large memory.

Fig. 2 – Basic block diagram of proposed testing method.

The proposed testing methodology is illustrated in Fig. 3.

In this methodology, the inputs provided to and the outputs

from the circuit under test are sufficient to evaluate its

correctness of operation when it is further processed in the

Vedic testing module.

Fig. 3 - Proposed Vedic testing architecture.

We initially tested the Vedic testing module with a set of

input values for all arithmetic operations to ensure it was

working correctly. Following that, we tested it with different

input sizes for addition, multiplication, subtraction, and

division operations. The details of the testing process are

illustrated in Section 3.

We initially tested the Vedic testing module with a set of

input values for all arithmetic operations to ensure it was

working correctly. After that, we tested it with different input

sizes for addition, multiplication, subtraction, and division.

The details of the testing process are illustrated in Section 3.

2. RELATED WORK

Arithmetic circuits are fundamental to digital computing

systems, making their accuracy and reliability crucial for

optimal performance. There are various techniques available

for testing these circuits, each with its own advantages and

applications. Verifying arithmetic circuits, especially

multipliers, remains a significant challenge despite

advancements. The primary approach is to represent the

circuit using computer algebra as a set of pseudo-Boolean

polynomials. For converting the circuit to a specific

mathematical problem, it must be checked whether the

circuit polynomials imply the given word-level specification.

Solving this problem is essential to confirm that the circuit

functions as intended. [5]. Recent techniques for multiplier

circuit verification use computer algebra and SAT solving to

model the circuit as polynomials and generate a Gröbner

basis for verification. Complex final-stage adders are
addressed using satisfiability (SAT) solvers, while adder

substitution simplifies the verification process [6].

The verification method for arithmetic circuits utilizing

output signature (OS) and input signature (IS) polynomials

based on symbolic computer algebra (SCA) was presented in

[7]. To verify the end polynomial with respect to the IS, the

method analyzes the backward step-by-step substitution of

the gate polynomials within output polynomials according to

the topologically reversed order of the circuit. Further, it

discusses the design of arithmetic blocks, such as the Partial

product generator (PPG), final sum adder (FSA), and partial

product accumulator (PPA), as well as the conversion of

binary moment diagrams (BMDs) from binary decision

diagrams (BDDs).

In [8], a methodology for verifying arithmetic circuits using

Taylor expansion diagram (TED) data structures and a

technique that merges an inverter graph (AIG) and an adder

tree to verify the correctness of arithmetic functions is

proposed. It aims to achieve fewer phases and a reduced area

compared to existing methods, using a backward rewriting

technique for function extraction. Verifying gate-level divider

circuits is challenging due to the need for extensive gate-level

verification and the limitations of traditional Boolean

approaches. To address this, an extended algebraic model is

utilized to prove the accuracy of the division algorithm

without requiring a reference design [9]. This technique

demonstrates the functionality of gate-level divider circuits,

building on successful methods used for other arithmetic

circuits. As the complexity of VLSI design increases, FPGAs

are increasingly used to quickly prototype control units and

arithmetic circuits. The advantage of FPGA implementation is

its fast deployment, particularly for arithmetic circuits in

embedded systems, which can pose challenges for debugging

due to their complexity and non-standard implementations.

This approach automates the generation of directed tests by

assigning input variables in a particular way, ensuring the

remainder is non-zero. Bug localization and correction are

facilitated by analyzing remainder patterns and test activations

3 Devi Poonguzhali, et al. 521

[10]. In their paper [11], the authors have provided a thorough

formalization of polynomial reasoning and introduced a new

column-wise verification technique for validating gate-level

multipliers without reducing a full word-level specification.

This approach demonstrates the precision and

comprehensiveness of using exact formalization. The

experiments demonstrate that simple multipliers can be easily

analyzed using standard computer algebra methods, but more

complex and optimized multipliers require more advanced

procedures. The procedure presented in [12] extends to mere

verification; it can reveal the exact mathematical function

performed by the circuit by examining its outputs (i.e., it

extracts the arithmetic function).

The research [13] delves into the validation of arithmetic

operations performed by a circuit by discovering a distinct

mathematical formula, known as a bit-level polynomial

function, that is embedded in the circuit’s gates. This method

identifies the test circuit’s main arithmetic function by

extrapolating the input signature from the output signature.

On the other hand, Function Identification uses the extracted

input signature to reveal the circuit's arithmetic operation

when its mathematical function is not initially known. The

goal of the study [14] was to identify logic errors in a
synthesized circuit caused by the incorrect gate (also known

as a "gate replacement" error). Initial findings support the

effectiveness of the proposed approach in addressing

practical issues, with a future focus on optimizing cut

generation for improved efficiency. One possible strategy is

to sample the circuit with specific cuts and confirm their

signatures using a "binary search" technique [20].

To validate carry signals, this method [15] requires a

detailed analysis of different Exclusive-Or (XOR) tree

topologies, resulting in an exponential runtime cost.

Conversely, another verification technique outlined in

another reference uses a reverse-engineering approach to

quickly synthesize a network of HAs (half-adders) from a

gate-level description. The extraction process uses a BLA

(Bit-level adder) representation, which is well known for its

reliability across different arithmetic circuit topologies. [16].

Performing transformations from primary outputs to primary

inputs in reverse topological order is the method suggested

in this paper [17]. The method checks for equivalence using

canonical data structures such as TED or BMD. In the event

of mismatches, SAT/ satisfiability modulo theories (SMT)

problems can be solved to identify bugs. The algorithm

works on basic Boolean gates but can handle complex gates

by writing equations for each internal signal. Once the input

signature is computed, it is compared against the expected

specification to assess correctness. The method for verifying

large arithmetic circuits efficiently is proposed in [18]. This

method appears to involve extracting Boolean polynomials

from the gate-level implementation, computing a Groebner

basis, and reducing the polynomials for verification.

3. PROPOSED METHOD

The method we used for testing arithmetic circuits was

inspired by the Vedic sutra Gunita Samuccaya, originally

used to validate polynomial factorization. We applied this

verification approach to basic arithmetic operations and

found that it was effective.

3.1 GUNITA SAMUCCAYAH FOR VERIFYING

FACTORIZATION RESULTS

Gunita Samuccayah-Samuccaya Gunitah' is a sub-sutra in

Vedic mathematics that is intended to verify the correctness

of obtained answers in factorization. It says that: “The POS

(Product of Sum) of the coefficients in the factors is equal to

the sum of the coefficients in the polynomial equation”.

Equation (1) represents a third-order polynomial equation

and its factorization. Let us verify the factorization result

using the principle of Gunita Samuccayah-Samuccaya

Gunitah.

y 3 + 10 y2 + 11 y – 70 = (y + 5) (y + 7) (y – 2). (1)

By finding the sum of the coefficients of the polynomial

equation at the left-hand side (LHS) & POS of the coefficients

in the factors at the right-hand side (RHS), we get,

1 + 10 + 11 – 70 = (1 + 5) (1 + 7)(1 – 2).

By simplifying,

22 – 70 = 6 × 8 × –1,

-48 = -48 verified.

LHS = RHS

Therefore, the given factorization is a valid representation
of the polynomial equation.

For further understanding, one more example is given

below:

 y2 + 5 y + 6 = (y + 3)(y + 2)

Now, 1 + 5 + 6 = (1 + 3)(1 +2)

12 = 4 × 3

12 = 12

LHS = RHS

Thus, the given factors are valid, where y is the

polynomial variable

We discovered that the Gunita Samuccaya-Samuccaya

Gunitah Vedic sutra can also verify the correctness of other

mathematical operations, such as addition, division,

squaring, cubing, and more. The numerical verification is

provided below by summing the digits on both sides.

3.2 GUNITA SAMUCCAYAH FOR VERIFYING

OTHER ARITHMETIC OPERATIONS

i. Addition

Let us consider this addition example,

 98473 + 54672 = 153145

By finding the sum of the digits on both sides,

(9+8+4+7+3) + (5+4+6+7+2) = 1+5+3+1+4+5

 (3+1) + (2+4) = 1+9

4 + 6 = 10

10 = 10

1+0 = 1+0

1= 1

LHS= RHS

Thus, the addition result is verified to be correct.

If the single-digit sum of the LHS and RHS is the same,

then we can conclude that the adder circuit is working

correctly. A similar verification procedure is followed for

other arithmetic operations, as in ii, iii, and iv.

ii. Subtraction

Let us consider this subtraction example,

98473 - 54672

Instead of direct subtraction, 9's complement addition is

used below:

522 Memoryless arithmetic circuits verification techniques 4

98473 + 45327 * = 143800

By finding the sum of the digits on both sides,

(9+8+4+7+3) + (4+5+3+2+7) = 1+4+3+8

(3+1) + (2+1) = 1+6

4 + 3 = 7

7 = 7

LHS = RHS

Thus, the subtraction result is verified to be correct.

*The subtrahend is 54672. Its 9's complement is

99999 - 54672 = 45327.

iii. Multiplication

Let us consider this multiplication example,

 98473 × 54672 = 5383715856

By finding the sum of the digits on both sides,

(9+8+4+7+3) × (5+4+6+7+2) = 5+3+8+3+7+1+5+8+5+5+6

(3+1) × (2+4) = 5+1

 4 × 6 = 6

(2+4) = 6

 6 = 6

 LHS = RHS

Thus, the multiplication result is verified to be correct.

iv. Division

For example, the given division problem & the results are:
98473 ÷ 54672 => Quotient = 1; Remainder = 43801

The division rule is verified using the formula:

Dividend = (Divisor × Quotient) + Remainder

Let us verify it using the principle of Gunita Samuccayah-

Samuccaya Gunitah.

(9+8+4+7+3) = [(5+4+6+7+2) × 1] + (4+3+8+0+1)

 (3+1) = [(2+4) × 1] + (1+6)

 4 = 6 + 7

 4 = (1+3)

4 = 4

LHS = RHS

Thus, the division result is verified to be correct.

For all verifications, when there are no errors in the circuit

or process being tested, the values on the LHS must match

those on the RHS.

Table 1 shows the proposed Gunita Samuccayah

verification for the different arithmetic operations.

Table 1

Proposed Gunita Samuccayah Verification

Operation Verification Formula

Addition (∑a(digits) + ∑b(digits)) =∑sum(digits)
Subtraction (∑a(digits) - ∑b(digits)) =∑difference(digits)

Multiplication (∑a(digits) * ∑b(digits)) =∑product(digits)

Division (∑dividend(digits) = [∑divisor(digits) *

∑quotient(digits)] –∑remainder(digits)

Cubing ∑a(digits)^2 =∑result(digits)
Squaring ∑a(digits)^3 =∑result(digits)

3.3. ALGORITHM OF PROPOSED VERIFICATION

METHOD

In the proposed method of testing, to test the correctness

of the circuit, the inputs and the results of the circuit under

test viz., adder, subtractor, multiplier, divider, squaring

circuit, cubing circuit, etc., are given to the testing circuit and

undergone the following processes:

Step 1: Separate the digits of the input values (LHS) given to

CUT as well as the results (RHS) from them.

Step 2: On both sides, add the separated digits and calculate

the sum. If the sum is a single digit, the addition should stop.

If not, repeat steps 1 and 2 until the sum becomes a single

digit.

Step 3: Perform the required operation

(addition/multiplication) on the single-digit at the LHS as per

the circuit requirements.

Step 4: Find the difference between the single-digit value of

the LHS and the single-digit sum value of the RHS.

If the difference is zero, determine that the circuit under test

is error-free. If the difference is non-zero, then the circuit

under test is faulty. The above processing steps are shown in

the flow diagram in Fig. 4 and apply to all circuits listed in

Table 2, except for division. For the division process

verification, we need to use the dividend, divisor, quotient, and

remainder. We must use the division formula from Table 1 for

verification. The process flow for division is shown in Fig. 5.

Fig. 4 – Process flow diagram of addition, subtraction, and

Multiplication verification.

Table 2

Area and Power of Proposed Testing Technique for 8-bit Inputs

Sl. No. Arithmetic Circuit Area (LEs) Total Power (mW)

1 Addition 124 134.48

2 Subtraction 216 151.52
3 Multiplication 746 137.78

4 Division 543 136.47

Fig. 5 – Process flow diagram of division verification.

4. RESULTS AND DISCUSSION

In this section, we confer the practical implementation and

verification of the Gunita Samuccayah Vedic sutra for

5 Devi Poonguzhali, et al. 523

verifying arithmetic circuits. This was accomplished using

Verilog HDL programming, through which we determined

the area and total power dissipation of the circuits.

4.1 SIMULATION RESULTS

Currently, there is a lack of real-time testing for the Gunita

Samuccayah from the perspective of arithmetic circuit

verification. Therefore, we present the execution results of

our proposed technique below. The software implementation

results for 4, 8, 16, 32, and 64-bit arithmetic operations are

provided in Tables 2 to 5.

The conventional built-in self-test experiment was conducted

for various types of adders, including the ripple carry adder

(RCA), carry look-ahead adder (CLA), and carry select adder

(CSA). Additionally, different multiplier types were examined,

such as the Array multiplier, Booth multiplier, and Urdhva

Tiryagbhyam (UT) sutra-based Vedic multiplier. The

performance analyses were done for 4, 8, 16, and 32 bits.

Table 3

Area and Power of Proposed Testing Technique for 16-bit Inputs

Sl. No. Arithmetic Circuit Area (LEs) Total Power (mW)

1 Addition 717 141.81

2 Subtraction 769 161.28
3 Multiplication 1226 143.67

4 Division 1016 143.54

Table 4

Area and Power of Proposed Testing Technique for 32-bit Inputs

Sl. No. Arithmetic Circuit Area (LEs) Total power (mW)

1 Addition 2071 149.36

2 Subtraction 2165 168.25

3 Multiplication 2677 151.32

4 Division 2483 151.11

Table 5

Area and Power of Proposed Testing Technique for 64-bit Inputs

Sl. No. Arithmetic Circuit Area (LEs) Total Power (mW)

1 Addition 5043 163.23

2 Subtraction 5237 183.68
3 Multiplication 5786 164.45

4 Division 5534 164.12

Tables 6 and 7 present the BIST testing results for 4-bit

and 32-bit configurations. In BIST, as the number of bits

increases, the dynamic memory required to store the test

vectors also increases proportionally. For BIST-based adder

testing, the dynamic memory requirements for storing test

vectors are as follows: 160 bits for 4 bits, 4608 bits for 8 bits,

2176 KB for 16 bits, and 264 TB for 32 bits. Similarly, for

multipliers, the requirements are 2408 bits for 4 bits, 512 KB

for 8 bits, 68 GB for 16 bits, and 553648128 TB for 32 bits.

Table 6

BIST-based adder testing results.

No. of bits 4 32

Adder Type RCA CLA CSA RCA CLA CSA

Dynamic

Power(mW)

12.15 15.18 17.13 62.24 65.85 71.24

Total

memory bits
160 264 GB

However, when the proposed verification method based

on Vedic Sutra 'Gunita Samuccaya' is applied to adders and

multipliers of the same size and type, there is no requirement

to store the test vectors separately. Consequently, the

dynamic memory requirement across all cases is effectively

zero, which represents the novel contribution of this paper.

Table 7

BIST based multiplier testing results

No. of bits 4 32

Adder Type Array Booth Vedic Array Booth Vedic

Dynamic
Power(mW)

33.12 22.98 21.12 33.12 22.98 21.12

Total

memory bits
2048 553648128 TB

5. CONCLUSION AND FUTURE WORK

The proposed novel test methodology for arithmetic

circuit verification provides a revolutionary solution to real-

time verification of sophisticated functional blocks. The

eschewal of large memory demands, e.g., 264 GB for testing

the 32-bit adder and 553648128 TB for testing the 32-bit

multiplier, is a point well-taken regarding the important

benefit of our method. Our novel method of testing using

Vedic mathematics promises to transform computation and

mathematical applications, speeding up, improving

efficiency, and enhancing reliability in testing arithmetic

circuits. Furthermore, this testing is an optimized approach

for periodic testing, typically performed to detect and resolve

the potential problems that can develop over time, e.g.,

performance degradation, aging effects, or manufacturing

flaws. Therefore, our research makes a significant

contribution to the field, opening the door to future

innovation in digital system design and testing.

CREDIT AUTHORSHIP CONTRIBUTION

STATEMENT

Singaravelu Devi Poonguzhali: methodology, software, writing –

original draft.

Thammampatti Natarajan Prabakar: methodology, software,

supervision.

Balasubramanian Lakshmi: conceptualization, investigation,

visualization.

Sundaram Ramkumar: supervision, investigation, writing – review

& editing.

REFERENCES

1. M. Kubo and M. Fujita, Debug methodology for arithmetic circuits on

FPGAs, In IEEE International Conference on Field-Programmable
Technology (FPT) Proceedings, Hong Kong, China, IEEE, pp.

236–242 (2002).

2. R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore, S.

Pandav, A. Slobodova, C. Taylor, V. Frolov, E. Reeber, and A.

Naik, Replacing testing with formal verification in Intel® CoreTM
i7 processor execution engine validation, In A. Bouajjani and O.

Maler (eds.), Computer Aided Verification, Springer, Berlin,

Heidelberg, Lecture Notes in Computer Science, vol. 5643 (2009).

3. M.D. Aagard, R.B. Jones, R. Kaivola, K.R. Kohatsu, and C.H. Seger,

Formal verification of iterative algorithms in microprocessors,
Proceedings of the 37th ACM/IEEE Design Automation

Conference (DAC 2000), ACM Press, Los Angeles, pp. 201–206

(2000).

4. C.M. Kalaiselvi and R.S. Sabeenian, Design of area-speed efficient

Anurupyena Vedic multiplier for deep learning applications,
Analog Integr Circ Sig Process, 119, pp. 521–533 (2004).

5. A. Biere, M. Kauers, and D. Ritirc, Challenges in verifying arithmetic

circuits using computer algebra, In 19th International Symposium

on Symbolic and Numeric Algorithms for Scientific Computing

(SYNASC), Timisoara, Romania, IEEE, pp. 9–15 (2017).
6. D. Kaufmann and A. Biere, Improving AMULET2 for verifying

multiplier circuits using SAT solving and computer algebra, Int J

Softw Tools Technol Transfer, 25, pp. 133–144 (2023).

7. M. Barhoush, A. Mahzoon, and R. Drechsler, Polynomial word-level

verification of arithmetic circuits, 19th ACM-IEEE International
Conference on Formal Methods and Models for System Design

(MEMOCODE), Beijing, China, IEEE, pp. 1–9 (2021).

8. S. Abed, M. AlMehteb, W. Mansoor, and A. Gawanmeh, Verification

524 Memoryless arithmetic circuits verification techniques 6

of non-linear arithmetic circuits using functionally reduced and-

inverter-graph (FRAIG), Global Congress on Electrical

Engineering (GC-ElecEng), Valencia, Spain, IEEE, pp. 118–123

(2020).

9. A. Yasin, T. Su, S. Pillement, and M. Ciesielski, Functional verification
of hardware dividers using algebraic model, IFIP/IEEE 27th

International Conference on Very Large-Scale Integration (VLSI-

SoC), Cuzco, Peru, IEEE, pp. 257–262 (2019).

10. F. Farahmandi and P. Mishra, Automated Test generation for debugging

multiple bugs in arithmetic circuits, IEEE Transactions on
Computers, 68, 2, pp. 182–197 (2019).

11. D. Ritirc, A. Biere, and M. Kauers, Column-wise verification of

multipliers using computer algebra, Formal Methods in Computer

Aided Design (FMCAD), Vienna, Austria, IEEE, pp. 23–30

(2017).
12. B. Yu and M. Ciesielski, Formal verification using don't-care and

vanishing polynomials, IEEE Computer Society Annual

Symposium on VLSI (ISVLSI), Pittsburgh, PA, USA, IEEE, pp.

284–289 (2016).

13. B. Yu, W. Brown, D. Liu, A. Rossi, and M. Ciesielski, Formal
Verification of Arithmetic Circuits by Function Extraction, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 35, 12, pp. 2131–2142 (2016).

14. S. Ghandali, C. Yu, D. Liu, W. Brown, and M. Ciesielski, Logic

Debugging of Arithmetic Circuits, In IEEE Computer Society
Annual Symposium on VLSI, Montpellier, France, IEEE, pp. 113–

118 (2015).

15. O. Sarbishei, B. Alizadeh, and M. Fujita, Arithmetic circuits

verification without looking for internal equivalences, 6th
ACM/IEEE International Conference on Formal Methods and

Models for Co-Design, Anaheim, CA, USA, IEEE, pp. 7–16

(2008).

16. O. Sarbishei, M. Tabandeh, B. Alizadeh, and M. Fujita, A formal

approach for debugging arithmetic circuits, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 28, 5,

pp. 742–754 (2009).
17. M. Ciesielski, C. Yu, W. Brown, D. Liu, and A. Rossi, Verification of

gate-level arithmetic circuits by function extraction, In 52nd

ACM/EDAC/IEEE Design Automation Conference (DAC), San

Francisco, CA, USA, IEEE, pp. 1–6 (2015).

18. F. Farahmandi, B. Alizadeh, and Z. Navabi, Effective combination of
algebraic techniques and decision diagrams to formally verify

large arithmetic circuits, IEEE Computer Society Annual

Symposium on VLSI, Tampa, FL, USA, IEEE, pp. 338–343

(2014).

19. M.R. Kumar and R. Sundaram, Effective feature extraction method for
unconstrained environment: local binary pattern or local ternary

pattern, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., pp. 449–

454 (2024).

20. P. Nagarajan, T. Kavitha, N.A. Kumar, Al.S. Edward, Power energy

and power area product simulation analysis of master-slave flip-
Flop, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., pp. 325–

330 (2023).

21. A. Ramaiah, P.D. Balasubramanian, A. Appathurai, and N.A.

Muthukumaran, Detection of Parkinson’s disease via Clifford

gradient-based recurrent neural network using multi-dimensional
Data, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 69, 1, pp.

103–108 (2024).

22. L. Sriraman, K.S. Kumar, and T.N. Prabakar, Design and FPGA

implementation of binary squarer using Vedic mathematics, Fourth
International Conference on Computing, Communications and

Networking Technologies (ICCCNT), pp. 1–5 (2013).

