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This paper proposes a new method for verifying arithmetic circuit operations based on the Vedic mathematics Sutra (formulae)
“Gunita Samuccaya”. According to this sutra, our proposed method verifies arithmetic operations, e.g., ¢ = a + b, by checking
whether the sum of 'a’' and 'b' digits equals the sum of digits of 'c' for correct computation. In contrast to built-in self-test (BIST)
schemes, our approach is simpler, eliminating traditional test pattern generators and output analyzers while achieving 100% fault
coverage for simple arithmetic operations. Our system, designed in Verilog hardware description language (HDL), is real-time,
memoryless, and scalable. This proposed testing method revolutionizes arithmetic circuit verification, guaranteeing the integrity

of intricate digital systems where mathematical precision is vital.

1. INTRODUCTION

The importance of arithmetic unit verification has
increased significantly due to the widespread use of
arithmetic modules in demanding applications like
multimedia, signal processing, and encryption within
embedded systems. Although certain Electronic Design
Automation (EDA) vendors offer tools to ensure arithmetic
components are "correct by construction," validating non-
standard, bit-optimized embedded arithmetic circuits
remains a complex task. To tackle this challenge, a range of
verification methods and tools, including formal and
simulation methodologies, are utilized. As very large scale
integration (VLSI) design complexity increases, field
programmable gate arrays (FPGAs) are being used more
often to quickly prototype control units and arithmetic
circuits. FPGA implementation has the advantage of fast
deployment, especially when a significant amount of design
time is taken up by debugging logic designs. Despite this,
layout principles have a significant impact on circuit
performance, even with minor changes to the circuit
structure [19]. In [1], a debugging technique for arithmetic
circuits that focuses on specific circuit adjustments to
accelerate redesign efforts is proposed. Debugging time is
reduced by examining the circuit, identifying flaws, and
replacing problematic components with suitable circuit parts.
The need to start design verification and debugging early in
the design process is highlighted by the increasing size and
complexity of digital systems. A key hurdle in assessing such
complex systems involves managing mathematical data
paths and their elements, like multipliers and dividers. While
many hardware verification tools rely on bit-level strategies
such as satisfiability or binary decision diagrams solvers,
these techniques encounter challenges in addressing
scalability issues when handling intricate arithmetic circuits
[2-3]. In the early twentieth century, Swami Bharati Krishna
Tirtha advocated and popularized Vedic Mathematics, based
on India's oldest scriptures, the Vedas. This ancient Indian
mathematical system includes wvarious techniques and
principles to efficiently solve complex mathematical
problems. By using Vedic mathematics in this work, we

propose a verification method for the basic arithmetic
circuits. In contemporary times, Vedic mathematics has
undergone a revival in several technological fields, including
computer science, data analytics, cryptography, and artificial
intelligence. A significant application of Vedic mathematics
lies in algorithm optimization and complexity analysis [21].

The techniques of Vedic mathematics can aid in the design
of efficient algorithms for solving intricate computational
problems [4]. Vedic mathematics, a traditional Indian system
of mathematics, contains 16 sutras that facilitate quick
problem-solving in most areas of mathematics in
contemporary computing environments. One obvious thing
is that the suggested square utilizes the Ekadhikena Purvena
sutra, meaning "one more than the former." Classically used
to square decimal numbers terminating in 5, we extend and
modify this sutra for effective squaring of binary numbers,
demonstrating its flexibility and possibilities for creative use
in digital computation. The Squarer proposed illustrates
large benefits, with nearly 50% area savings and a 50% delay
reduction, performing better than the duplex squarer in the
32-bit configurations [22]. In this paper, we propose that
Vedic mathematics supports the testing of arithmetic circuits
by providing efficient methods that aid in verifying their
accuracy and functionality, thereby contributing to the
overall reliability of arithmetic operations within digital
systems.

Our proposed testing method using Vedic mathematics
involves providing immediate inputs to the circuit under test
and verifying its output simultaneously, rather than storing
the reference signatures in a large memory space for
comparing them to find faults.

1.1 CONVENTIONAL BIST ARCHITECTURE

The built-in self-test is a conventional technique, as shown
in Fig. 1, that allows an integrated Circuit to achieve self-
testing, and it includes three main components: output
Analyzer (OA), test pattern generator (TPG), and circuit
under test (CUT). The TPG uses a linear feedback shift
register (LFSR) to generate the required input vectors for the
CUT during testing. The OA consists of a memory unit and
a comparator. It stores the standard output values (known as
golden or reference signatures) from the CUT in memory.
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The comparator then checks the output produced by the CUT
against the standard output values stored in memory. If the
circuit is functioning correctly, the outputs will match. If
there are any defects in the circuit, the actual outputs will
differ from the expected ones.

Test pattern
Generator
Circuit Under
Test
Output
Analyser

Testing Resulis

Fig. 1 - Conventional BIST Architecture.

1.2. PROPOSED VEDIC TESTING ARCHITECTURE

The proposed testing strategy (Fig.2.) takes the circuit's
inputs and outputs and uses them in the Vedic testing
module. This module is based on the Vedic principle of
Gunita Samuccayah. This approach aims to improve the
accuracy and reliability of our testing process and differs
from the traditional BIST method because it checks the
circuit under test using immediate inputs and their
corresponding outputs, without the need to store reference or
golden signatures in a large memory.

Inputs Outputs

Circuit Under Test

Vedic Testing Module

!

Testing Results

Fig. 2 — Basic block diagram of proposed testing method.

The proposed testing methodology is illustrated in Fig. 3.
In this methodology, the inputs provided to and the outputs
from the circuit under test are sufficient to evaluate its
correctness of operation when it is further processed in the
Vedic testing module.
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Fig. 3 - Proposed Vedic testing architecture.

We initially tested the Vedic testing module with a set of
input values for all arithmetic operations to ensure it was
working correctly. Following that, we tested it with different
input sizes for addition, multiplication, subtraction, and
division operations. The details of the testing process are

illustrated in Section 3.

We initially tested the Vedic testing module with a set of
input values for all arithmetic operations to ensure it was
working correctly. After that, we tested it with different input
sizes for addition, multiplication, subtraction, and division.
The details of the testing process are illustrated in Section 3.

2. RELATED WORK

Arithmetic circuits are fundamental to digital computing
systems, making their accuracy and reliability crucial for
optimal performance. There are various techniques available
for testing these circuits, each with its own advantages and
applications. Verifying arithmetic circuits, especially
multipliers, remains a significant challenge despite
advancements. The primary approach is to represent the
circuit using computer algebra as a set of pseudo-Boolean
polynomials. For converting the circuit to a specific
mathematical problem, it must be checked whether the
circuit polynomials imply the given word-level specification.
Solving this problem is essential to confirm that the circuit
functions as intended. [5]. Recent techniques for multiplier
circuit verification use computer algebra and SAT solving to
model the circuit as polynomials and generate a Grobner
basis for verification. Complex final-stage adders are
addressed using satisfiability (SAT) solvers, while adder
substitution simplifies the verification process [6].

The verification method for arithmetic circuits utilizing
output signature (OS) and input signature (IS) polynomials
based on symbolic computer algebra (SCA) was presented in
[7]. To verify the end polynomial with respect to the IS, the
method analyzes the backward step-by-step substitution of
the gate polynomials within output polynomials according to
the topologically reversed order of the circuit. Further, it
discusses the design of arithmetic blocks, such as the Partial
product generator (PPG), final sum adder (FSA), and partial
product accumulator (PPA), as well as the conversion of
binary moment diagrams (BMDs) from binary decision
diagrams (BDDs).

In [8], a methodology for verifying arithmetic circuits using
Taylor expansion diagram (TED) data structures and a
technique that merges an inverter graph (AIG) and an adder
tree to verify the correctness of arithmetic functions is
proposed. It aims to achieve fewer phases and a reduced area
compared to existing methods, using a backward rewriting
technique for function extraction. Verifying gate-level divider
circuits is challenging due to the need for extensive gate-level
verification and the limitations of traditional Boolean
approaches. To address this, an extended algebraic model is
utilized to prove the accuracy of the division algorithm
without requiring a reference design [9]. This technique
demonstrates the functionality of gate-level divider circuits,
building on successful methods used for other arithmetic
circuits. As the complexity of VLSI design increases, FPGAs
are increasingly used to quickly prototype control units and
arithmetic circuits. The advantage of FPGA implementation is
its fast deployment, particularly for arithmetic circuits in
embedded systems, which can pose challenges for debugging
due to their complexity and non-standard implementations.
This approach automates the generation of directed tests by
assigning input variables in a particular way, ensuring the
remainder is non-zero. Bug localization and correction are
facilitated by analyzing remainder patterns and test activations
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[10]. In their paper [11], the authors have provided a thorough
formalization of polynomial reasoning and introduced a new
column-wise verification technique for validating gate-level
multipliers without reducing a full word-level specification.
This  approach  demonstrates the  precision and
comprehensiveness of using exact formalization. The
experiments demonstrate that simple multipliers can be easily
analyzed using standard computer algebra methods, but more
complex and optimized multipliers require more advanced
procedures. The procedure presented in [12] extends to mere
verification; it can reveal the exact mathematical function
performed by the circuit by examining its outputs (i.e., it
extracts the arithmetic function).

The research [13] delves into the validation of arithmetic
operations performed by a circuit by discovering a distinct
mathematical formula, known as a bit-level polynomial
function, that is embedded in the circuit’s gates. This method
identifies the test circuit’s main arithmetic function by
extrapolating the input signature from the output signature.
On the other hand, Function Identification uses the extracted
input signature to reveal the circuit's arithmetic operation
when its mathematical function is not initially known. The
goal of the study [14] was to identify logic errors in a
synthesized circuit caused by the incorrect gate (also known
as a "gate replacement" error). Initial findings support the
effectiveness of the proposed approach in addressing
practical issues, with a future focus on optimizing cut
generation for improved efficiency. One possible strategy is
to sample the circuit with specific cuts and confirm their
signatures using a "binary search" technique [20].

To validate carry signals, this method [15] requires a
detailed analysis of different Exclusive-Or (XOR) tree
topologies, resulting in an exponential runtime cost.
Conversely, another verification technique outlined in
another reference uses a reverse-engineering approach to
quickly synthesize a network of HAs (half-adders) from a
gate-level description. The extraction process uses a BLA
(Bit-level adder) representation, which is well known for its
reliability across different arithmetic circuit topologies. [16].
Performing transformations from primary outputs to primary
inputs in reverse topological order is the method suggested
in this paper [17]. The method checks for equivalence using
canonical data structures such as TED or BMD. In the event
of mismatches, SAT/ satisfiability modulo theories (SMT)
problems can be solved to identify bugs. The algorithm
works on basic Boolean gates but can handle complex gates
by writing equations for each internal signal. Once the input
signature is computed, it is compared against the expected
specification to assess correctness. The method for verifying
large arithmetic circuits efficiently is proposed in [18]. This
method appears to involve extracting Boolean polynomials
from the gate-level implementation, computing a Groebner
basis, and reducing the polynomials for verification.

3. PROPOSED METHOD

The method we used for testing arithmetic circuits was
inspired by the Vedic sutra Gunita Samuccaya, originally
used to validate polynomial factorization. We applied this
verification approach to basic arithmetic operations and
found that it was effective.

3.1 GUNITA SAMUCCAYAH FOR VERIFYING
FACTORIZATION RESULTS

Gunita Samuccayah-Samuccaya Gunitah' is a sub-sutra in
Vedic mathematics that is intended to verify the correctness
of obtained answers in factorization. It says that: “The POS
(Product of Sum) of the coefficients in the factors is equal to
the sum of the coefficients in the polynomial equation”.

Equation (1) represents a third-order polynomial equation
and its factorization. Let us verify the factorization result
using the principle of Gunita Samuccayah-Samuccaya
Gunitah.

y3+10y?+11y—-70=(y+5) (y+7) (y-2). (1)

By finding the sum of the coefficients of the polynomial
equation at the left-hand side (LHS) & POS of the coefficients
in the factors at the right-hand side (RHS), we get,

1+10+11-70=1+5)(1+7)1-2).
By simplifying,
22-70=6x8x—1,
-48 = -48 verified.
LHS = RHS
Therefore, the given factorization is a valid representation
of the polynomial equation.
For further understanding, one more example is given
below:
Y H5y+6=(y+3)(y+2)
Now, 1 +5+6=(1+3)(1+2)

12=4x3
12=12
LHS =RHS

Thus, the given factors are valid, where y is the
polynomial variable

We discovered that the Gunita Samuccaya-Samuccaya
Gunitah Vedic sutra can also verify the correctness of other
mathematical operations, such as addition, division,
squaring, cubing, and more. The numerical verification is
provided below by summing the digits on both sides.

3.2 GUNITA SAMUCCAYAH FOR VERIFYING
OTHER ARITHMETIC OPERATIONS
i Addition
Let us consider this addition example,
98473 + 54672 = 153145
By finding the sum of the digits on both sides,
(9+8+4+7+3) + (5+4+6+7+2) = 1+5+3+1+4+5
B+ +(2+4) =149
4+6=10
10=10
1+0=1+0
=1
LHS= RHS
Thus, the addition result is verified to be correct.

If the single-digit sum of the LHS and RHS is the same,
then we can conclude that the adder circuit is working
correctly. A similar verification procedure is followed for

ii. Subtraction
Let us consider this subtraction example,

98473 - 54672
Instead of direct subtraction, 9's complement addition is
used below:
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98473 + 45327 * = 143800
By finding the sum of the digits on both sides,
(9+8+4+7+3) + (4+5+3+2+7) = 1+4+3+8
BG+hH+ 2+ =1+6

4+3=7
7=7
LHS = RHS

Thus, the subtraction result is verified to be correct.
*The subtrahend is 54672. Its 9's complement is
99999 - 54672 = 45327.
iii. Multiplication
Let us consider this multiplication example,
98473 x 54672 = 5383715856
By finding the sum of the digits on both sides,
(9+8+4+7+3) X (5+4+6+7+2) = 5+3+8+3+7+1+5+8+5+5+6
(3+1) x (2+4) =5+1
4x6=6
2+t4)=6
6="6
LHS =RHS
Thus, the multiplication result is verified to be correct.
iv. Division
For example, the given division problem & the results are:
98473 + 54672 => Quotient = 1; Remainder = 43801
The division rule is verified using the formula:
Dividend = (Divisor x Quotient) + Remainder
Let us verify it using the principle of Gunita Samuccayah-
Samuccaya Gunitah.
(9+8+4+7+3) = [(5+4+6+7+2) x 1]  + (4+3+8+0+1)
(B+1)=[(2+4) x 1]+ (1+6)

4=6+7
4=(1+3)
4=4

LHS = RHS

Thus, the division result is verified to be correct.

For all verifications, when there are no errors in the circuit
or process being tested, the values on the LHS must match
those on the RHS.

Table 1 shows the proposed Gunita Samuccayah
verification for the different arithmetic operations.

Table 1
Proposed Gunita Samuccayah Verification
Operation | Verification Formula
Addition | (Ja(digits) + Y b(digits)) =Y sum(digits)
Subtraction | (3 a(digits) - Y b(digits)) =) difference(digits)
Multiplication | (Dla(digits) * > b(digits)) =) product(digits)
Division | (3 dividend(digits) = [Y divisor(digits) *
> quotient(digits)] —Y remainder(digits)
Cubing | Ya(digits)*2 =) result(digits)
Squaring | Y a(digits)*3 =) result(digits)

3.3. ALGORITHM OF PROPOSED VERIFICATION
METHOD

In the proposed method of testing, to test the correctness
of the circuit, the inputs and the results of the circuit under
test viz., adder, subtractor, multiplier, divider, squaring
circuit, cubing circuit, etc., are given to the testing circuit and
undergone the following processes:

Step 1: Separate the digits of the input values (LHS) given to
CUT as well as the results (RHS) from them.

Step 2: On both sides, add the separated digits and calculate
the sum. If the sum is a single digit, the addition should stop.
If not, repeat steps 1 and 2 until the sum becomes a single

digit.

Step 3: Perform the required operation
(addition/multiplication) on the single-digit at the LHS as per
the circuit requirements.

Step 4: Find the difference between the single-digit value of
the LHS and the single-digit sum value of the RHS.

If the difference is zero, determine that the circuit under test
is error-free. If the difference is non-zero, then the circuit
under test is faulty. The above processing steps are shown in
the flow diagram in Fig. 4 and apply to all circuits listed in
Table 2, except for division. For the division process
verification, we need to use the dividend, divisor, quotient, and
remainder. We must use the division formula from Table 1 for
verification. The process flow for division is shown in Fig. 5.

Fig. 4 — Process flow diagram of addition, subtraction, and
Multiplication verification.

Table 2
Area and Power of Proposed Testing Technique for 8-bit Inputs
S1. No. Arithmetic Circuit | Area (LEs) Total Power (mW)
1 Addition 124 134.48
2 Subtraction 216 151.52
3 Multiplication 746 137.78
4 Division 543 136.47

Fig. 5 — Process flow diagram of division verification.

4. RESULTS AND DISCUSSION

In this section, we confer the practical implementation and
verification of the Gunita Samuccayah Vedic sutra for
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verifying arithmetic circuits. This was accomplished using Table 7
Verilog HDL programming, through which we determined BIST based multiplier testing results
the area and total power dissipation of the circuits. No. of bits 4 32
Adder Type | Array | Booth | Vedic | Array | Booth | Vedic
4.1 SIMULATION RESULTS P?VZ;‘;“(“I;'\;) 3312 | 2298 | 2112 | 33.12 | 2298 | 21.12
Currently, there is a lack of real-time testing for the Gunita T
. . . . otal

Samuccayah from the perspective of arithmetic circuit  memory bits 2048 553648128 TB

verification. Therefore, we present the execution results of
our proposed technique below. The software implementation
results for 4, 8, 16, 32, and 64-bit arithmetic operations are
provided in Tables 2 to 5.

The conventional built-in self-test experiment was conducted
for various types of adders, including the ripple carry adder
(RCA), carry look-ahead adder (CLA), and carry select adder
(CSA). Additionally, different multiplier types were examined,
such as the Array multiplier, Booth multiplier, and Urdhva

Tiryagbhyam (UT) sutra-based Vedic multiplier. The
performance analyses were done for 4, 8, 16, and 32 bits.
Table 3
Area and Power of Proposed Testing Technique for 16-bit Inputs
S1. No. Arithmetic Circuit Area (LEs) Total Power (mW)
1 Addition 717 141.81
2 Subtraction 769 161.28
3 Multiplication 1226 143.67
4 Division 1016 143.54
Table 4
Area and Power of Proposed Testing Technique for 32-bit Inputs
S1. No. Arithmetic Circuit Area (LEs) Total power (mW)
1 Addition 2071 149.36
2 Subtraction 2165 168.25
3 Multiplication 2677 151.32
4 Division 2483 151.11
Table 5
Area and Power of Proposed Testing Technique for 64-bit Inputs
S1. No. Arithmetic Circuit Area (LEs) Total Power (mW)
1 Addition 5043 163.23
2 Subtraction 5237 183.68
3 Multiplication 5786 164.45
4 Division 5534 164.12

Tables 6 and 7 present the BIST testing results for 4-bit
and 32-bit configurations. In BIST, as the number of bits
increases, the dynamic memory required to store the test
vectors also increases proportionally. For BIST-based adder
testing, the dynamic memory requirements for storing test
vectors are as follows: 160 bits for 4 bits, 4608 bits for 8 bits,
2176 KB for 16 bits, and 264 TB for 32 bits. Similarly, for
multipliers, the requirements are 2408 bits for 4 bits, 512 KB
for 8 bits, 68 GB for 16 bits, and 553648128 TB for 32 bits.

Table 6
BIST-based adder testing results.

No. of bits 4 32
Adder Type RCA CLA CSA RCA CLA CSA

Dynamic 12.15 | 15.18 | 17.13 | 62.24 | 65.85 | 71.24
Power(mW)

Total 160 264 GB

memory bits

However, when the proposed verification method based
on Vedic Sutra 'Gunita Samuccaya' is applied to adders and
multipliers of the same size and type, there is no requirement
to store the test vectors separately. Consequently, the
dynamic memory requirement across all cases is effectively
zero, which represents the novel contribution of this paper.

5. CONCLUSION AND FUTURE WORK

The proposed novel test methodology for arithmetic
circuit verification provides a revolutionary solution to real-
time verification of sophisticated functional blocks. The
eschewal of large memory demands, e.g., 264 GB for testing
the 32-bit adder and 553648128 TB for testing the 32-bit
multiplier, is a point well-taken regarding the important
benefit of our method. Our novel method of testing using
Vedic mathematics promises to transform computation and
mathematical applications, speeding up, improving
efficiency, and enhancing reliability in testing arithmetic
circuits. Furthermore, this testing is an optimized approach
for periodic testing, typically performed to detect and resolve
the potential problems that can develop over time, e.g.,
performance degradation, aging effects, or manufacturing
flaws. Therefore, our research makes a significant
contribution to the field, opening the door to future
innovation in digital system design and testing.
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