
Rev. Roum. Sci. Techn.– Électrotechn. et Énerg. 

Vol. 70, 4, pp. 447–452, Bucarest, 20xx 

1 Laboratory of Materials, Energetic Systems, Renewable Energies and Energy Management, Amar Telidji University of Laghout, Algeria.  
2 Centre de Développement des Énergies Renouvelables, CDER, Algiers, Algérie. 

  E-mails: aek.firah@lagh-univ.dz, m.birane@lagh-univ.dz, a.degla@cder.dz 

  DOI: 10.59277/RRST-EE.2025.70.4.3 

TECHNO-ECONOMIC BASED OPTIMIZATION OF 

PHOTOVOLTAIC/BATTERY/DIESEL GENERATOR MICROGRID  

ABDELKADER FIRAH1, MOUHOUB BIRANE1, AICHA DEGLA2 

Keywords: Microgrid; Photovoltaic (PV) system; Diesel generator (DG); Battery energy storage system (BESS); Techno-economic 

study; Wild horse optimizer (WHO).  

The global adoption of renewable energy sources (RESs) is rapidly increasing to reduce greenhouse gas emissions. Algeria's 

abundant solar energy makes it an ideal location for installing photovoltaic (PV) systems. This research examines the techno-

economic feasibility of an off-grid microgrid system powered by solar energy, combined with a battery energy storage system 

(BESS) and a diesel generator (DG), to supply electricity to the rural community of Ghars Boughoufala in Ouargla province, 

southern Algeria. The proposed system incorporates a PV/BESS/DG configuration with bidirectional DC and AC buses and 

converters. The study employs a load-following (LF) energy management strategy (EMS) to maintain consistent energy 

distribution and power supply. Optimization of the proposed configuration was performed using the wild horse optimizer (WHO) 

metaheuristic. WHO's performance was compared with four cutting-edge algorithms. Results showed that WHO outperforms the 

other algorithms in terms of convergence speed and in minimizing life cycle cost (LCC) and cost of energy (COE), with the designed 

microgrid achieving an LCC of 7,229,644 USD and a COE of 0.3845 $/kWh.

1. INTRODUCTION 

Utilization of renewable energy sources (RESs) has been 

increasing to limit greenhouse gas emissions [1]. One of the 

most important and widely used types of RES is the 

photovoltaic (PV) system. Over the last decade, the installed PV 

capacity has increased from 39 GW to 790 GW [2, 3]. Due to 

its location in the Sunbelt, particularly in southern Algeria, the 

country offers ideal conditions for PV system installations, with 

its high levels of solar irradiance making it an excellent location 
for renewable energy projects [4]. A photovoltaic system 

converts sunlight directly into electricity using solar cells, 

making it the simplest and most environmentally friendly way 

to harness solar energy [5]. However, like any other energy 

generation system, PV systems also face specific challenges. 

One of the most significant is their intermittent power output 

[6]. To address this issue, microgrids are often employed as an 

effective solution [7]. A microgrid is a decentralized power 

system that can operate in two modes. It may operate in tandem 

with the main grid (grid-connected mode) or independently, 

relying on its own generation resources (islanded mode). A 

crucial component of microgrids is the energy storage system 

(ESS), which plays a vital role in maintaining microgrid 

stability by providing backup power against fluctuations in solar 

power output during periods of low sunlight or peak demand [8, 

9]. Among the different types of ESSs used in microgrids, 

battery-based energy storage systems (BESS) are the most 

prevalent [10]. In standalone microgrids, when both the PV 

system and the BESS are unavailable, the diesel generator (DG) 

serves as the primary power source, ensuring a continuous 

supply of electricity to critical loads. DG provides backup 

power, maintains system stability, and supports load demand, 

guaranteeing uninterrupted operation during periods of 

renewable energy unavailability [11]. 

1.1. LITERATURE REVIEW 

Numerous studies have explored the sizing of microgrid 

systems. These approaches can be classified into distinct 

groups, with the first group including deterministic techniques 

such as analytical methods and iterative methods [12]. Despite 

their simplicity, analytical and iterative methods for microgrid 

sizing suffer from several limitations, including computational 

intensity and time-consuming execution, especially for 

complex systems with numerous variables and constraints. 

Additionally, analytical methods may rely on simplifying 

assumptions that do not fully capture the intricacies of real-

world microgrid systems. These assumptions can lead to 

inaccuracies in sizing recommendations, particularly in 

scenarios with nonlinearities or uncertainties [13]. The second 

group encompasses software-based methods. Software tools 

such as HOMER [14], RETScreen [15], TRNSYS, iHOGA 

[16], and Hybrid2 are commonly utilized in this group [17]. 
Although easy to use, software-based approaches suffer from 

several disadvantages. Software tools may not always capture 

the complexity of the physical environment, resulting in 

suboptimal sizing recommendations. Additionally, software 

often relies on input data that may not fully reflect local 

conditions or be outdated, further impacting the accuracy of 

the sizing process. Finally, the assumptions and algorithms 

embedded in software programs may not always align with the 

specific requirements or constraints of a particular microgrid 

project, leading to results that are not fully applicable or 

feasible in practice [18]. The third group consists of 

approaches based on optimization algorithms. When 

employing this approach in microgrid sizing, numerous 

advantages can be observed. Nonlinear and discrete 

optimization entail solving intricate problems in which 

variables can assume nonlinear or discrete values. These 

methods offer significant computational efficiency, providing 

solutions efficiently. Moreover, they offer a diverse selection 

of optimization models and optimizers to accommodate 

various optimization requirements, thereby enhancing system 

performance and resilience [19].  

Numerous optimization-based approaches have been 

employed in the literature to address microgrid sizing problems. 

Diab et al. [20] proposed a technique based on the equilibrium 

optimizer (EO) to determine the optimal sizing of a microgrid 

that includes PV, fuel cells, and batteries in the El Dobaa region 

of Egypt. They compared the EO with two other algorithms and 

evaluated performance using the cost of energy (COE) metric. 

The results revealed that the EO algorithm outperforms the 

alternatives. Belboul et al. [21] investigated a microgrid 

configuration consisting of PV, wind turbines, batteries, and 

diesel generators to meet residential energy demands. The study 

applied the multi-objective salp swarm algorithm (SSA) as the 

primary optimizer and compared it with the Dragonfly 
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algorithm (DA), Grasshopper optimization (GO), and ant lion 

optimizer (ALO). Performance was evaluated in terms of the 

cost of energy (COE) and the probability of power supply loss 

(LPSP). The results showed that SSA outperformed the 

alternative algorithms in achieving the best COE and LPSP 

values. A grey wolf optimization-based method for microgrid 

sizing was proposed by Yadav et al. [22]. The microgrid in India 

comprised a wind turbine, a photovoltaic system, pumped-

hydro storage, and a battery. The optimization task aimed to 

reduce the levelized cost of energy (LCOE). Parvin et al. [23] 

investigated the use of a multi-objective particle swarm 

optimization algorithm to determine the size of a microgrid 

system in Iran. The setup included a photovoltaic system, a wind 

turbine, and combined heat and power, forming a microgrid 

with PV, WT, and CHP components. The suggested approach 

efficiently reduces both energy costs and power supply losses. 

1.2. PAPER CONTRIBUTIONS 

This study examined the techno-economic feasibility of 

providing electricity to a rural community in Ghars 

Boughoufala, Ouargla province in southern Algeria. To 

ensure an uninterrupted power supply, the analysis included 

a pure lead-carbon (PLC) BESS. Additionally, the study 

considered the operation of a diesel generator (DG) under a 

load following (LF) energy management strategy. To 

determine the optimal system size, this work applies a 

recently developed nature-inspired optimization algorithm, 

the WHO [24]. In this study, the robustness and efficiency of 

WHO are benchmarked against four recognized 

metaheuristic algorithms: SSA, PSO, GWO, and EO. 

The core contributions of this study include: 

- Introducing the use of the WHO algorithm for optimal 

sizing of a PV/BESS/DG integrated microgrid. 

- Demonstrating the effectiveness of LF-based EMS in 

managing energy flow between the various microgrid 

components. 

2. MICROGRID COMPONENTS MODELING 

The standalone microgrid proposed in this study consists 

of three main components: a SEGS as the renewable source, 

a BESS, and a DG as the backup source as depicted in Fig. 1. 

The system adopts a simplified approach to handle excess 

energy in islanded mode by using a dump load (DL), as the 

primary objective of the study is to size the microgrid to meet 

the local energy demand optimally. The DL, DG, and load 

are linked to the AC bus, whereas the BESS & SEGS are 

linked to the DC bus via converters (BCC). 

2.1 SEGS MODELING 

PV power generation is a technology that converts 

sunlight directly into electricity using PV cells. PV power 

generation is a clean, renewable, and sustainable energy 

source that can be used in a variety of applications. Various 

modeling paradigms have been proposed in previous 

research to estimate PV system power output. This paper 

utilized a simple approach to determine the PV panel's output 

power, considering hourly ambient temperature and hourly 

solar irradiation specific to the study zone, as shown in 

eq. (1). This SEGS model aims to provide a straightforward 

and efficient way to estimate the PV power output [25]. 

 

PPV(t) = PR × (
G(t)

GR
) × [1 + KT(TC − TR)], (1) 

where PPV is the output power of the PV panel, PR is the rated 

power of the PV panel, G is the hourly solar irradiation, GR 

is the solar irradiance at reference condition (1000 W/m2), 

KT is temperature coefficient of the maximum power 

(3.7×10−3 1/°C), TR is photovoltaic cell temperature at the 

standard condition (25°C), TC is PV cell temperature and it 

is calculated as follows: 

TC = (0.0256 × G(t)) + TA(t), (2) 

where, TA is the ambient temperature at given hour. 

Finally, the total energy generated by the SEGS can be 

calculated as follows: 

ESEGS(t) =  PPV(t) × NSEGS. (3) 

where, NSEGS is the total number of needed project PV panels. 

 

Fig. 1 – Proposed microgrid system diagram. 

2.2 BESS MODELING 

BESS stores electricity generated from SEGS during low-

demand periods for later use, providing both backup power 

and grid stabilization. A BESS is a group of rechargeable 

batteries that store energy efficiently and can be deployed at 

various scales, from residential to utility-level installations. 

These systems fulfill a vital function in integrating 

renewable energy into the grid and enhancing energy 

reliability and flexibility. The charging process of BESS 

involves storing surplus energy generated by SEGS in 

batteries. This stored energy can then be used when the 

primary power source is not available or during periods of 

high demand. In the discharge phase, the electricity produced 

by SEGS falls short of the load demand. As a result, the 

BESS balances this power difference. The process of BESS 

charging and discharging is described as follows [26]: 

EBESS(t) = (1 − σ) × EBESS(t − 1) + 

+ (EG(t) −
EL(t)

ηC
) × ηEC × ηRB, (4) 

EBESS(t) = (1 − σ) × EBESS(t − 1) − 

− (
EL(t)

ηC
−EG(t)) /ηRB, 

(5) 

where, EBESS(t) and EBESS(t-1) represents the levels of energy 

of BESS at two different time, EG represents entire produced 

energy, EL is the energy demand, σ is the specific BESS self-

discharge rate, ηC represents bi-directional converter 

efficiency coefficient, ηRB represents BESS round trip 

efficiency and ηEC is controller efficiency coefficient. 

The generated energy can be calculated as: 

EG(t) =  ESEGS(t) × ηC. (6) 
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2.3 DG MODELING 

DG has an important role in standalone microgrids by 

providing energy in situations where BESS cannot meet load 

demand, or when SEGS face prolonged uncertainties due to 

persistent cloudy weather or during nighttime. Therefore, 

integrating DGs into the microgrid enhances its power 

reliability by offering a dependable energy source in 

emergencies and helping to meet peak load demands when 

BESS falls short. The instantaneous fuel consumption of the 

diesel generator can be computed applying a simple equation 

that depends on the demanded load, as expressed by [27]: 

FDG(t) = (αDG × PDG(t) + βDG × PDGR), (7) 

where, FDG is the DG hourly fuel consumption, αDG and βDG 

map the DG curve of consumption, with respective values 

being: αDG=0.246 (l/kWh), βDG=0.08145 (l/kWh). PDG and 

PDGR are, respectively, the DG's generated power and its 

rated power. 

Fuel consumption in a DG refers to the amount of diesel 

fuel the generator burns to produce electrical energy. It is 

typically measured in liters and depends on factors such as 

the generator's load, efficiency, and size. The DG cumulative 

yearly fuel usage (TAFC) can be calculated as follows: 

TAFC = ∑ FDG

8784

t=1

(t). (8) 

2.4 ENERGY MANAGEMENT STRATEGY 

In this paper, the LF method is employed as the EMS. This 

strategy involves adjusting power generation in real time to 

match fluctuations in energy demand. The fundamental 

principle behind the LF strategy is that DG steps in to cover 

any shortfall in energy demand when the BESS and SEGS 

cannot meet it. It primarily focuses on supplying power to 

cover the deficit demand without diverting energy towards 

charging BESS [28]. In terms of performance, LF 

outperforms other EMS options such as cycle charging and 

combined dispatch [29]. The comprehensive operation of the 

load following EMS is detailed throughout the subsequent 

operation states: 
- State 1: The operational sequence involves the SEGS 

initially attaining the load demand, followed by the storage 

of any surplus energy generated in BESS, ensuring that the 

energy demand is met. 

- State 2: In this state, the SEGS first handles the load 

demand. Subsequently, if the BESS reaches its maximum 

capacity, any surplus energy is to be linked to the shunt load. 

- State 3: The scenario involves this state of operation, where 

the SEGS-generated energy falls short of meeting the load 

demand. Consequently, the BESS will compensate for the 

deficit load. Figure 2 represents the proposed EMS flowchart 

used in this study. 

 

Fig. 2 – The proposed LF-based energy management strategy. 

2.5. CHARACTERISTICS OF THE STUDY AREA 

The proposed standalone microgrid is intended to be 

situated in Ghars Boughoufala, Ouargla province, in the 

south of Algeria (32.1249° N, 5.3701° E). The studied 

village is a rural community comprised of 108 households 

and 44 farms. The load demand of the study area is estimated 

based on the needs of the local population. This estimated 

load takes into account various power needs of the local 

population, including domestic, community (community 

Hall, streetlights, primary school, hospital, and mosque), 

agricultural (water pumps), and commercial (shops). To 

simplify load demand estimation in the study area, the year 

has been divided into two distinct seasons: the summer 

season (May-October) & the winter season (November-

April). Figure 3 represents the estimated hourly energy 

demand (EL) of the studied area. The high energy demand 

observed during the summer season is mainly due to the 

extreme heat in Algeria's southern region, which drives 

extensive air conditioner use. Another contributing factor is 

the operation of water pumping motors to extract 

groundwater for crop irrigation. The utilized solar irradiance 

is shown in Fig. 4, and the temperature variations are shown 

in Fig. 5. In this study, the meteorological data were 

collected in 2020, which was a leap year (8,784 hours). 

 
Fig. 3 – Estimated energy demand of summer - winter day. 

3. MICROGRID ECONOMIC ANALYSIS 

To determine the financial soundness of microgrid 

designs, many approaches have been investigated in the 

literature [30]. In this paper, we have utilized the life cycle 

cost (LCC) objective function. LCC method is a 

comprehensive accounting technique that considers all costs 

associated with the designed system over its entire lifespan, 

including initial costs of components, operational costs like 

maintenance, and fuel consumption, microgrid components 

replacements costs, for that the LCC method allows for 

informed decision-making by providing a complete picture 

of the total cost of ownership, enabling organizations to 

make more strategic investments and reduce overall costs 

over the long term [31]. The LCC is calculated by summing 

the total initial capital cost (TICC), the total installation cost 

(TIC), the total actual of annual operation & maintenance 

(O&M) cost value (TAVO&M), the total actual of the annual 

fuel cost value (TAVF), the value of total actual annual 

replacement cost (TAVR) as given by the following equation: 

 

LCC = TICC + TIC + TAVO&M + TAVF + TAVR. (9) 
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Fig. 4 – Annual solar irradiance of Ghars Boughoufala. 

 

Fig. 5 – Annual temperature of Ghars Boughoufala. 

4. PROBLEM FORMULATION 

The following discussion addresses objective functions, 

including LCC and COE, alongside boundaries associated 

with the DG, SEGS and BESS. 

4.1 LCC OBJECTIVE FUNCTION 

Objective function presented in eq. (10) is aiming to 

minimize the designed microgrid LCC while adhering to 

imposed limiting factors. LCC primarily relies on two 

selection variables: the solar panels number that constitutes 

the SEGS (NSEGS) and the batteries number that constitutes 

BESS (NBESS). 

min LCC(NSEGS, NBESS) = ∑ (LCC)C

min

C=SEGS,BESS,BCC,DG

. (10) 

4.2 COST OF ENERGY 

The cost of energy (COE) stands as a paramount 

parameter extensively deployed in evaluating the economic 

viability of the microgrid [32]. Calculated as follows: 

 

COE ($/kWh) =
LCC

∑ EL(t)8784
t=1

× CRF, (11) 

 

where, CRF represents the capital recovery factor [33] and 

it is calculated as follows: 

CRF =
z × (1 + IN)N

(1 + IN)N − 1
, (12) 

where, N is the life span of the project and IN is the nominal 

interest rate. 

4.3 SEGS BOUNDS 

Additionally, the SEGS is subjected to the following 

constraints. 

0 ≤ NSEGS ≤ NSEGS−max , (13) 

where NSEGS is SEGS PV panels count. 

4.4 BESS BOUNDS 

The modeling of BESS amount of energy that can be at 

specified time (h) is restricted utilizing [34]: 

NBESS−min ≤ NBESS(t) ≤ NBESS−max. (14) 

The allowable BESS working limits of energy are 

calculated as: 

EBESS−max = (
NBESS × VBESS × CBESS

1000
) × 

× SoCBESS−max. 

(15) 

EBESS−min = (
NBESS × VBESS × CBESS

1000
) × 

× SoCBESS−min . 

(16) 

where, CBESS and VBESS are BESS rated capacity and BESS voltage. 

The allowable BESS working limits of SoCs are 

calculated as outlined below: 

SoCBESS−min = 1 − DoD. (17) 

SoCBESS−max = SoCBESS−min + DoD, (18) 

where DoD is BESS depth of discharge. 

4.5 DG BOUNDS 

The diesel generator demonstrates greater efficiency when 

operating at elevated loads. This condition prevents DG 

operation at very low loads, which are inefficient and result 

in excessive fuel consumption. The constraint thus 

guarantees that the generator contributes power only in its 

efficient range. DG will engage in simulation only after 

adhering to this prescribed limitation [35]: 

𝐸𝐿(𝑡)

ηC
≥ PDGR. (19) 

5. RESULTS AND DISCUSSION 

This research paper explores the optimal sizing of a 

standalone microgrid system. The setup incorporates PV 

renewable energy resource (SEGS) and PLC-based BESS 

alongside a DG. Table 1 presents the cost and characteristics 

of the utilized BESS technology, and Table 2 presents the 

cost and characteristics of SEGS/Converter/DG, along with 

the economic characteristics of the project. The 

configuration is examined using the LF dispatch strategy and 

subjected to analysis through five metaheuristic algorithms: 

SSA, PSO, GWO, EO, and WHO. The algorithms are 

executed with default parameters. For the PSO and GWO 

algorithms, the population limit is 100, and for SSA, EO, and 

WHO, the population limit is 30, with 100 maximum of 

iterations. 

Table 1 

Cost and characteristics of PLC BESS. 

BESS type Pure Lead Carbon (PLC) 

Manufacturer Leoch Battery 

Model PLH100FT 12V/100Ah 

Nominal voltage 12 V 

Nominal capacity  100 Ah 
Round trip efficiency  85% 

Lifespan (year) 3 at DOD = 70% 

Self-discharge rate 0.3% 

Capital cost ($) 410 

Annual O&M cost ($) 2.5 of capital cost 
Operating temperature Discharge: −40 °C to +65 °C 

Charge: 0 °C to +54 °C 
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Life cycle 800 cycles at DOD = 70% 

Table 2 

Cost and characteristics of SEGS/Converter/DG and  
economic characteristics of project. 

SEGS DC/AC Converter 

Manufacturer SpolarPV Rated power  60 kW 

Model of PV Panel SPV420-

PM10-108 

Lifetime  10 Year 

Rated power of PV 

Panel  

410 W Capital cost  6875 $ 

Panel Lifetime  20 Year O&M  15 $ 

Capital cost  266 $ Efficiency 95% 

PV O&M  3.2 $ DG  

PV Mechanical 

structure cost  

41 $ Manufacturer of 

DG 

Volvo 

Life time of 

mechanical 

structure  

25 Year Model of DG DB-

68GF-

85KVA 

PV panel AO&M  3.2 $ Capital cost of DG  6550 $ 

Economic characteristics 

Project lifetime  20 Year Inflation rate 0.048 

Nominal interest rat 0.03 Diesel price  0.34 $ 

5.1. CONVERGENCE EFFICIENCY OF WHO 

The convergence curves of the five utilized algorithms for 

the microgrid are presented Fig. 6, the proposed setup 

achieved the minimum LCC (7,229,644 USD) with PSO, 

EO, SSA and WHO algorithms, reaching the highest optimal 

value at 55th, 82nd, 69th and 38th iterations successively, while 

GWO reached another higher value (7,231,979 USD) at the 

90th iteration. 

Based on the preceding analysis, it is evident that the 

proposed WHO algorithm exhibits rapid convergence rates, 

outperforming other algorithms’ rates and outperforming 

other algorithms in swiftly identifying the optimal solution, 

as stated for addressing microgrid size challenges due to its 

high convergence speed and its efficient capability in 

locating the optimal LCC. 

 

Fig. 6 – Convergence curves of the PLC-BESS-based microgrid. 

5.2 MICROGRID CONFIGURATION EVALUATION 

Table 3 describes the optimization results of PLC-BESS 

based microgrid configuration along with the mean elapsed 

time of one iteration (METI) of each optimization algorithm, 

according to the table it is observed that, the four-

optimization methods converge to minimum LCC of 

(7,229,644 USD) except for GWO that converge to LCC of 

value 7,231,979 USD with difference of 0.03%, and for the 

COE the algorithms converge to value of 0.3845, the optimal 

setup composed of 4,379 NSEGS and 554 NBESS and consumes 

11,659 l of fuel in the year. It is also observed that the EO 

algorithm exhibits the lowest METI, with differences of 

108%, 0.45%, 107%, and 5.14% compared to the PSO, SSA, 

GWO, and WHO optimization algorithms, respectively. 

Table 3 

Optimization results of the PLC-BESS based microgrid 

 NSEGS NBESS TAFC LCC ($) COE 
($/kWh) 

METI 
(s) 

PSO 

[23] 

4,379 554 11,659 7,229,644 0.3845 29.8040 

EO 

[20] 

4,379 554 11,659 7,229,644 0.3845 8.9093 

SSA 

[21] 

4,379 554 11,659 7,229,644 0.3845 8.9496 

GWO 

[22] 

4,383 554 11,658 7,231,979 0.3846 29.5891 

WHO 4,379 554 11,659 7,229,644 0.3845 9.3798 

6. CONCLUSION 

This research paper proposes a method for optimally 

sizing a stand-alone microgrid system energized by a solar 

energy generation source (SEGS), combined with a diesel 

generator (DG) and battery energy storage system (BESS), 

composing hybrid microgrid configuration, referred to as 

SEGS/BESS/DG, the microgrid includes two buses a direct 

current (DC) bus as well as another alternating current (AC) 

bus which are bi-directionally linked through a converter. 

The key objective of the designed standalone microgrid is to 

meet the energy demands of a rural community in Ghars 

Boughoufala, Ouargla province, in southern Algeria. To 

achieve this, the paper proposes an optimization design using 

the wild horse optimizer (WHO), a nature-inspired 

metaheuristic, to minimize the life-cycle cost (LCC) and the 

cost of energy (COE). In order to get the best configuration 

in terms of cost and guarantee a steady power supply, the 

study examines Pure Lead Carbon (PLC) as BESS and based 

on a load following (LF) energy management strategy 

(EMS). To demonstrate the robustness and efficiency of the 

Wild Horse Optimizer (WHO) algorithm, it is matched with 

four other verified methods in the MATLAB environment. 

The results indicate that the proposed WHO algorithm 

consistently finds the best optimal solutions for both LCC 

and COE, outperforming other algorithms. Moreover, the 

WHO algorithm's fast convergence efficiency property 

proves its capability in getting a favorable optimal solution 

quickly. The results reveal that the microgrid powered by 

PLC batteries achieves the lowest LCC and COE of 

7,229,644 USD and 0.3845 $/kWh, respectively. This study 

aims to offer support on electricity supply to alike off-grid 

microgrid projects, in order to contribute to the economic 

growth, creating job opportunities for locals and reducing 

polluted emissions. 
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