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In this article, a new approach based on the use of received signal strength indication (RSSI) combined with long-range (LoRa) 
communication technology has been developed to locate a drone. Additionally, an interval analysis was introduced to enhance 
localization accuracy and system reliability. This approach involves taking into account several RSSI measurements over defined 
time intervals.  The quadrotor is controlled by an adaptive control system based on the passivity of the system’s ASC. By combining 
RSSI with LoRa technology, interval analysis, and passivity-based ASC control, our approach offers a robust and efficient solution 
for UAV control and localization. This methodology could be applied in a multitude of real-life scenarios, offering significant 
benefits in terms of safety, operational efficiency, and overall performance of UAV systems.

1. INTRODUCTION 
Recently, advances in wireless communications for 

unmanned aerial vehicles (UAV) have opened up vast 
navigation horizons, making navigation fully autonomous in 
both outdoor and indoor environments. UAVs have missions 
in a wide range of sectors, including monitoring, logistics, 
and agriculture. Some applications, such as facility 
monitoring, inspection, and warehouse management, are 
critical in terms of time and security of information on the 
quadrotor's position. Sudden changes in the environment and 
missions in indoor environments typically require a high 
degree of precision, necessitating the real-time estimation of 
the drone's position [1]. 

Although there are research works based on advanced 
techniques in the field of UAV localization, [2] has 
developed an integrated system using an on-board 
convolutional neural network (CNN) to estimate the relative 
position between nano-UAVs, with a low-resolution camera 
and a very low-power system-on-chip. However, this method 
is constrained by the limited resources on board the nano-
UAVs, which can restrict the complexity of the algorithms 
deployed, and it depends on the performance of the deep 
learning models under real flight conditions. 

Additionally, [3] proposes a passive drone localization 
and detection system based on radio frequencies (RF), 
utilizing angle-of-arrival (AoA) and triangulation 
techniques. However, the proposed method has limitations, 
including a dependence on the accuracy of rotating antennas 
and software-defined radios (SDRs), which can affect 
reliability in complex environments.  

Additionally, [4] focuses on a framework for detecting and 
identifying drone controller signals using the frequency-
hopping spread spectrum (FHSS) technique and estimating 
their direction of arrival using a uniform linear antenna array. 
However, the method has high complexity due to 
cyclostationary analysis and the short-time Fourier 
transform, as well as sensitivity to nonlinear viewing 
environments, which can affect the accuracy of direction 
estimates. 

In this paper, we propose a novel approach to UAV control 
and localization that utilizes RSSI in conjunction with LoRa 
communication technology. RSSI, which measures the 
strength of the radio signal received by the drone from 
ground stations, is used to estimate the distance between the 
drone and these ground reference points by combining RSSI 
with LoRa technology, which offers extended range and 
robust communication over long distances. 

Additionally, we are introducing interval analysis to 
enhance localization accuracy and system reliability. This 
approach involves collecting and analyzing multiple RSSI 
measurements over defined time intervals to extrapolate the 
drone's current position with greater accuracy. By 
considering signal fluctuations over specified periods, our 
method can compensate for inaccuracies due to 
environmental factors. 

Complementing this localization approach, the quadrotor 
is controlled by an adaptive controller based on the system's 
passivity. Unlike conventional controllers, which often 
struggle to maintain optimum performance in the face of 
varying environmental conditions, our method exploits the 
passive properties of the system to ensure robust stabilization 
of the quadrotor, even in complex and disturbed 
environments. 

The primary advantage of this controller lies in its ability 
to adapt in real-time to external disturbances, ensuring 
enhanced asymptotic stability and robustness. This approach 
overcomes the limitations of traditional static controllers, 
which can fail under dynamic conditions. By incorporating 
interval analysis and accounting for signal fluctuations over 
specific periods, our method not only improves localization 
accuracy but also enhances flight stability, providing a more 
reliable solution for Quadrotor control during localization. 

2. PRELIMINARIES 

2.1 QUADROTOR MATHEMATICAL MODELING 
The architecture of the LoRa drone localization system is 

based on an approach designed to optimize localization 
accuracy, robustness, and energy efficiency. This 
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architecture, comprising three interdependent elements—the 
drone to be localized, the LoRa beacons, and the base 
station—forms a coherent, scalable ecosystem. The drone is 
equipped with LoRa communication modules. This module 
enables the drone to engage in bidirectional exchanges with 
LoRa beacons. The data exchanged includes not only the 
drone's current position, but also information on its status, 
speed, and other relevant parameters. 

The base station is the brain of the localization system. It 
receives the signals emitted by the UAVs and beacons, 
collecting the raw data needed to calculate the precise position 
of the UAV. The considered body fixed frame B and the earth 
fixed frame E are shown in Fig. 1. The motion equations of the 
Quadrotor may be determined by combining the kinematics 
and dynamics models of the Quadrotor [1, 5–15]: 

 
Fig. 1 – Quadrotor configuration with LoRa antennas: a body fixed frame 

B and earth frame E. 
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where 𝑢(, 𝑢&, 𝑢', and 𝑢) are the control inputs, which can be 
calculated by: 𝑢( = 𝑏(Ω(& + Ω&& + Ω'& + Ω)&), 𝑢& = 𝑏(−Ω&& +
Ω)&), 𝑢' = 𝑏(Ω(& − Ω'&), and 𝑢) = 𝑑(Ω(& − Ω&& + Ω'& − Ω)&), 
respectively. 𝜙, 𝜃, 𝜓, 𝑥, 𝑦 and 𝑧 stand for roll angles, pitch 
angle, yaw angle, x-position, y-position, and z-position, 
respectively. 𝐽$ is rotor inertia, 𝐼,,	𝐼-,	𝐼.,are body-axis 
inertias, 𝑏 is the thrust coefficient, 𝑑 is the drag coefficient, 
𝑙 is a lever and Ω$ = Ω( − Ω& + Ω' − Ω). 

3. ADAPTIVE SYNERGETIC CONTROLLER FOR 
THE QUADROTOR SYSTEM 

The following nonlinear state-space model can represent 
the dynamics of the Quadrotor: 

𝑥̇(𝑡) = 𝑓G𝑥(𝑡), 𝑢(𝑡)H = 𝐴(𝑥)𝑥(𝑡) + 𝐵(𝑥)𝑢(𝑡),
𝑦(𝑡) = ℎG𝑥(𝑡)H = 𝐶𝑥(𝑡),

 (2) 

where 𝑥(𝑡) ∈ ℝ/ captures the system states, 𝑢(𝑡) ∈ ℝ+ 
denotes the control inputs, and 𝑦(𝑡) ∈ ℝ+ represents the 
measured outputs. The state transition matrices 𝐴(𝑥) ∈
ℝ/×/ and 𝐵(𝑥) ∈ ℝ/×+, along with the output matrix 𝐶 ∈
ℝ+×/, do not need to be explicitly defined for implementing 
the proposed adaptive controller [15,16]. To meet the ASP 
requirements for the ASC method, an augmentation using a 
PFC (Parallel Feedforward Compensator) of the following 
form is introduced: 

𝑥̇1(𝑡) = 𝐴1𝑥1(𝑡) + 𝐵1𝑢(𝑡),
𝑦1(𝑡) = 𝐶1𝑥1(𝑡),

  (3) 

where 	𝐴1 = diag	G𝑎1% , … , 𝑎1&H ∈ ℝ
+×+, 𝐵1 =

diag	G𝑏1% , … , 𝑏1&H ∈ ℝ
+×+, and 𝐶1 = diag	G𝑐1% , … , 𝑐1&H ∈

ℝ+×+. The elements 𝑐1' and 𝑏1' are positive for all 𝑖 =
1,… ,𝑚. The augmented system is then given by: 

𝑥̇2(𝑡) = 𝐴2(𝑥2)𝑥2(𝑡) + 𝐵2(𝑥2)𝑢(𝑡)
𝑦2(𝑡) = 𝐶2𝑥2(𝑡)

 (4) 

where 𝑥2 = col	Y𝑥, 𝑥1Z ∈ ℝ/( , 𝑦2 ∈ ℝ+, 𝐴2 = diag	[𝐴, 𝐴1\, 
𝐵2 = col	Y𝐵, 𝐵1Z, and 𝐶2 = [𝐶, 𝐶1\. 

The control development aims to achieve output tracking 
of an ideal linear reference model characterized by: 

𝑥̇+(𝑡) = 𝐴+𝑥+(𝑡) + 𝐵+𝑢+(𝑡)
𝑦+(𝑡) = 𝐶+𝑥+(𝑡)

 (5) 

where 𝑥(𝑡) ∈ ℝ/& is the state vector of the model, 𝑢+(𝑡) ∈
ℝ3& is the control input, and 𝑦+(𝑡) ∈ ℝ+ represents the 
model's output signal. The matrices 𝐴+, 𝐵+, and 𝐶+ are 
appropriately dimensioned. 
To define the control objective, the output tracking error 
𝑒2(𝑡) ∈ ℝ+ is specified as: 
 𝑒2(𝑡) ≜ 𝑦+(𝑡) − 𝑦2(𝑡).  (6) 

The proposed adaptive synergetic control law takes the 
form [16]: 
𝑢456(𝑡) = 𝐾7(𝑡)𝑒2 +𝐾,(𝑡)𝑥+ +𝐾*(𝑡)𝑢+ +𝐾8(𝑡)𝑥2 (7) 
with gain matrices 𝐾𝑒 ∈ ℝ𝑚×𝑚, 𝐾𝑥 ∈ ℝ𝑚×𝑛𝑚 , 𝐾𝑢 ∈

ℝ𝑚×𝑞𝑚 , and 𝐾𝑠 ∈ ℝ𝑚×𝑛𝑎 . 
This control law can be expressed in a compact form: 
 𝑢456(𝑡) = 𝐾2(𝑡)𝑟2(𝑡). (8) 

where the adaptive gain matrix evolves according to: 
 𝐾2(𝑡) = 𝐾@(𝑡) + 𝐾!(𝑡). (9) 

The adaptation mechanisms are structured as: 
 𝐾@(𝑡) = 𝑒2(𝑡)𝑟2A(𝑡)𝑇B. (10) 
 𝐾̇!(𝑡) = 𝑒2(𝑡)𝑟2A(𝑡)𝑇! (11) 

with tuning matrices: 

 
𝑇B = diag	G𝑇B+ , 𝑇@# , 𝑇B, , 𝑇B-H
𝑇! = diag	G𝑇!+ , 𝑇!# , 𝑇!, , 𝑇!-H

. (12) 

The complete basic structure of the proposed control 
method is illustrated in Fig. 2. 

3.1 ERROR DYNAMICS, IDEAL CONTROL, AND 
STATE TRAJECTORIES 

For good tracking at time 𝑡∗, the system output 𝑦2(𝑡) 
should match the best model output 𝑦+(𝑡) 

 𝑦2∗(𝑡) = 𝐶2𝑥2∗(𝑡) = 𝐶+𝑥+ = 𝑦+. (13) 

Consequently, the tracking error vanishes: 
𝑒2(𝑡) = 𝑦+(𝑡) − 𝑦2(𝑡) = 0 (14) 

Define the ideal plant moving along bounded trajectories 
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𝑥2∗(𝑡) ∈ ℝ/ 
𝑥̇2∗(𝑡) = 𝐴2(𝑥∗)𝑥2∗(𝑡) + 𝐵2(𝑥∗)𝑢B∗ (𝑡)
𝑦2∗(𝑡) = 𝐶2𝑥2∗(𝑡)

 (15) 

The control law is given by: 
𝑢∗(𝑡) = 𝐾c,𝑥+(𝑡) + 𝐾c*𝑢+(𝑡) + 𝐾c8𝑥2(𝑡) (16) 

where 𝐾c, ∈ ℝ+×/& , 𝐾c8 ∈ ℝ+×/(, and 𝐾c* ∈ ℝ+×3& 
represent the ideal feedforward gains.  

The state error is defined by: 𝑒,(𝑡) = 𝑥2∗(𝑡) − 𝑥2(𝑡), the 
output error 𝑒2(𝑡) = 𝐶2𝑒,(𝑡),	taking into account the time 
derivative of the state error and substituting the ideal control 
from eq (16) also the actual control from equation (8), we 
obtain [16]:	

𝑒̇, = 𝐴D𝑒, − 𝐵2(𝑥2)𝐾B𝑟2 − 𝐵2(𝑥2)G𝐾! − 𝐾̃2H𝑟2 + 𝑅 (17) 

where 𝐴D = 𝐴2(𝑥2) − 𝐵2(𝑥2)𝐾c7𝐶2, 𝐾c2 = [𝐾c7𝐾c,𝐾c*𝐾c8\, and 
the residual term 𝑅 = 𝐽E(𝑥∗)𝑒𝑥	[16]. 

3.2 STABILITY ANALYSIS 
Theorem 1. The application of the proposed adaptive 

synergetic control law, along with its associated adaptation 
mechanisms, to the augmented nonlinear system ensures the 
asymptotic convergence of tracking errors and bounded 
adaptive gains. 

Proof. Consider the Lyapunov function candidate: 

𝑉(𝑒, , 𝜑, 𝐾!) = 𝑒,A𝑃(𝑥2)𝑒, + 𝜑(𝑒2)A𝜑(𝑒2)
+tr	 kG𝐾! −𝐾cH𝑇!"(G𝐾! −𝐾cH

Al

+tr	 kG𝐾! −𝐾cH𝐶2𝐵2𝑇!"(G𝐾! −𝐾cH
Al

   (18) 

where 𝑃(𝑥2) > 0. Note that 𝑉(0,0, 𝐾c) = 0, 𝑉(𝑒, , 𝜑, 𝐾!) >
0 for all {𝑒, , 𝜑, 𝐾!} ≠ (0,0, 𝐾c), and 𝑉(𝑒, , 𝜑, 𝐾!) → ∞ if 
∥∥𝑒,∥∥ → ∞, ∥ 𝜑 ∥→ ∞, or ∥∥𝐾!∥∥ → ∞. The time derivative of 
𝑉(𝑒, , 𝜑, 𝐾!) is: 

𝑉̇ = 𝑒̇,A𝑃(𝑥2)𝑒, + 𝑒,A𝑃̇(𝑥2)𝑒, + 𝑒,A𝑃(𝑥2)𝑒̇,
+2𝜑A(𝑒2)𝜑̇(𝑒2) + 2tr	YG𝐾! −𝐾cH𝑇!"(𝐾̇!AZ
+2tr	YG𝐾! −𝐾cH𝐶2𝐵2𝑇!"(𝐾̇!AZ

 (19) 

where 𝑉 ≡ 𝑉(𝑒, , 𝜑, 𝐾!). Substituting 𝑒̇, from eq. (17), 
𝐾Band 𝐾̇! from eq. (10) and eq. (11), using the passivity 
relation, and performing the calculations, we get: 

𝑉̇ = −2𝑒𝑎𝑇𝑒𝑎𝑟𝑎𝑇𝑇𝑝𝑟𝑎 − 2𝑒𝑎𝑇𝐶𝑎𝐵𝑎𝑒𝑎𝑟𝑎𝑇𝑇𝑝𝑟𝑎
−𝑒𝑥𝑇$𝑄(𝑥𝑎) + 2𝐶𝑎𝑇𝑇−1𝐶𝑎 − 2𝑃(𝑥𝑎)𝐽𝐹(𝑥

∗)'𝑒𝑥
 (20) 

 

Fig. 2 – Control loop. 

According to [16], for a Lyapunov derivative of the form 
eq. (24), the entire state [𝑒𝑥, 𝜑, 𝐾𝐼] eventually reaches the 
domain Ω𝑓 = Ω0 ∩ Ω, where Ω is defined as 
𝑉̇([𝑒𝑥, 𝜑, 𝐾𝐼(𝑡)] ≡ 0) and Ω0 = *[𝑒𝑥, 𝜑, 𝐾𝐼] ∣
𝑉([𝑒𝑥, 𝜑, 𝐾𝐼(𝑡)], 𝑡) ≤ 𝑉+$𝑒𝑥0 , 𝜑0, 𝐾𝐼0', 0,- is the domain 
containing the system trajectories. Since 
𝑉̇([𝑒𝑥, 𝜑, 𝐾𝐼(𝑡)], 𝑡) < 0	for 𝑒𝑥, the system eventually 
satisfies 𝑒𝑥 ≡ 0 ⇒ 𝑒𝑥(𝑡) = 0 ⇒ 𝑒𝑎(𝑡) = 0. Thus, the 
asymptotic stability of the state and output tracking errors is 
guaranteed. 

 

3.3 LORA COMMUNICATION TECHNOLOGY 
LoRa communication technology enables long-distance, 

low-data-rate communication between the drone and base 
stations. The specific parameters associated with LoRa 
technology are highly dependent on modulation 
characteristics and configuration parameters. 

The properties of LoRa technology, notably its low data 
rate wireless communications, which aim to cover long 
distances while maintaining low power consumption, make 
LoRa particularly suitable for Internet of Things (IoT) 
applications. While LoRa establishes the characteristics of 
the physical layer, LoRaWAN defines the system 
architecture and network protocols for LoRa-enabled 
devices. Specifically, via LoRa modulation, LoRaWAN 
offers medium access control (MAC), enabling LoRa end 
devices to communicate with a LoRa gateway [10]. 

3.3.1 CHANNEL MODEL 
The characterization of a Radio channel in a specific 

environment can be expressed as a relationship between the 
distance between two radio stations and the RSSI value, 
where the relationship is [11-14]: 

RSSI = −(10 ⋅ 𝑛 ⋅ log(O	 𝑑 − 𝐴)  (21) 

where 𝐴 represent the received power in dBm when the 
distance between the receiver and transmitter antenna is 
about 1m, and 𝑛 is the loss exponent of the specific 
environment. The distance 𝑑 is calculated as 

 𝑑 = 10P
𝐴−𝑅𝑆𝑆𝐼
10.𝑛 Q. (22) 

The parameter 𝐴 is related to the physical properties of the 
radio device, while the value 𝑛 heavily depends on the 
environment and the operating frequency. Equation (22) may 
be applied only under the ideal free space c-ndition, perfect 
with alignment and polarization of the antennas, and without 
path-loss and fading effects. However, the model is still valid 
in real world scenarios.  

Since the parameter 𝐴 depends on specific hardware 
characteristics and transmission conditions, a calibration step 
is required to determine its value empirically. In this case, 
parameter 𝐴 was obtained by measuring the average RSSI 
value at a known distance of 1 meter between transmitter and 
receiver, in the real environment. This calibration enhances 
the accuracy of the distance estimate through eq. (22). 

4. INTERVAL ANALYSIS 
Measurements of RSSI values are subject to uncertainties 

that are either due to the measurements themselves or to 
various factors such as environmental noise, interference and 
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antenna variations. To optimize these uncertainties, the 
interval analysis technique is used. This method involves 
expressing distances as intervals that capture the uncertainty 
of the measurement. If ΔRSSI represents the measurement 
uncertainty RSSI, minimum distances 𝑑min and maximum 
𝑑max can be calculated as follows [12] : 

 𝑑min = 10
𝑃𝑡−(𝑃𝑟+ΔRSSI)

10⋅𝑛

𝑑max = 10
𝑃𝑡−(𝑃𝑟−ΔRSSI)

10⋅𝑛

. (23) 

These intervals define a range of possible positions for the 
drone, reducing the impact of measurement uncertainty. The 
intersection of these intervals determines the drone's 
estimated position interval. For each base transceiver 
stations (BTS) 𝑖 with position +𝑥𝑖, 𝑦𝑖,, position intervals can 
be found by solving 

Int X: �𝑥X − 𝑑YZ[
'
 , 𝑥X + 𝑑YZ[

'
 � ∩ �𝑥X − 𝑑Y]^

'
 , 𝑥X + 𝑑Y]^

'
 �

Int Y: �𝑦X − 𝑑YZ[
'
 , 𝑦X + 𝑑YZ[

'
 � ∩ �𝑦X − 𝑑Y]^

'
 , 𝑦X + 𝑑Y]^

'
 �
		(24) 

The UAV position estimate is obtained by taking the 
average of the resulting 𝑋 and 𝑌 intervals. The localization 
error is defined as the distance between the actual position 
and the estimated position of the UAV [17]: 

 Error = �(𝑥real − 𝑥estimated )& + (𝑦real − 𝑦estimated )& (25) 

The performance of different BTS configurations is 
compared in terms of mean localization error and associated 
confidence intervals. 

5. SIMULATION AND EXPERIMENTAL RESULTS 
In this study, the simulation was carried out using 

MATLAB software. The platform used in the experimental 
tests is shown in Fig. 3.  

 

 

Fig. 3 – Drone with LoRa antennas. 

This platform is equipped with a PX4 autopilot based on 
a 32-bit STM32F427 Cortex M4 core.  

The embedded system contains a 6-DoF 
accelerometer/Gyro MPU-6000 and an STMicro LSM303D, 
a 3-axis accelerometer/magnetometer, as shown in Fig. 4.  

 

Fig. 4 – Tests for measuring distance using LoRa and RSSI. 

The model parameters of the Quadrotor used are shown in 
Table 1. 

Table 1 
Table of Quadrotor parameters and their values. 

Parameter Value Unit (mksA) 
m 0.65 kg 
Ix 0.011 kg m2 
Iy 0.036 kg m2 
Iz 0.029 kg m2 
b 3.13e−5 N s2 
d 7.5e−7 Nms2 
Jr 6e−5 kg m2 
l 0.23 m 

 
In Fig. 5, the drone is localized using three BTSs. The use 

of three BTSs significantly reduces the area of uncertainty 
where distance intervals overlap, enabling a more accurate 
estimation of the drone’s position. This shows a significant 
improvement in localization accuracy compared with a two 
BTSs configuration, although some uncertainties remain. 
The localization error is lower, illustrating the positive 
impact of increasing the number of reference points on 
estimation accuracy. 

 
Fig. 5 – Localization with 3 BTSs. 

Figure 6 uses localization with four BTSs, the area of 
uncertainty is considerably reduced, enabling a much more 
accurate estimation of the drone’s position. The distance 
intervals overlap minimally, reducing the localization error 
to a very low level, close to zero. This configuration 
demonstrates the maximum effectiveness of localization 
techniques when the number of BTSs is sufficient to provide 
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redundant data and reduce uncertainties. 
Figure 7 compares localization errors for configure-tins 

with 2, 3 and 4 BTSs, represented by vertical bars. The figure 
shows an apparent and progressive decrease in localization 
error as the number of BTS increases. With 2 BTSs, the error 
is highest due to large areas of uncertainty. With 3 BTSs, the 
error decreases considerably, and with 4 BTSs, the error 
becomes minimal. 

 
Fig. 6 – Localization with 4 BTSs. 

This comparison highlights the importance of using more 
BTS to improve localization accuracy. It also illustrates how 
interval analysis techniques, when combined with redundant 
data from multiple sources, can minimize errors and improve 
the reliability of position estimates.  

 
Fig. 7 – Error of localization. 

Table 2 shows a significant improvement in localization 
accuracy compared to the method of [18]. This underlines 
the effectiveness of the proposed interval approach, even 
with a reduced number of BTSs. 

Table 2 
Comparison of the localization error to that of [18]. 

 2 BTSs 3 BTSs 4 BTSs 
Work of 

[18] 
Error (m) 0.422 0.363 0.363 0.92 
 

Figure 8 shows the results of the system simulation. The 
first three graphs show the evolution of the Euler angles (roll, 
pitch and yaw) over time. The next three show the system’s 

position in space (x, y, z). The seventh and eighth graphs 
show angular and position errors respectively. Finally, the 
last graph shows the control signals u1,2,3,4 as a function of 
time. 

 

 

 

 

 

 

 

 

 

Fig. 8 – Control and stability results. 

6. CONCLUSION 
The approach proposed in this study combines LoRa 

communication technology, interval analysis, and passive 
adaptive control to offer an innovative and robust solution 
dedicated to UAV localization and control. Thanks to 
interval analysis, the method guarantees more accurate 
localization even in the presence of measurement 
uncertainties. At the same time, the use of adaptive control 
ensures system stability and self-adaptation to dynamic 
variations and disturbances. This robustness is essential for 
critical missions. One of the strengths of this approach lies in 
its enhanced resilience to adverse external conditions. The 
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system maintains a stable trajectory and satisfactory 
operational performance. This makes it particularly suited to 
applications in hostile or unpredictable environments. 
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